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Computation of the scattering length and effective range in molecular physics
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A simple and easily implemented highly accurate method to compute the scattering length and
effective range for a diatomic potential is presented. It combines the numerical solution for small inter-
nuclear distances R with analytical corrections for large R. The method provides upper and lower limits
to the exact values, to any desired precision. A numerical example and discussion are given for the case
of the Cs-Cs ground-state interaction.

PACS number(s): 34.40.+n, 03.65.Nk, 02.60.—x

I. I¹RODUCTION

Knowledge of the scattering length and efFective range
for diatomic potentials is of fundamental importance in
the study of low-energy, low-temperature collisions. We
present here a fast and very accurate method to compute
the scattering length and efFective range for diatomic po-
tential curves.

A typical potential curve is constructed for small
values of the internuclear distance R from ab initio data,
usually computed variationally, and for large R by a
polynomial in inverse powers of R with specified
coefBcients. We will not present the details of construct-
ing such potential curves, but we do require that beyond
a certain value of R the potential curves can be represent-
ed by a known simple analytical form.

For a spherical symmetric potential V(R) which van-
ishes at infinity equal or faster than 1/R, the scattering
length is defined from the asymptotic behavior of the
solution U(R) of the radial Schrodinger equations at en-
ergy equal to zero:

d U =2MV(R) U(R),
dR

U(0) =0,
U(R )=aR +P as R ~ oo,

where M is the reduced mass of the system and a and p
are constants. The scattering length is given by

QC4 R +C4
Uo(R) =aR cos +P sin

R

where C~ is 2M times the coefficient of 1/R in the
analytical expression of the potential for large R.

The direct numerical integration of Eq. (1) give rise to
many numerical problems because the asymptotic
behavior of the solution is reached only at very large dis-
tances, usually tens of thousands of atomic units. In Sec.
II we will present a method to integrate Eq. (1) safely.
The method consists of combining the numerical solution
for small R, where the potential usually is known numeri-
cally, with the analytical solution for large R, where the
potential has a simple analytical form. For the case of an
attractive potential, the method itself controls the errors,
providing upper and lower limits to the convergence. An
example of the method will be given in Sec. III for the
case of the Cs-Cs ground-state interaction, using the
model potential curve from [3]. For this case there are
previous evaluations of the scattering length which will
serve as comparisons.

II. THEORY

Let V(R) be the potential V(R) multiplied by 2M and
introduce the following ansatz for the solution of Eq. (1)
at large R:

U(R ) =ae (R )+Pep(R ),

a= ——

and the effective range by [1)

(2)
where the functions s (R) and s&(R) tend to R and unity,
respectively, as R goes to infinity. Introducing Eq. (6)
into Eq. (1) we get the following difFerential equations for
c, and c&,

I [Uo(R) —U (R)]dR,

where Uo is the asymptote of U,

Uo(R ) =aR +P . (4)

For the case of an attractive potential decreasing at
infinity like 1/R, Uo should be replaced by [2]

e"=Ver, s ~yr as R~ao,
where y could be either a or P and gr =R and y&= 1. In
the general case, the potential V(R) at large R is given by
a polynomial in inverse powers of R. Equation (7) cannot
be solved exactly, but the solution can be given by a series
of successive approximations which are the solutions of
the following system of equations:

(k+1)" cy (k) ~(0)
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where limk „c.z '= cz.
Let 6~ denote the difference between two consecutive

approximations of c, so that

(9)

With these notations Eq. (6) becomes

U ( R ) =a( R +5"'+ 5' '+ )

+P(1+5,'"+5,"'+ (10)

where 5' ' and 5&
' are functions of R which vanish at

infinity and which are the solutions of the following sys-
tem of equations:

5'"+" =V5'"' for k =0 1 . . . .
y r )'''

The system of equations (11) can be easily integrated
since the potential V is a polynomial in inverse powers of
R, and so are the solutions. For large R the convergence
of Eq. (10) with the computed 5 corrections is very fast
If n is the smallest power of 1/R in the potential V, then
the smallest power of 1/R in the kth order corrections
will be n(k —2)—1 for 5'"' and n(k —2) for 5&"). In
practice it will be enough to compute the first three or
four corrections in order to insure a good approximation
for the solution of Eq. (1), for R of the order of a few hun-
dred atomic units.

Once Eq. (9) is established the constants a and p are
I

u c(k'- u '~(k}uE~ u E~
(k)' ~~(k)QFp Q Ep

and the effective range from Eq. (3) by

R 0 Ro Ro—3—+3 — U (R)dR
0

} p 0
ro =-'Ro

2 f—S„2——R +S„dR,(X)

0
(13)

where

and k is the highest order of 5 corrections included in the
computation. For the case of the attractive potential de-
creasing at infinity as 1/R the effective range has the
following expression:

determined by matching with the numerical solution
computed for R &Ro. The numerical integration can be
carried out in the usual fashion [4] since the range of in-

tegration is not larger than a few hundred atomic units, a
common range in atomic physics.

Let u and u' be the numerical values of the solution of
Eq. (1) and its derivative at the matching point R(, . Then
the scattering length is given from Eq. (2) by

ro=y(Ro) —
~ f U (R)dR+2f

0

R
Slrl cos

R a R

2

R
1 ——+Sk dR, (15)

where

1 2
y(R() ) = ——R () + 1—

a+C4
C4 4C4 2C4

R 0+ Ro sin
a a Ro

+—,
' —C 1—4

+-', QC, 1—

C4 3 2 C4
0 0R3 ——R2+2 1 — R cos0

a a a

8C4 2C4C4 2C4
Si

a 0

2C4

Ro

1+ R — QC 1—
a 3 a

The second integral from Eq. (15) is convergent and can
be solved analytically in terms of sin, cos, Si, and Ci func-
tions. If C4/Ro is a small quantity, an expansion in in-
verse powers of R may be more appropriate. &e recom-
mend the use of MAPLE or another symbolic mathemati-
cal language in order to solve Eq. (11) as well as the
second integral from Eq. (13) or (15).

It is clear that the value of scattering length a, and the
value of the effective range ro depend on the number of
corrections included in the computation. If a'"' and rok)

are the values of scattering length and effective range
computed, at a given value of Ro, using up to the kth 5
corrections, then the sets Ia'"'IkEN and Iro"'J«N con-
verge to the exact value a and ro respectively.

For the case of an attractive potential and for a large
value of the matching point Ro we will show that the sets
Ia'"'IkEN and Iro"']k~N approach their limits by succes-
sive upper and lower limiting values. To do so it is
enough to show that the sets ta("+"—a'")t«N and

I ro" "—ro"'
I «N are alternate convergent sets.

First we observe from Eq. (11) that for a large value of
R and for an attractive potential V given by a polynomial
in inverse powers of R,

sgn(5'"') =sgn(5I)" ) =( —1)" .

Equation (12) can be rewritten as
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(k)

~(k)&a

U

(k)
Ep

o

(18}

u(k+1) g(k) T(k+1)(R } T(k+1)'(R }0 0
Q

2

where the quantities on the right-hand side are computed
at Ro. Using Eq. (18) it can be shown that neglecting
quadratic and higher terms in 5~&"' and 5'"' for k ~ 1 we
have,

values of the scattering lengths and effective ranges, com-
puted in consecutive orders of corrections, give the upper
and lower bounds to the exact value. Let k be the largest
order of 5 corrections included in computation. Then, if
k is an even number, the different values of scattering
length, computed at different matching points R0, will

approach the exact value through upper values as R0
goes to infinity and if k is an odd number by lower values.
For the effective range the conclusion is reversed; for
even k by lower values and for odd k by upper values.
An illustration of these features will be presented in the
next section.

III. NUMERICAL ILLUSTRATION

where

5(k+1)'(R )P 0 (19)
We used for our numerical example the model poten-

tial curve for the Cs-Cs ground-state interaction from [3]
given by the following equation,

T(k) 5(k) R 5(k)
a P (20)

In the range of interest to our pr'oblem the solution of Eq.
(1) is close to the asymptote and so U is an increasing
function if U is positive and a decreasing function if it is
negative. Hence the quantity u /u' in Eq. (19},computed
at the matching point R0, is positive. On the other hand,
using Eq. (11}we get

C6 C8 C10
V(R)= 'BR~e —""— 6+ s+ )0 f (R), (26)

where the values of the constants are: B=0.0016,
@=5.53, g=1.072, C6=7020, C8=1.1X10, and

C&0 = 1.7 X 10 . The cutoff function f, has the following

expression:

T'"+" =VT'"' 25/+" wit—h T' '=0 . (21)
—(R /R —1)

f„(R) =e(R —R, )+8(R, —R )e (27)

It is easy to see that for an attractive potential at large
value of R, where the potential is given by a polynomial
in inverse powers of R we have

sgn(T~" + ~)= —sgn(T~" + ~

)

Hence

Psg (5(k+1)')

—sgn(5(k+1)) —
( 1)k+1 (22)

sgn(u (k+ &) (k)
)
—

( 1)k+1 (23)

r(k+1) r(k) 4 5(k+ 1) 5(k+1)
0 R 2 a

&
a

o a

which ensures that the [a'"']k~N set approaches its limit
though upper and lower values.

A similar conclusion holds for the effective range.
Neglecting quadratic terms in 5~&

' for k ~ 1 we have

C6 C8V(R)=-
R R

C10

R 10

To integrate analytically the system of Eq. (11) as well as
the second integral in Eq. (13}is easy, consisting only of
elementary operations. We have calculated these using
MAPLE, which is able to give also an optimized FORTRAN

where 8 is the step function and the values of the cutoff
radius R, are listed in the first column of Table I. The
value of the cesium mass was taken, as in [3], to be

m&, =2.422X10 (a.u.).
This model contains all the features necessary for a

good candidate to test our method for computing the
scattering length and effective range. The shape of the
potential V(R ) Eq. (26) is close to the real one. For large
R it behaves as a polynomial in inverse powers of R, the
exponential part falling to zero rapidly. Above R =100
(a.u.), the potential is

g(k+1)+ g(k+1) dRP P (24) TABLE I. The scattering length a and effective range rp in

a.u. at different values of the cutoff radius R, .

sgn(p(ki)p(k))sgn(5(k+1)) —(1)k (25)

The integrand in Eq. (24) is a polynomial in inverse
powers of R and so the integral will be a polynomial in
inverse powers of R0. For a large value of R0 the sign of
r0 + —r0"' will be determined by the sign of the leading
power of this polynomial, so that

R, (a.u.)

23.215
23.190
23.165
23.140
23.115

a'

376
140
65

—69
467

352.5
144.2
68.0

—67.7
485.3

350.630 5
145.433 6
68.215 96

—72.243 05
477.146 5

rp

169.984 3
157.589 4
624.553 3

2069.113
1916.246

Hence the set j ro ] k ~N approaches its limit through
upper and lower values.

In conclusion, for a given matching point R0, the

'Obtained by extrapolation procedure.
Obtained by semiclassical procedure.

'Present calculation.
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FIG. 1. The scattering length, a' ' dot-dashed line, a"' dot
line, a"' dashed line, and a"' solid line computed at different
values of the matching point Ro.

or c code for these quantities.
In Fig. 1 we display the value of scattering length a'"'

for k=0, 1, 2, 3, computed at different values of the
matching point Ro. Our intention was to compute the
scattering length exact to seven digits and to find the
smallest value of Ro where this is achieved.

For R„bigger than a certain value, an important feed-
back is provided by the facts that a' '(Ro) and a' '(Ro)
are decreasing functions of Ro and a("(Ro) and a' '(Ro)
are increasing function of Ro, according to the con-
clusions of the previous section. Further for a given
value of Ro the exact value of the scattering length is
bounded between a ' ' and a ' +"where k =0,1,2.

For the cutoff radius R, =23.165 (a.u. ) the scattering
length has the value 68.215 96 (a.u. ), exact to seven digits.
This was obtained by a' ' at Re ~250 (a.u.), by a' ' at
Ro ~480 (a.u. ), and by a"' at Ro ~ 1270 (a.u. ). For a' '

this value is obtained at Ro ~ 40000 (a.u.). As we can see,
the 5 corrections improve dramatically the performance
of the computation in terms of time and precision.

The same discussion holds for the effective range. The
results are presented in Fig. 2 for a cutoff radius
R, =23. 165 (a.u. ). In this case the contributions of the 5
corrections are more important and improve the value of
the second integral in Eq. (13). Actually ro(

' represents
the computation of the efFective range in the absence of
this integral. As Fig. 2 show, the contribution of this in-
tegral can not be ignored. It represents the area occupied
by the difference between the square of the asymptote and
the square of the solution above the matching point Ro,
which is very narrow and extends to infinity. A pure nu-

400
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matching point {a,u, )

FIG. 2. The effective range, ro"' dot-dashed line, ro" dot line,
ro ' dashed line, and ro ' solid line computed at different values
of the matching point Ro.
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merical calculation of this area may not be possible
without significant errors and the only way to avoid such
errors is by analytical methods, as in Eq. (13).

Table I presents the values of the scattering length and
effective range for different values of the cutoff radius R,
Together with them are listed the values for scattering
length obtained by Gribakin and Flambaum [3], using the
extrapolation of the s wave phase shift towards zero ener-

gy, and a semiclassical approximation. Table I shows
that the semiclassical approximation gives a better esti-
mate than the extrapolation procedure. In the extrapola-
tion procedure there are two sources of errors. One is re-
lated to the asymptotic behavior of the wave functions at
very small energy which is reached only at very large R
[5] and the second is the extrapolation itself which cannot
guarantee any limits to the errors. In our approach there
are no such difficulties. The numerical integration is
done along a relative small range of R and the precisions
of computation is guaranteed by the presence of the
upper and lower limits. The results for different R,
demonstrate the extraordinary sensitivity of the scatter-
ing length a and effective range ro to the interatomic po-
tential.
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