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We describe the coupling of electronic and nuclear motions in slow atomic collisions using a combina-
tion of the eikonal and time-dependent Hartree-Fock (TDHF) approximations. Starting with an eikonal
representation of the total wave function, a wave function is constructed from classical trajectories in a
way suitable for describing atomic co11isions with velocities down to a fraction of an atomic unit. The
TDHF formulation is developed in terms of its density operator. The differential equations coupling the
density operator to the nuclear motions have been solved with a procedure developed to account for the
coupling of fast (electronic) and slow (nuclear) degrees of freedom. This is based on a local-interaction
picture and on a temporal linearization of the equations, allowing for the integration of the electronic
density over large time intervals. Density-matrix equations are derived in a basis of traveling atomic or-
bitals, and numerical results are presented for H++H and He ++H. Good agreement is found with ex-
perimental results for H++H, comparing integral electron transfer cross sections from 2 to 2000 eV. In
addition, an analysis of the time dependence of atomic orbital populations provides insight on electronic
rearrangement during collisions and shows that even very small contributions from the driving forces of
the nuclei on the electrons have a cumulative effect on the density operator that can substantially change
final populations.

PACS number(s): 34.10.+x, 31.70.Hq, 34.50.Fa, 34.70.+e

I. INTRODUCTION

Theoretical and experimental studies of slow ion-atom
collisions provide valuable information on the nature of
electronic rearrangement in molecular interactions. By
concentrating attention on systems with only two nuclei,
it is possible to gain insight on the collisional coupling of
electronic and nuclear motions and the way electronic or-
bitals change over time. Our aims are to describe the
temporal rearrangement of electrons in slow collisions (in
addition to the final rearrangement) and to calculate col-
lisional properties such as cross sections and polarization
parameters.

Theoretical models can be developed in considerable
detail for small diatomic systems to investigate their ac-
curacy and to extend the range of kinematic conditions
under which they are valid. The insight gained in these
studies should be valuable in the interpretation of interac-
tions between more complicated collision partners, such
as molecules and solid surfaces, provided the same
methods can be applied to larger systems, with more nu-
clear degrees of freedom. Our approach has therefore
been chosen so that it can be applied to larger systems.

We mean by slow collisions that the nuclear velocities
are small compared with electronic ones. Taking elec-
tronic velocities to be of the order of 1.0 a.u., and
remembering that a proton with a kinetic energy of 1000
eV has a velocity of the order of 0.2 a.u. , we find that a
formulation for slow collisions should be applicable to a
very wide range of collision energies, from several
thousand eV to fractions of an eV. This contribution de-
velops an approach that can be used for ion-atom col-
lision partners with several electrons and for collision en-

ergies going from several thousand eV down to fractions
of an eV, the region of interest in chemical phenomena.

The aim of most previous theoretical publications has
been to provide cross sections for electronic excitation,
electron transfer, and orbital polarization to compare
with experimental measurements with ion beams. Much
of the work concentrated on fundamental aspects of sys-
tems with only one electron, although more recent work
has been done also on two-electron systems [I—5]. They
have mostly covered collisional energies ranging from
hundreds of eV to larger values, because these are the en-
ergies frequently available from experimental instru-
ments. At the low energies of interest to us, theoretical
descriptions have been based on both atomic and molecu-
lar orbital descriptions of the electrons and on classical
trajectories for the nuclei. Quantal descriptions of the
nuclear motions have also been recently done for very
low collision energies [6,7].

Our approach has been developed so that applications
to many-electron two-atom systems and to polyatomic
systems would be practical. To these ends, we have intro-
duced several innovations in the theory for small atomic
velocities. We have carefully analyzed the short (de Bro-
glie) wavelength, or eikonal approximation, to derive ex-
pressions valid at low velocities and to include quantum
phase interference; this provides a link with the classical
molecular dynamics of polyatomic systems. We have
treated the many-electron system in terms of electron
density operators to avoid having to specify the temporal
occupation of molecular orbitals. The coupling of elec-
tronic density operators to nuclear trajectories involves
very different time scales and their accompanying numer-
ical difhculties; we have developed a solution to this prob-
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lem based on temporal linearization of the coupled
differential equations. Finally, we have introduced atom-
ic orbital basis sets to expand molecular orbitals and to
take advantage of the very extensive programming done
in quantum chemistry to calculate one- and two-electron
integ rais.

Starting with the quantal equations for all the molecu-
lar particles, it is possible to introduce a variety of semi-
classical limits for the nuclei to simplify the description
of electronic transitions [8—14]. Along these lines, we
have introduced an eikonal representation of the total
wave function for a system at a given total energy, in a
stationary collision process [15—19]. The limit of short
de Broglie wavelengths can then be naturally taken to ob-
tain an eikonal or semiclassical approximation, valid for
many nuclear degrees of freedom, that contains as partic-
ular cases several of the expressions used in semiclassical
treatments of ion-atom collisions. The description of
many-electron interactions has been done within the
time-dependent Hartree-Fock (TDHF) approximation in-

sofar as this has been found sufficient to impose the initial
conditions for many collision problems of interest
[20—24]. Our work using the TDHF approximation
started with an investigation of its limitations, comparing
results of the TDHF approximation and of its variational
improvements to exact calculations with a small basis set
[25,26]. The variational improvement is based on TDHF
trial functions from the initial and into the final states of
the type described here. That variational treatment
could therefore be used to go beyond TDHF calculations.

The combination of eikonal and TDHF approxima-
tions has been the subject of extensive testing in applica-
tions to several diatomic systems over a wide range of
collision energies. Preliminary results and conclusions
have been presented in several publications on different
aspects of ion-atom [27,19,28,29] and ion-solid surface
collisions [30—32]. In this contribution, we consider in

greater detail the eikonal approximation for electronical-
ly diabatic co11isions and look into the mathematical
problems that arise in a time-dependent description of
coupled nuclear and electronic motions due to the very
different time scales on which electrons and nuclei evolve.

Our approach does not require the previous knowledge
of potential-energy curves or their couplings. Instead, it
generates the electronic information used to describe nu-
clear motions as needed during the atomic interactions.
In this regard, it is an ab initio molecular dynamics, in
the spirit of work found to be very useful in the descrip-
tion of ground electronic state properties of extended
molecular systems [33,34]. In large systems, it has been
possible to solve the problem of rapidly oscillating elec-
tronic densities by introducing an artificial electronic
mass, leading to damping of electronic oscillations as the
system moves towards its ground electronic state [35,36].
We have found that our approach provides an alternative
useful also in the description of electronically excited
states and electronic transitions.

A time-dependent description must deal with coupled
differential equation solutions showing a short time scale
for the fast electronic transitions and a long one for the
slow nuclear motions. For example, for a proton collid-

ing with a hydrogen atom the periods of electronic transi-
tions are of the order of 1.0 a.u. , or 2.42X10 ' sec,
while collision times (for kinetic energies from 10 to 1000
eV and potential ranges of 10 a.u. ) vary between 500 and
50 a.u. In our approach we do not introduce an artificial
mass to dampen electronic oscillations, but instead
separate the electronic density operator into a relaxation
term at fixed nuclear conformations plus a density opera-
tor change due to moving nuclei. The procedure appears
to be generally valid insofar as we have found it to appli-
cable to both diatomic systems and to electron transfer at
solid surfaces, a localized phenomenon. Solving the
time-scale problem becomes more pressing as nuclear ve-
locities are lowered and electrons have more time during
interactions to jump back and forth between collision
partners.

The electronic structure of molecules has been exten-
sively investigated using carefully selected atomic basis
sets. They have been chosen to simplify the calculation
of one- and two-electron integrals and have been
parametrized to optimize atomic energies [37-40]. The
most computationally efficient basis sets are based on
Gaussian functions, for which there are well tested pro-
grams [41]. Consequently, in our calculations we have
chosen to express traveling atomic orbitals as combina-
tions of Gaussian functions times electron translation fac-
tors [28]; this allows us to apply our approach to poly-
atomic systems and to use quite large basis sets.

Earlier work on ion-atom collisions demonstrated that
physical insight can be gained by calculating the popula-
tions of diatomic orbitals over time [42—44]. In our
work we have instead chosen to analyze the atomic popu-
lations over time with a procedure valid also for many-
atom systems. Following our work on what we have
termed a time-dependent molecular orbital description of
molecular interactions, several publications have ap-
peared using time-dependent descriptions of electrons in
small systems, with driving forces calculated by means of
available electronic structure packages [45,14]. These
contributions point the way to a large variety of applica-
tions.

In what follows, Sec. II describes the coupling of elec-
tronic and nuclear motions in an eikonal-TDHF approxi-
mation and gives expressions for cross sections at two
different levels of approximations. The more accurate
description constructs a transition amplitude from an
eikonal wave function in an expression valid for low col-
lision velocities and many-electron systems. The time
evolution of density operators and their decomposition is
described in Sec. III, where a local interaction picture is
introduced, followed by a local linearization procedure
and by a discussion of the matrix equations which arise
after expansion in a basis set of traveling atomic orbitals.
Section IV gives details of the numerical procedure used
here. Results are shown for the time-dependent electron-
ic populations of nuclei in H++H and He ++H col-
lisions to illustrate the need for a careful decomposition
of the density matrix. We also show results for an angu-
lar distribution in slow H++H collisions, clearly illus-
trating the importance of electronic-nuclear couplings at
low velocities. Results of extensive calculations for sys-
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tems with one and two active electrons have been collect-
ed in two other contributions [46,47] to better describe
the calculations and their physical content for both time-
dependent and asymptotic properties.

II. COUPLING OF ELECTRONIC
AND NUCLEAR MOTIONS

We consider the collision of two atoms A and 8; A
contains a nucleus a and Nz electrons while 8 has a nu-
cleus b and N~ electrons. The electronic variables for the
N=N„+N~ position and spin coordinates x =(rj,g, )

are X=(x„.. . , x~) and the nuclear coordinates are
(R„R&).In what follows we shall work in a reference
frame with its or~iin at the center of mass of the nuclei,
indicating with R=Rb —R, the relative position of the
nuclei. The total wave function 4, for all electrons and
nuclei, is a solution of the Schrodinger equation for a
given total energy E,

H%(X,R)=E%(X,R),
where the total molecular Hamiltonian is given by the
sum of nuclear and electronic kinetic energy operators
plus all Coulomb potentials,

arises from the difference between atomic and nuclear po-
sitions. When the relative distance becomes large in the
solid angle direction Qzz, and choosing outgoing wave
conditions, we have for a system with initial molecular
quantum numbers a=(kz, I) the scattering state

4'+'(X, R)=(2M) 4z(X;R)exp(ik~ R„~)

Xexp(ikzR zs )R„z,(8)

where we have introduced the angular amplitudes f~z+
'.

In this expression, the exponential functions contain
electronic coordinates, so that the electronic wave func-
tions multiply electronic phase factors that can be impor-
tant for large atomic momenta; their magnitude is not
large for slow atomic collisions, but they are nevertheless
essential to satisfy asymptotic conditions. Omitting them
would lead to spurious intra-atomic couplings for moving
nuclei [1—3]. These phase factors will later be included
in the electronic wave functions by means of expansions
in traveling atomic orbitals; consequently we introduce
the new electronic states

HR=H, +H,' .
(2) 4 (X,R)=Or(X, R)exp[ikz p(X, R)]

H4 =E4c I I I (3)

where 4~ is an antisymmetrized product of atomic wave
functions and Ez is the sum of atomic energies, and also
introduce free relative motion states

In these expressions we have introduced the Hamiltonian
HR for fixed interatomic positions and decomposed it
into two terms; the first one is the asymptotic Hamiltoni-
an obtained when the electrons are in arrangement c as
8 ~ co and the second is the atom-atom interaction. The
index c will designate a scattering channel.

The Schrodinger equation must be solved with bound-
ary conditions for scattering. We introduce electronic
states for fixed relative positions, satisfying the equation

in the expansion of the molecular states. Once the phase
factors have been accounted for, we can neglect terms of
order m, /M and replace R„s=R.In what follows we
write

4'+'(X, R) =g@p(X;R)g'p+'(R),
P

Qp+'(R) =(2M) ~ [exp(ik~ R)5J~

+fgg+'(Q)exp(ik~R )R '],
where P=(kJ,J). Given the asymptotic solutions, cross
sections follow as usual from

d +JI /d &= ( ~J / "s ) Ifsr+ '( fl ) I

+z (R)=(2M) ~ exp(ikr. R) (4)
A. The eakoaal representation

for the momentum Pz =A'kz, giving the total energy

E=E~+A kq/(2M„q), (5)

R~„=R~—R„=R+p(X,R),

where M~~ is the reduced mass for the atom pair. The
relative position of the atoms is

It is well known that electrons must be treated quan-
tum mechanically because of their small mass, but nuclei
can be approximately treated with classical mechanics.
In preparation for a treatment of electrons and nuclei
that takes advantage of the difference in their masses, we
introduce an exponential form for the molecular wave
function

where %(X,R)=y(X, R)exp[iS(R)/fi], (12)

N m,
p(X, R)= g r~

—R„
M~

N~m,

M~

where by choice the function S is real and y is complex
valued. This is an exact representation, which will be
convenient to introduce an eikonal (or short de Broglie
wavelength) approximation for the nuclear motions. In
what follows we shall choose S for convenience to be an
action integral approximating the quantal phase of the
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wave function; the phase of x can compensate in princi-

ple for deviations from the correct phase.
The Hamiltonian of the atom pair can be written as

T

We first notice that in the absence of interactions the
molecular wave function is

4 =X exp(iS /fi), Xo=(2M) i~ 4, SO=%st R .
fi

2M aR2 R i aX' (13) (21)

Here M is the reduced mass of the nuclei and Hz is the
Hamiltonian for fixed nuclear positions. For total energy
E, we place the wave function in the time-independent
Schrodinger equation to obtain

ca as+ +H„- E —Ix(R) & =0, (14)
2M i aR aR

which is valid for any S. Here we have used the angular
bracket notation to describe states in the space of elec-
tronic functions; an angular bracket will indicate integra-
tion over electronic variables, but will remain a function
of nuclear variables. An equation for S follows by pro-
jecting the above equation on y and taking the real part
of the result, which gives [15,18]

In the presence of interactions, we instead have

S (R)=SO(R)+ fdR (P —iiikt}

and the asymptotic form at R ~m,

q'.+'=q.+'exp(tS. /a) .

(22)

(23)

from which the cross section readily follows.
An alternative and more accurate expression can be

constructed from the values of the wave function over all
space, calculating the scattering integral [49]

Projecting on the final electronic state along the scatter-
ing direction, we find

fez+'(Q)=(2mb) R & 4tiIy++'&exp[iS (R)/A' —ikJR ]

(24)

as +Vq„,R =E,as-
aR '" aR' (15)

(16}

T&.= 'R 4~ H„-—H' 0'+'

pHf' '+' exp i S— (25)

&xIx&
where Hf' is the atom-atom coupling in the final arrange-
ment channel c =f; the cross section follows then from

&xlx&,

(17) fqt+'(0) = (2n. )~trtM—T@

8. The eikonal-TDHF approximation

(26)

where the first term can be identified as the Ehrenfest po-
tential for the nuclear motions while the second and third
terms give quantal corrections.

The function S satisfies a time-independent Hamilton-
Jacobi equation [48], which can be solved introducing
trajectories. Defining the momentum

p =as/aR, (18)

H „(P,R)=P P/(2M)+ V „(P,R),
dR/dt =aH „/aP,
dP/dt = —aH „/aR

(19)

it follows that trajectories of nuclei can be obtained for a
fixed energy E by introducing position and momentum
functions of the time t, satisfying the Hamiltonian equa-
tions

We next introduce two simplifying assumptions: we
assume that the de Broglie wavelengths for the nuclear
degrees of freedom are very short, so that gradients of
wave functions change little over a wavelength; we also
assume that the electronic states may be accurately de-
scribed by Hartree-Fock wave functions, implying that
asymptotic states can also be described by them, in the
limit of large interatomic distances.

1&x.lx. &l «& ' (27)

and

1. The eikonal approximation

We introduce the approximation of short de Broglie
wavelengths A, =h /I', or eikonal approximation, whereby

for initial (P, ,R; ) at the time t, The traject-o. ries give

$(R)=S(R;)+J dR.P .
R,-

(20)
(28)

Cross sections may be extracted from these wave func-
tions using their asymptotic form or the transition in-
tegral of scattering theory. The asymptotic form is easier
to calculate, but as we shall show it neglects certain phase
interference during collisions. - We give both expressions
for future reference.

This allows us to neglect V' and V" so that the trajec-
tories of the nuclear variables are now determined by the
efFective (momentum independent) potential

&.(R)=&x.(R)I~„-lx.(R) &/&x.(R)Ix.(R) & (29)

and the trajectory momentum is P =Md R/dt.
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In addition, it is sometimes useful (but not necessary)
to define an average effective potential (AEP)

V(R) =g wt V, (R)
I

(30)

+Ha W(—R) ~X~(R) ) =0 )M i QR
(31)

with chosen fractional weights ml, adding over energeti-
cally accessible states I. The flexibility provided by these
weights can be used to develop an approach satisfying
state-to-state time reversibility [18].

Using the eikonal inequalities, Eq. (14}is approximated
by the differential equation

( „~)B(X,Y,Z)
B(t,b, g)

to find [17,50]

a — a(lnJ)
(J/J )

M gR Bt

(38)

(39)

as the factor giving amplitude changes due to divergence
of streamlines; here J, is the initial value of J. In the ab-
sence of interaction, the time-dependent free states are
given by

and can be obtained transforming the divergence
differentials from the Cartesian coordinates (X, Y,Z) to
(t, b, P) by means of the Jacobian determinant

W (R)=V (R)+i .P .
2M gR ~rior(t) &

= ~ep&exp 'E~(—t —t; )— (40)

P 8 1 8
(32)

and writing

lX (R)) =(2irirt) a (R)14 (R)) . (33)

The new equation for 4 may be simplified transform-
.ng variables from the Cartesian components of the rela-
;ive position vector to trajectory coordinates for given in-
.tial conditions. Using initially cylindrical coordinates
b, P, Z; }, where b is an impact parameter and P the az-

.muthal angle of the initial collision plane, we have that
k=R(t;b, P) for fixed t; and Z;. We work with the new
variables ( t, b, P ) and use

We therefore find a complex potential with an imaginary
part describing the divergence of streamlines. As the col-
lision ends, this divergence is positive and the magnitude
of y decreases; it is, however, compensated by the in-
:reasing factor R in Eq. (23) to give a finite cross section.
I'he divergence effect can be extracted from y introduc-
ing the solution a of the differential equation

and satisfy the differential equation

——+a, ~q (t)&=0.o o

~ a~
(41)

Equations (36) must be solved simultaneously with the
trajectory equations

dP/dt= —dV /dR,

V.(R)= (@.IH;I@.) /& @.Ic.&

(42)

in a procedure we have called the self consistent -eikonal
method [15]. The gradient of the potential is calculated
along the trajectories rewriting the potential as a function
of t, b, and P, and calculating its gradient components by
the chain rule, using the Jacobian determinant and its
minors.

Cross sections for electronic transitions I~J follow
from foal+' in the eikonal approximation, noting that
~R a

~
is proportional to the elastic differential cross sec-

tion obtained from classical trajectories in the potential
Vl. Therefore

P 8
M ()R

8
Bt

b

(34)

l3efining time-dependent electronic states g by means of

8cT

d
(43)

~P [R(t)])= ~rt, (t))exp —J dt'V [R(t')] (35)

ind replacing in Eq. (30) we find the equation and bound-
&ry conditions

—.—+H- ~~ (t)&=0,

~i) (t))=~4') p ex— E,'(t t, ) for t~—t, . —
(36)

1 &, 1
a =exp —— dt' -P

2 f; M BR
(37)

The exponential factor containing the divergence of
~treamlines is given by

where the first factor is the elastic differential cross sec-
tion and the angular bracket is a transition probability
obtained projecting the evolved electronic state at the
fina1 time tf on the noninteracting final state. The
scattering solid angle results from a trajectory with a
specific choice of initial impact parameter and azimuthal
angle; if more than one set of initial conditions leads to
the same scattering solid angle, then one must add the
cross sections over all such trajectories. The trajectories
must be generated for each initial state. Using the AEP
one can alternatively calculate trajectories and elastic
differential cross sections independent of the initial quan-
tum state.

A more generally applicable and more accurate result
can usually be obtained from the transition integral,
which incorporates information about the final state and
potential coupling. To obtain the cross section from the



50 TIME-DEPENDENT MANY-ELECTRON APPROACH TO SLOW. . . 327

transition integral in the eikonal approximation, we start
with

Ttt =(2m@) 'f d'Ra (R)&@plHf'I@ &

constructed from molecular orbitals (MO's) for an initial
electronic state I, which includes the translational phase
factor. For a chosen state I and a given trajectory R(t ),
the determinant is written as

Xexp —f dt'V (R)

Xexp[i(S —Sp)/A'] (44)

D (X,t}=(N!}' A g P;(x;,t),

and we again transform integration variables from space
coordinates to trajectory coordinates by means of the
Jacobian J, using the previous expression (39) for the
divergence of streamlines.

Introducing the energy relations Ez=E Akz/—(2M)
and V =E—P /(2M) we obtain

ff
Tg, =f && & f

deaf

«(vpplHgln, &gp, ,

gt& =(2mB) 3(JJ;)'Y2exp( imp, /A—), (45)

%2k 2 P~

hatt, =SO& — (t t, ) S———f dt'
2M

FYyY+ y yY~Y, =ieayY/at (50)

where N is the number of electrons, A is the antisym-
metrizing projection operator, and the g~ are time-

dependent (TD) MO's for electron spin y=a, P. These
MO's must be constructed including electron translation
factors (ETF's) to account for the motion of nuclei; they
therefore depend on nuclear positions and velocities. The
difFerential equations for the TD MO's may be derived
from a time-dependent variational functional in a well-
known procedure [55]. The result is the set of equations

(46)

to obtain

(47)

This is a compact expression that can be used in calcula-
tions. For each chosen initial impact parameter and az-
imuthal angle, the integral over time may be done along a
trajectory, and then one can add over initial conditions.

When the trajectory is approximated, e.g., by a con-
stant velocity trajectory, the factor g is simplified and it is
possible to do an integration by parts in the time integral.
This is in fact the procedure frequently followed to calcu-
late cross sections for fast collisions [51,52]. The present
derivation applies also to slow collisions. The integrals
over impact parameter and azimuthal angle may also be
evaluated by stationary phase approximations, in which
case the transition amplitude becomes a sum of complex
terms approximately describing phase interference when
several trajectories lead to the same state-to-state transi-
tions [53,54].

2. The TDHF approximation

Choose next for g the approximate form

g (X,t}=D (X,t), (48)

where D is a time-dependent determinantal function

The factor g contains the Jacobians and a difference of
action integrals and can be calculated from trajectory
bundles [17]. The angular bracket is an integral over all
the electronic coordinates that can be simplified as fol-
lows. Replace there Hf =H„- Hf, opera—te with the first
term on the electronic state to the right and with the
second term to the left, and use

with the Lagrange multipliers e forming a Hermitian ma-
trix. Here

FY =H'"+GY[p, pt'] (51)

Et(HF)=g u;

1 &y';l(H"'+F) lq';&

&q';lp';&

(52)

it follows that the initial conditions for the TD MO's are

g;(t)=y, exp ——' f dt'u, (t') for t~t; .
t

(53)

Instead of working with the differential equation for
the MO's, it is computationally convenient to introduce
the electronic density operator

pY(t)= g leaf(t) &&yr(t)l, (54)

satisfying the TDHF equation

FYpY pYFY =i fgdpY/dt— (55)

This provides a direct way for calculating single-particle
properties. To calculate detailed transition amplitudes or
other matrix elements, the MO's may be recovered as the
eigenstates of the density operator.

is the Fock operator written as a sum of a one-electron
term H"' plus the Hartree-Fock (HF) self-consistent po-
tential energy operator GY.

The initial conditions come from the implied assump-
tion that the free electronic states are also determinantal
wave functions agreeing asymptotically with D at the
initial time. From the HF state and energy of nonin-
teracting atoms,

N
40(X,R)=(N!)'Y A g y;(x;,R),
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V' "'=Vt "'=V„+gtr[pj(H+F~)]/2,
r

(56)

where the first term is the atom-core —atom-core interac-
tion potential and we have neglected terms of order
ktm, /M (coming from the phase factors) compared to
electronic momenta. The average effective potential is
now

V' "'=V„+gtr[P r(H+Fr)]/2
r

p =X~tpf .
I

(57)

The TDHF states are usually acceptable to describe
short-time events and to calculate expectation values of
single-electron properties. Improved treatments of the
electronic states could be based on superpositions of elec-
tronic configurations, leading to time-dependent
multiconfigurational HF states, or on time-dependent
coupled cluster states. A simpler variational improve-
ment of TDHF transition amplitudes can also be carried
out by analogy with work done on ion-atom collisions
[26]. Here TDHF functions of the type just introduced
are chosen as trial functions, developing forward in time
from state I and backward in time from state J. That
variational procedure has been found to be accurate for
one- and two-electron transfer in two-electron system and
holds promise for many-electron systems.

The combined eikonal and TDHF approximation pro-
vides the required cross sections. From the asymptotic
form

d 0 JI
I &Dos(tf ) ID.(tf ) & I'

I

(58)

where we have used the fact that the brackets of two
determinants are the determinants of the matrix formed
by their MO brackets [56]. Similarly, the transition in-
tegral may be obtained integrating along trajectories in
accordance with

Tp = dbb d dtgp t

(59)

For fast co11isions the g factor simplifies and one can in-
tegrate by parts over time to obtain the results in the
literature for the special case of TDHF states. The
present derivation is valid also for slow collisions.

III. TIME EVOLUTION OF THE DENSITY OPERATOR

The MO's contributing to the density operator may be
classified into orbitals describing the atomic cores and or-
bitals describing valence electrons shared by the atoms.

In the present notation, the effective potential is given
by

The valence orbitals may further be classified as undergo-
ing electronically adiabatic or diabatic evolution. The di-
abatic valence orbitals may be said to describe the active
electrons in the collision. In what follows we briefly dis-
cuss the decomposition of the density operator corre-
sponding to the above classifications. We show how the
valence contributions may be calculated over time and in-
troduce basis sets leading to matrix equations convenient
for numerical calculations.

A. Decomposition of the density operator

(6O)

val j

Since the self-consistent electron-electron interaction po-
tential in the Fock operator is linear with p, we can re-
group its terms to define a core Hamiltonian, which can
be treated as a one-electron operator,

F=H'" +G [p, +p, ]=H,'"+G [p„]. (61)

In what follows we concentrate on the valence density
and drop the subscript U.

We assume that the evolution of the system at large
distances is electronically adiabatic and the density
operator changes smoothly with time only to the extent
that it takes new values at each given nuclear conforma-
tion. This is assumed here to occur between incoming
trajectory times t; and t, and outgoing trajectory times tb

and tf. Within these time intervals the charge density
may nevertheless get polarized or may relax as time and
the conformation changes. The initial density operator
to be used starting at t, , p(t, )=p, (R, ), is generated solv-

ing for the static HF equations at time t;. The adiabatic
density operator may be constructed from the knowledge
of the Fock operator at each position R(t) in the adiabat-
ic time intervals.

We construct the solution between times to and tl, as-
surning that the density and Fock operators p& and Fo are
known at time to, for which the position is Ro. Then the
differential equation for the density, to zeroth order in
the local velocity, is

~P - —l O O=(i') '(Fop —
p Fo), (62)

where Fo is evaluated at Ro and the initial condition is

p ( to ) =po. The solution to this operator equation is
given in terms of a time-evolution operator by

p (t) =exp[ iFO(t t )/R—0]p (to)exp—[iFO(t —to)/A']

= Uo(t 1'p )po[ Uo(t to ) ] (63)

We identify the core orbitals as the ones that do not
change during interactions, so that they are time indepen-
dent. The core and valence terms in the density operator
satisfy

P Pc+PU ~
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B. The driven term in the local interaction picture

It is further advantageous to work in a local interac-
tion picture generated by the local Fock operator. For
moving nuclei, with the Fock operator change EF(t)
=F(t)—Fo giving their driving energy, we define the
local interact-ion picture of an operator A by means of

Az(t) = [U,(t, t, )]tA(t) U, (t, t, )

and in particular introduce the density terms

(65)

where the last equality defines the time-evolution opera-
tor. This operator describes electronic relaxation for
fixed nuclei.

A criterion must be given to identify the beginning of
the diabatic regime; indicating with hp the change of the
density over a time step, the diabatic regime is started
when the norm ~~bp~~ is larger than a prescribed value. In
the diabatic regime, electronic rearrangement leads to
rapid relaxation (smooth or oscillatory) of the charge
density. Usually, one must describe electronic oscilla-
tions over time scales much shorter than those for nu-

clear motions. To accomplish this we separate two terms
inp,

p( t)=p (t)+cr(t) .

The first term describes electronic relaxation for fixed nu

clei, as before, and the second term the density operator
change due to the driving forces of nuclear motions Here.

the second term accounts for diabatic contributions from
finite nuclear velocities and can be monitored at early
times, comparing its magnitude to that of the first term.
The diabatic regime is assumed to start when its value be-
comes larger than a prescribed amount. We construct
the solution for the driving term also between times tp

and t &, from the knowledge of the same density and Fock
operators pp and Fp.

crt (ti )=crt (t)+(i') ' f dt'[NFL (t'), cr~(t')]+. . . .

(70)

Calculations at short distances must include both p
and cr. To integrate the difFerential equation for the den-

sity operator at short distances, we propagate the solu-
tion by small time intervals t

&

—tp, within which the solu-

tion for 0 can be constructed accurately to first order in
the local nuclear velocity.

Insofar as both b,FL (t) and ot (t) go to zero linearly
with vanishing nuclear displacements, we find that retain-
ing only the driving term Dt (t) leads to a local lineariza-
tion in time, or a temporal linearization, of the difi'erential

equation for oc (t), with a solution given by the first term
in Eq. (70). Transforming to the original representation,
we obtain for the full density operator

p(t) =po(t)+(iR) ' f dt'Uo(t, t')D(t')[Uo(t, t')]t,
(71)

D(t) =&F(t)p'(t) p'(t )~F—(t) .

This expression may be evaluated at time t „andthe pro-
cedure may be repeated to advance the time again. This
is done for t, ~ t & tb, after which the system evolves
again adiabatically.

The procedure described here, with a relaxing density
operator taken as the zeroth order in an expansion, turns
out to have better convergence properties than a straight-
forward expansion with po as the zeroth order. In the
latter case the driven term could be sizable, forcing a
choice of very small intervals and possibly leading to nu-
merical inaccuracy. Furthermore our procedure includes
the driving factor hF, which is slowly varying, into a
quadrature which may be reduced to simple integrals.
This, as we shall see next, provides a solution to the prob-
lems created by coupled functions with very difFerent

time scales.

pt(t)=po oc(t)=pL, (t) po (66) C. TDHF in a basis set

with the latter satisfying the difFerential equations

ificrL (t) =Dc (t)+ I t (t),
Dt (t)=bFt (t)po pod Ft (t), —

I't (t) =NFL (t)crL (t) o t (t)EFL (t), —
(67)

where DL is the term driving the density, found to be
linearly dependent on the nuclear displacements, and I L

is of higher order; this must be solved with the initial
condition

oL, (to) =po po=0 . — (6&)

Alternatively, the solution can be obtained from the in-
tegral equations

The MO's can be expanded as combinations of atomic
or localized orbitals. If, however, these MO's were ex-
panded, as usual in quantum chemistry, in a basis of stat-
ic atomic orbitals Ig„]and then replaced in the TDHF
equation, we would find spurious asymptotic couplings
appearing in the form of (y„~dy„.ldt ) terms, where the
two atomic orbitals (AO's) are located at the same nu-
cleus. To avoid this problem, MO's will instead be ex-
panded at large distances as linear combinations of trav-
eling atomic orbitals (TAO s) g„,which will eliminate the
spurious couplings and will account for translational
phase factors. We next introduce a general basis set of
electronic orbitals I P ], with overlap integrals ( P ~P

'l

and expand MO's in this basis to obtain

(69)
o~(t)=erg(t)+(iA') ' f dt'[bF~(t'), cr~(t')],

f0

og(t)=(iA) 'f dt'D~(t'),
0

which give, when solved by iteration, between times tp
and t, ,

Pf(r, t )=g P~(r, t )cf~(t),

where the coeScients are complex valued.
The density operator in this basis is

p'(t) =g Ip, )p' (t)(p, ),

(72)
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where P~ is the (pq) element of the density matrix P ~.

In matrix notation

p'=
I P &P '& PI, (74)

where IP & and &Pl are row and column matrices of P or-
bitals, respectively. The matrix elements of P are

where AW=W —Wo. The density change can be explic-
itly constructed at time t, from the integrals

fl
I k„zi(ti,to)= exp[ —i(wk —wi*)(t, —t')]D„p(t')dt',

fo

pr, (t)= y c;(t)[cr(t)]' .

The Fock matrix F r is defined as

Inserting Eq. (61) into the above definition we have

Fr=H+Gr(pr pr }

where

H=K+V~ +V~

(76)

(78)

where the mk are eigenvalues of the Wo matrix. There-
fore, one may integrate the equations step by step from
beginning to end without encountering numerical prob-
lems due to rapid Uariations in the density matrix, because
Q(t) is constructed from quadratures within each time in-
terval.

E. Matrix equations in the TAG basis

As a special case we can choose a basis set of TAO's;
MO's are then expanded as linear combinations of travel-
ing atomic orbitals g„,

is the core Hamiltonian matrix, G~ the Hartree-Fock
electron-electron interaction matrix, K the electron
kinetic energy matrix, and V„the electron-(atom A) po-
tential matrix.

To derive the TDHF equation for the density matrix,
let us define a matrix

gf(r, t }=+g„(r,t)cr, (t),

g„(r,t)=y„(r)T (r, t),
(86)

where y„is an AO centered at nuclear position R (t)
and

(79)
T (r, t)=exp im, v (t) r —dt'U (t')/2

ta
(87)

and multiply the differential equation for p by &Pl from
the left and by IP& from the right. We then have from
Eq. (55)

iPr=S '(Fr iQ}Pr—— P(rF r iQ) S— (80)

where S=
& P I P & is the overlap matrix. Here and in what

follows fi = 1.

D. Matrix equations and solutions

P (t) =Uo(t, to)Po[Uo(t, to)]

Uo(t, to)=exp[ —iWO(t to)] . — (82)

The density matrix can be decomposed as done for the
density operator, working now with the basis-set expan-
sions. The operators p (t) and o L (t) have matrix repre-
sentations P (t) and QL (t) in that basis. For fixed nuclei
(and fixed spin y) the density matrix P o(t) satisfies

iP '(t) =W,P '(t) —P '(t)W, , (81)

where W=S '(F iQ) and —Wo=W(to), or equivalently

(89)

Calculating matrix elements of 0 and of the electron
kinetic energy operator in the basis of TAO's and cancel-
ing terms, Eq. (81) becomes

iPr=S 'FrrPr —Pr(Frr) S

where S= &pig& is the new overlap matrix and we have
introduced a modified Fock-like matrix

FJ=Hr+Cr r, (91)

is an electron translation factor, a function of the velocity
vector of nucleus m. It may also be considered an eigen-
value of the translation (or boost) multiplicative operator
T, which gives I g„&=T ly„&. Reconstructing the
determinantal state from the MO's in Eq. (87), one can
verify that the phases in Eq. (8) containing electron coor-
dinates are correctly reproduced. The density operator in
this basis is given now in matrix notation by

O'=I(&P'&kl (88)

and the Fock matrix F ~ is defined as

The equation for the density-matrix change in the
linearized approximation is then simply

where

HE=K~+V ~+VM+L~, (92)

iQL (t}=DL(t} . (83)

The original change in the density matrix is given by

Q(t) =U,(t, to)Qt (t) [Uo(t, t, ) ]

=f dt U,(t, t ')D(t) [U,(t, t ') ]
0

0=am P '—P 'SW ', (84)

(K.,)„„=&g„lJ:,Ig„&

=f d r[g„(r,t)]~T„(r,t)k[T„(r,t)] g (r, t),

(Lr)„„=m, a„f d r—[gz(r, t)] T„(r,t)

Xr[T„(r,t)]*(„(r,t), (94)
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and a„=dv„ldtis the acceleration of nucleus n .Equa-
tion (94) gives the work done by the dragging force of the
nucleus on the electron; since it involves the nuclear ac-
celeration it is found to vanish asymptotically, where the
nuclear velocities are constant. Therefore, no spurious
couplings remain at large distances when using TAO's.
At short distances the acceleration term is present and
must in principle be calculated; from bounds to its mag-
nitude it is, however, usually found that its magnitude at
short distance is small compared to other Hamiltonian
terms.

A calculation for all times may now be done with the
TAO basis at large distances and a convenient basis at
short distances [5]. The transformation bases is done us-
ing the overlap integrals between the two bases. Omit-
ting for the moment the spin index y and introducing a
superscript to distinguish the P and g bases, we can write

p= I 4» "'&4 I

=
I C» '"&0I (95)

and find

(96}

providing the starting density matrix in the new basis.
One must simultaneously switch to the new basis in the
calculation of the potential for the trajectory. When the
bases are sufflciently large, this can be done without in-
troducing artiScial potential or density-matrix jumps.
An alternative is to use the same basis for all times, that
of TAO's, to avoid matching problems. This is the pro-
cedure followed in our calculations here.

IV. NUMERICAL ASPECTS

The implementation of the above formulation in a basis
of TAO's requires the calculation of the overlap matrix S
and the Fock-like matrix Fr. Other authors have chosen
to calculate these matrix elements by numerical integra-
tion [57,5]. In our calculation, these matrix elements are
calculated starting with hydrogenic atomic orbitals and
reexpressing them as segmented contracted sets of Gauss-
ian basis functions [58]. The matrix elements, including
the ETF's, may be calculated analytically in this basis,
which adds to the speed of the evaluation of the elements
at each nuclear conformation [28].

Within the eikonal-TDHF approximation, the time
I

propagation of a collisional state is obtained by solving

Eq. (42) for the nuclear trajectories and Eqs. (83) and (85}
for the reference density matrix and density-matrix
change. In a basis of TAO's, the matrix W takes the
form

W=8 Fz' (97}

and its elements are calculated as discussed above. The
equations for the time propagation of the nuclei and the
electronic densities must be propagated together.

A. Criteria for integration of the difFerential equations

The propagation of the above difFerential equations in
time requires the choice of a time step. Criteria have
been developed that allow for their efficient integration
using an appropriate time step with particular considera-
tion given to the change in the electronic density matrix.
The time step ht = t

& to —is chosen so that the condition

( IIQII (, (98)

is satisfied. Here the tolerance lower bound e&,„„allows
for larger time steps in the adiabatic region where the
evolution of the density matrix is nearly equal to the evo-
lution of the reference density. The tolerance higher
bound ez; z„restricts the procedure to smaller time steps
in the diabatic region where the change in the density
matrix is relatively large. Hence this method is able to
automatically adjust the time step size in order to
efficiently and accurately integrate the equation for the
electronic density matrix.

The trajectory equations may be integrated over the
time step determined above with the use of any of a num-
ber of numerical integration routines. The present
method uses the fourth-order Runge-Kutta (RK) algo-
rithm because it is a self-starting procedure. This proper-
ty allows for the selection of the time step from the above
criteria without any deleterious efFects on the integration
of the nuclear trajectories. In addition, we have found
that the quadratures (quadr) required for Q are more ac-
curate if the integrands are expanded around
t, &&=to+ ,'bt. The order —in which the integrations are
performed is portrayed schematically in the following
way:

RK UT quadr RK UT
(R,P, P,W, V), —+ (R,P), ~ (P ' ', W, V), ~ (Q), ~ (R,P), ~ (P=P ' '+Q, W, V), (99)

Therefore, Srst the time is advanced by one-half of the to-
tal time step. As we know the full electronic density ma-
trix at time to, we may calculate the potential which de-
pends on the density matrix at time to From the posi. -

tions and momenta of the nuclei and the potential due to
the electronic densities at time to, as well as their values
at earlier times, we are able to move the nuclei to their
positions and momenta at time t»z using the RK algo-
rithm. We are also able to calculate the reference density
at time t, zz using the unitary transformation (UT) from

Eq. (82). After the nuclear coordinates have been calcu-
lated at time t, zz, and with this new reference density, we
are now ready to complete the time step. The matrix D
is calculated at t, &2 and the integral in Eq. (85) is done
analytically assuming D=D(t, zz) for to~t ~t, ; this
gives the density-matrix change at t&. Completing the
time step requires the calculation of the electronic poten-
tial at time t, &2, which is done using the new reference
density. Next the nuclear coordinates are propagated to
the end of the time step t &. Having the nuclear positions
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and momenta at time t& we are able to again use Eq. (82)
to calculate the reference density matrix at time t, . Fi-
nally, W& and V& are calculated at t, to start the propa-
gation to time t2.

8. Electronic basis sets and population analyses

p, (t}=g g [/g'„&P„„(t)(g'„/+H.c.]/2,
pEa v

n, = g g [P„„(t)S„„+c.c. ]I2,
pEa v

(100}

where n, is the occupation number of center a, and H.c.
and c.c. mean the Hermitian and complex conjugate, re-
spectively, of the preceding term.

Alternatively we can introduce the orthonormal (trav-
eling) Lowdin orbitals

~~„&=y ~g„&(s-'")„,

and the Lowdin populations

(101)

Atomic populations provide insight on the time evolu-
tion of the interacting atoms even though they cannot be
defined in a unique way. Two useful definitions [39] are
based on the Mulliken and Lowdin decompositions of
density functions. In the Mulliken decomposition we
write the density operator as the sum

p(&)=gp, (&),
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FIG. 1. Comparison of integral electron transfer cross sec-

tions versus projectile kinetic energy for H++ H collisions. The
full line was calculated as explained in the text; the experimen-
tal results are shown by triangles and squares with their experi-
mental errors.

10l0

Eq. (57}; they lead to similar results. The AEP was used
to more accurately maintain state-to-state time reversibil-

ity, because it does not depend on the initial state. A nu-

merical study of AEP's further showed [28] that averag-
ing over 2s and 2p channels did not have a noticeable
effect; consequently the present calculations were done
with equal weights of —,

' for the 1s orbital of each center;
we refer to this potential as the screened Coulomb poten-
tial (SCP) because it allows for dynamical screening of the
nuclei during the collision.

n, = g g [(S '~ )g„P„„(S' '),I,+c.c. ]/2 . (102) D. Results for H++H and He2++ H
Asap, v

The two definitions lead to qualitatively similar popula-
tions, but can be numerically difFerent. We have found in

our work that the Lowdin populations stay positive, as
populations should, but Mulliken values can become neg-
ative at some times. In what follows we have calculated
Lowdin populations.

C. Comyarison of asymptotic values with other work

Various experimentally measurable quantities may be
calculated with our procedure. We have calculated in-
tegral state-to-state cross sections, elastic and inelastic
differential cross sections, and polarization parameters
for systems with one and two active electrons [28], but we
defer most of these results to two following papers [46,47]
where we explain in detail the implementation of our
methods and the physical significance of the results.
However, we do present here the integral charge-transfer
cross section for the collision of a proton projectile with a
target ground-state hydrogen atom to illustrate the scope
and accuracy of our approach. Figure 1 shows the in-
tegral charge-transfer cross section over a projectile ener-

gy range from 2 eV to 2 keV. The calculated cross sec-
tions show good agreement with experimental values
[59,60] over the entire range of projectile energies. The
calculations were done in a basis of TAO's written as
linear combinations of Gaussians, including five orbitals
(the ls, 2s, and 2p orbitals) on each center.

Calculations were done with the effective potential of
Eq. (56) and also with the average eff'ective potential of
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FIG. 2. Target H 1s-orbital population in collisions with H+,
at a laboratory projectile kinetic energy E=10 eV and impact
parameter 6 =1.0. a.u. versus time, in a.u. , during a collision.
The full line is from the reference density p and the dashed line
from the density change a. Notice that the latter is multiplied

by a factor of 100. The trajectory was calculated with the
screened Coulomb potential (SCP), including dynamical screen-
ing.

It is instructive to analyze the temporal change of
atomic orbital populations, to learn about the nature of
electronic rearrangement, and to gain an understanding
of what terms must be accounted for in the calculation of
the density matrix. An analysis of the separation of the
electronic density into the reference density p and the
density change cr is revealing. Figure 2 presents the tar-
get population in the 1s orbital of the reference density
and the change in the density as a function of time for a
projectile proton of energy 10 eV colliding with a target
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FIG. 6. Target H 1s-orbital population in collisions with
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changes both populations and phases of the density-
matrix elements and that these changes accumulate as
time advances. Unlike the previous example, a small er-
ror in the uncorrected density is not canceled over a large
number of fiuctuations.

A similar calculation has been performed for the
heteronuclear collision of a projectile He + ion with a
target ground-state hydrogen atom. The projectile ener-

gy is 4 keV, the impact parameter is 0.2 a.u. , and the nu-

clei move along straight lines at constant velocity, i.e.,
the effective potential has been set to zero. This is accu-
rate for the present collision energy. Again, a basis of
TAO's has been used including five orbitals per center
(the ls, 2s, and 2p orbitals). Figure 6 shows the target
population in the ls orbital of the reference density and
the change in the density as a function of time. As in the
previous example, we see that the change in the density is
appreciable for only a short time. Figure 7 shows that
this slight change in the density again creates a large
difference between the exact and static densities by the
end of the propagation.

Finally, we present a result which clearly shows the im-
portance of coupling of electronic and nuclear degrees of
freedom even in a simple case such as H++H. Figures
8(a) and 8(b) present results for the elastic and electron
transfer reduced differential cross sections

10
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I . I . I . I . I . I . I

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Lab Angle (deg)

8L sin(8z )(do /dQ)z, respectively, versus laboratory an-
gle 8L at an incident energy of 410 eV. Theoretical re-
sults obtained with the screened Coulomb potential be-
tween nuclei and a simple Coulomb repulsion potential
(CP) show marked differences at low angles. Compared
with experimental results [61], the bare CP shows
artificial oscillations at low angles while the agreement is
clearly better for the SCP, which includes the dynamical
screening arising from electronic rearrangement during
the collision. Here the experimental values for the angle
have considerable errors and have been shifted by a con-
stant value to superimpose the second maximum with the
theoretical value. Similar agreement is found for other
incident energies [46].

FIG. 8. (a) Reduced elastic differential cross section (in de-
grees X a.u.) vs the laboratory angle for a proton incident at
410 eV on a hydrogen atom target. Full line, SCP calculation;
dotted line, CP; triangles, measurements from Houver, Fayeton,
and Barat. (b) Same as (a), but for the electron transfer reduced
differential cross section.
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V. CONCLUSION

Combining the eikonal and time-dependent Hartree-
Fock approximations, it has been possible to derive com-
pact expressions for cross sections and transition ampli-
tudes, given by Eqs. (58) and (59), that can be used to do
calculations at the low velocities of present interest. The
first expression is simpler in that it contains only the
asymptotic values of TD MO's and has been used for the
cross sections presented here. The second expression re-
quires knowledge of the time evolution of a system over
the duration of the collision and should have a wider
range of applications.

We have shown how it is possible to generate the de-
tailed time dependence while allowing for the coupling of
electronic and nuclear motions with different time scales.
This has been achieved decomposing the density operator
into terms corresponding to relaxation and driven effects,
as given by Eq. (71). The procedure combines unitary
transformations and quadratures to allow large time steps
in the advancement of nuclear positions and velocities.

Calculated atomic populations are found to change ex-
tensively over time, acquiring values which can be very
different from the final ones, and showing in some cases,
for low collision energies, extensive oscillations. The re-
sults in Figs. 2—7 illustrate the unique perspective, pro-
vided by the use of time-dependent molecular orbitals
and density matrices, for electronic rearrangement.

An analysis of populations during collisions, based on
Figs. 2-6, shows how sensitive the results are to the ac-
curacy of the intermediate density matrices. Even small
changes in their matrix elements during the collisions
may lead to large Snal differences in state populations be-
cause of the amplification of collisional dephasing. The
results presented here for integral cross sections of elec-
tron transfer are in agreement with experiment and other
calculations over a wide range of collision velocities.
Several other cross-section results obtained with our ap-
proach, for H++H, He ++H, H+H, and He++H, are
also in good agreement with other works [28]. This indi-
cates that the proposed procedure for calculations of
temporal properties are reliable for phenomena where the
TDHF approximation is applicable, as in the mentioned
systems.

The figures show that populations can rapidly oscillate
during collisions and provide insight on the nature of
these collisions. It is clear that any sensible population

analysis would lead to oscillating atomic populations.
Here we chose to work with the Lowdin populations of
Eq. (102) because these were found to stay positive dupng
collisions.

The most time consuming stage of computations in our
approach involve the generation of the one- and two-
electron integrals which make up the Fock matrix. This
time increases with the number of atomic basis functions.
Therefore, for a given basis set of, e.g., s, p, and 1 orbit-
als, the same approach can readily be applied to pairs of
atoms with many electrons. Going from two atoms to
more than two would involve the additional calculation
of three- and four-center electron integrals, for which
computer packages are available [41]. On the other
hand, the resulting increase in the number of degrees of
freedom for the nuclei does not present a serious prob-
lem. Methods of molecular dynamics can be used for this
purpose [62], which include well understood algorithms
for propagation of positions and velocities, and for sam-

pling of initial conditions.
Results presented in this paper were obtained using

three different computer architectures. A Sun Spare
ELC station was sufftcient for single trajectory calcula-
tions and for computer code development work. An IBM
3090 was used for production runs involving about 100
trajectories per collision energy. Here the CPU times
varied from less than 1 min to about 2 min per trajectory,
depending on the initial conditions. Finally, since these
calculations are well adapted to parallel architectures be-
cause of the independence of initial conditions, we also
used a Kendall Square Research KSR1 computer with 96
processors to calculate as many as 50 trajectories simul-
taneously, reaching a nearly linear speedup with the
number of processors. More detailed computing times
will be included in following papers [46,47]. Therefore,
the computing times required for our calculations, with
our algorithms and computing facilities, allow for exten-
sive investigations of phenomena with one and two active
electrons.
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