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The first-order functional sensitivity densities 61ncr l/2 3/2{E)/5lnW~&~(R) are employed to assess the

role of structure in the potential-energy curves Wo( X) and W, ( II) mediating the fine-structure transi-

tion Na( Pl/2)+He~Na('P3/2)+He and Na( P»z)+Ar~Na{ P3/2)+Ar. The sensitivity density

profiles 5 lno. l/2 3/2(E)/5 ln W~A~(R) for the two systems reveal that regions of significance differ widely

for the X and II curves. The results suggest that prevalent mechanistic explanations from adiabatic

analyses have limitations in terms of the ultimate significance of the identified kinematic coupling over

well demarcated radial and angular coupling regions. The functional sensitivity analysis is shown to per-

mit a full deconvolution of the collision cross section's dependence on the features in the individual X

and H curves as opposed to the adiabatic analysis where only the features in [Wo(R}-W&(R}]are

deemed critical to the collisional outcome.

PACS number(s): 34.20.—b

I. INTRODUCTION

Collisional fine-structure transitions are known to be
extremely sensitive to the features in the underlying
potential-energy curves [1—18]. A conceptually simple
and direct means for gaining such insight is done by re-
calculating the collision cross sections using many
different curves for the same system [1—6]. However,
such an approach is not only computationally demanding
but can never be exhaustive in its scope. A more physi-
cally motivated and economic technique is the adiabatic
analysis where the total Hamiltonian is expressed in the
basis that locally diagonalizes the sum of electrostatic, ro-
tational, and spin-orbital components, and the nonadia-
batic source of coupling comes from the familiar radial
derivative terms [4—15]. Large coupling in this basis
denotes the internuclear region where the adiabatic
eigenfunctions are changing rapidly and one type of com-

peting mechanism for nonadiabatic coupling is given way
to the dominance of a different coupling scheme. This
method of isolation of the regions of potential
significance has provided valuable insights into the re-
gions of potential curves responsible for fine-structure
transitions and the different mechanisms that trigger
these transitions [4-18] by examining the kinematic cou-
pling structure of the total Hamiltonian in a fully adia-
batic basis.

Another technique that directly probes the role of
potential-energy curves in nonadiabatic collisions is func-
tional sensitivity analysis [19], when the full dynamical
dependence of collision cross sections cr([ V] ) on the func-
tional form of the underlying potential-energy surface(s)
V(R) is directly quantified in detail through a functional
expansion,

5cr=o([V+5V])—o([V])=J dR 5V(R), (1)
6o

5V(R)
where R denotes generic coordinate space variables and
the first-order functional sensitivity density 5o/5V(R)
serves as the role of a weight function in Eq. (1). A large
magnitude of 5o /5V(R) implies a region of importance
and the cross section is sensitive to changes in potential(s)
in this region. On the other hand, regions with small
5o/5V(R) denote areas with little significance in the
determination of the cross section. The direct calculation
of functional sensitivity densities 5o /5V(R) in the close-
coupling approach requires only a minor extension and
expense beyond the cross-section calculations alone and
has been advantageously applied to determine regions of
potential curves critical to diverse dynamical processes
[15,19—23].

In an earlier paper [15] both functional sensitivity
analysis and adiabatic analysis were utilized to probe the
regions of potential significance in the fine-structure tran-
sition H++F( P, rz)~H++F( P3&2). The dependence
of the collisional cross section ~, /z 3/2 on the X and II
curves was found to be similar and the significant regions
of the two curves are almost identical [15] as determined
by both the adiabatic and functional sensitivity analyses.
Contrary to the correlated response by the two curves
seen in this case, our experience with other systems
[20,21] shows that the regions of potential significance
may vary widely for the different potential-energy curves
and we have suggested that the identity in the response to
variations in both the curves may only be because of the
domination of electrostatic interactions by the unusually
strong spin-orbit coupling (spin-orbit coupling constant
a+=422 cm ') in the fiuorine atom In syste.ms with
small spin-orbit coupling, e.g. , the fine-structure transi-
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tion induced in Na by collision with a rare gas [14,24,25]
(spin-orbit coupling constant a~, = 17.2 cm ') the
response to variations in the individual curves may be
completely different for the underlying X and II curves.
Furthermore, as discussed earlier [15] the underlying
physics dictated by Schrodinger's equation poses a
boundary-value problem, and coupling in one location
may strongly inhuence coupling elsewhere and an exam-
ination of only the local kinematic structure of the cou-
pling matrix elements could be misleading. Only an in-
vestigation of the solution of Schrodinger's equation
through sensitivity analysis can reveal the hidden dynam-
ic couplings and provide the full and individual response
of the collision cross section to the underlying potential
curves. A deconvolution of the dependence of the cross
section on features in the individual curves is not possible
through adiabatic analysis. A deciphering of the role of
individual curves is critical, for example, towards deter-
mining if the cross-section data may be inverted to recov-
er or improve the underlying potential.

To clarify these issues it is useful to perform a func-
tional sensitivity analysis of the role of potential features
in fine-structure transitions for systems where exhaustive
adiabatic analysis is available and the spin-orbit coupling
constant is not unusually large to dominate electrostatic
interactions. The alkali atom or alkaline earth atom plus
rare-gas collisions inducing fine-structure transitions in
the metal has been studied extensively [1,4,6-9,12-
14,17,24-26]. In particular, the fine-structure transition
in Na+ He and Na+Ar has been analyzed in exhaustive
detail by Lemoine, Robbe, and Pouilly [14]. In this paper
we present results from a functional sensitivity analysis of
the same two systems to examine the complementary
strengths of these two techniques.

The methodology of functional sensitivity and adiabat-
ic analyses of fine-structure transitions has been discussed
in great detail elsewhere [4,14,15]. In Sec. II therefore,
we present only a skeletal outline of the computational
formulas needed for calculation of the close-coupling sen-
sitivities and nonadiabatic coupling matrix elements.
Analysis of the functional sensitivity profiles and correla-
tion of the features therein with results from a fully adia-
batic analysis is presented in Sec. III and finally some
concluding remarks are given in Sec. IV.

II. METHOD

The collision cross section cr, /z ~/z(E) for the
P, /~ ~ P3/g fine-structure transition is given by [4,8,26]

0 1/2 3/2(E) g 2 X(2J+ 1)( I S311'+IS~el')
2k]/p p J

(2)

where p denotes parity [27] and the scattering matrix S
for each value of the total angular momentum J for pari-
ty ( —1) +' (parity f) is indexed by the compound in-
dices 1(j=—,';l=J+ —,'}, 2(j=—,', i=J —

—,'), and
3(j=

—,'; l =J—
—,
'

) and for opposite parity ( —1) (par-
ity e) the compound indices 1,2,3 denote the channel
states 1(j=—,', l=J—

—,'), 2(j =
—,';i=J+ —,'), and

3(j=—,';i =/+ —,'), respectively [4,14,15,27,28]. The total
angular momentum operator J=j+1,where 1 is the angu-
lar momentum of the relative nuclear motion and the to-
tal electronic angular-momentum operator j=L+S,
where L and S are the electronic orbital angular-
momentum and spin angular-momentum operators, re-
spectively.

The functional sensitivity density is given by

5o'in sn(E)
5$'(~~ (R )

5S~i(E) 5V; (R')

5Sqq(E} 5V; (R')

5V; (R') 58'i/, i(R)
(3)

where the compound indices i and j for each parity p denote the channel states defined previously and 1A1 is the eigen-

value of R 1 [15]. In terms of these compound indices i and j, taking R to be the mth point on the solution grid, one
may show that

g g gg ( 2J+1)I m[(S &~)' U+(i, 1)U +(j,3)+(S&z)'U +(i,2)U +(j,3)]
~1/2 p J I j

X [5~ OC; . +5i~i, (5; —C; )], (4)

where U (i,j}is the ith component of the outgoing wave
in channel j and the C; . have been tabulated elsewhere
[14,27]. Equation (3) serves as the working relation for
the computation of functional sensitivity densities report-
ed in this paper.

The total Hamiltonian matrix (W~) in the asymptotic
diabatic basis used for the formulation of the coupled
channel equations is given by [1,4,14]

1(l +1)
W (R) ( 'i.=5i '( 8.+ +V( (.(R),

2pR

and has been catalogued earlier [27,29]. After transfor-
mation to the adiabatic eigenbasis A of W defined by

A WA=A, , (6)

where A, is the diagonal matrix of eigenvalues of W, the
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radial kinetic operator is no longer diagonal, and the adi-
abatic analysis typically consists of examining the radial
dependence of the erst derivative coupling matrix ele-
ments 6;~ defined by [4,13,14].

G=A A.Td

Usually, large nonadiabatic coupling corresponds to re-
gions of R where the adiabatic wave functions, expressed
in the diabatic basis, are changing rapidly and are taken
to denote areas critical to the Sne-structure transitions.

III. RESULTS AND DISCUSSION

The molecular potential curves X( Wo) and II( W, )

for Na(3 P)-He and Na(3 P)-Ar are the same as those
employed by I.emoine, Robbe, and Pouilly [14] and are
displayed in Figs. 1(a) and 1(b). Figures 1(c) and 1(d)

display the difference [ X(R)—II(R)] for the two sys-
tems. The crossing point R, and the internuclear dis-
tance R, for which X(R, )—II(R„)=b,e (the spin-orbit
splitting in Na) are at 18.33 and 13.89 a.u. for Na-He
[Fig. 1(c)] and 12.20 and 11.64 a.u. for Na-Ar [Fig. 1(d)].
The X state has a shallow well and the H a broader
deeper well for both the systems. The H and X wells for
Na-Ar are, however, broader than those for Na-He. The
shallow X wells in both Na-Ar and Na-He curves may
be responsible for the sharp resonances [21,24] near the
threshold in the energy proQe of total intramultiplet
cross sections displayed in Fig. 2. The steeper slope of
[ X(R„)—II(R„)]near R, for Na-Ar limits the range of
R values (or impact parameters) for which
X(R„)—II(R„)=he and thereby angular momenta and

total collisional energies over which 6ne-structure transi-
tions will be triggered. This feature should lead to a nar-
rower radial coupling region and narrower maxima in
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Fl&. 1. The molecular potential curves [14] ~X(WO) and 'II(8', ) for (a) Na (3 P) —He and (b) Na(3 'P)-Ar. A magnified plot of
the X and II curves is displayed in the inset where the energy values on the vertical axis are in units of 10 a.u. for Na(3 P)-He
and in units of 10 a.u. for Na (3 P)-Ar. (c) and (d) display the difference of X(R)—II(R) as a function of internuclear distance R

for Na-He and Na-Ar, respectively. The crossing point R, and the distance R, at which X(R, )—II(R„)=he {the spin-orbit split-

ting) are at 18.33 and 13.89 a.u. for Na-He (c) and 12.20 and 11.64 a.u. for Na-Ar (d).



ISOLATION OF THE REGIONS OF POTENTIAL. . . 3145

100
( )

50-

eQ

0

Q
0.001

0
~ 01I

0.01 0.1

(b) NaAr

100-

50-

0
0.001 0-010 0.100 1.000

E(eY)

FIG. 2. The total intramultiplet inelastic cross sections
~11'g 3/g(E) f«(a) Na (3 P )—He and (b) Na ( 3 9')—Ar. The
parity e and parity f cross sections are also displayed. The
curves show that the contribution from e levels dominates.

g, /z 3/z(E) vs E plots for Na-Ar as opposed to ¹He,
where the less steep slope near R, permits a broader span
for the coupling region and a broad maxima in the total
cross-section profile. These systematic differences are
seen in all the figures to be discussed and the narrow
(broad) maxima for Na-Ar (Na-He) is clearly seen in Fig.
2. Our calculated intramultiplet cross sections agree with
the values reported by Lemoine, Robbe, and Pouilly [14].

The total intramultiplet cross section may also be par-
titioned as the sum of the parity e and parity f contribu-
tions tr, /z 3/2(E) =a', /z 3/2(E)+cr, /2 &/~(E), and the
curves show that the contribution from e levels dom-
inates except in the immediate vicinity of the threshold
region for the Na-Ar system. The nonadiabatic coupling
matrix elements for the Pi/2~ P3/2 fine-structure tran-
sitions have been tabulated in many places [4,14,27,29].
The angular contribution to nonadiabaticity is parity
dependent and due to its larger reduced mass; the rota-
tional contribution and consequently the parity depen-
dence should be more acute for Na-Ar. This sharp
difference in parity dependence over a large range of col-
lisional energies is seen in the tr;/J 3/z(E) and
o i/2 3/z(E} contributions for Na-Ar.

The dependence on internuclear distance of the abso-
lute values of nonadiabatic matrix elements G» and G,z

for the collision system Na+He for difFerent values of J

is shown in Fig. 3. A magnified plot of the curve crossing
(R, =18.33 a.u.) region is displayed in the insets. The
structure seen in the inset in the immediate vicinity of the
curve crossing point was not resolved in the earher
analysis [14]. The maxima in almost all the coupling ele-
ments is in the pure radial coupling region centered on
R„and the comparative parity independence of 6» and
sharp parity dependence of G&2 for large J values has
been explained adequately by Lemoine, Robbe, and
Pouilly in terms of the presence of a centrifugal barrier
for adiabatic states 1 and 3 in e parity [14]. The position
of maxima near R, highlights the important role of pure
radial coupling in triggering fine-structure transitions and
lack of importance of the curve crossing region for Na-
He. The structure near the crossing point where the cou-
pling elements rise rapidly makes us anticipate that for
systems where R, is close to R, (e.g., for Na-Ar) coupling
should be strong near R, and this is indeed seen in the
plots of nonadiabatic elements for Na-Ar (Fig. 5). The
large maxima for J =100.5 in Fig. 3(d) has been attribut-
ed to rotationally induced outer radial coupling, spanning
the internuclear distances where the difference between
the centrifugal barriers between the adiabatic levels 1 and
2 equals b,e, i.e., b e=R (4J+ ', )/2pR —or for
R =til[(4J + ,' )/2pb, e]'/—~.

The total cross section 0 i/2 3/2(E) may also be ana-
lyzed in terms of partial cross sections o i/2 3/2(E) where
0 i /2 3/z(E}=

Q~cr i/2 3/p(E). Due to the small reduced
mass of ¹He the contribution of J values higher than
60 is negligible [14] and the unusually large nonadiabatic
coupling for J=100.5 in the outer radial coupling region
R =20.5 centered far from R„should be of little
significance for the Na-He collision dynamics. This is
made apparent by Fig. 4 where the log-normalized func-
tional sensitivity density profiles fi lno, /2 3/2(E) /
5 ln Wo(R ) and 5 ino, /z 3/t(E)/fi ln W, (R ) at collisional
energies E=0.06 and 0.20 a.u. for Na+He have been
plotted and the extreme significance of the region cen-
tered at R =20.5 a.u. in Fig. 3(d) identified by the static
adiabatic analysis is seen to be missing from the dynamic
sensitivities plotted here. The region of potential
significance is almost the same as that identified by the
adiabatic analysis in Figs. 3(a)-3(c). However, in con-
trast to the comparative parity independence of the cou-
pling matrix elements from the adiabatic analysis (even

6;z and G,z are similar for small J) the contribution from
parity e dominates all sensitivity profiles mirroring its
dominant contribution to total cross section seen in Fig.
2.

The sensitivities are zero in the nonclassical region for
each curve, and the ringing structure in the area of the
deep well in the II curve is in tune with our earlier anal-
yses [20,21], and the frequency of this ringing increases
with an increase in the total collisional energy E as ex-
pected. Though the pure radial coupling region centered
at R, is clearly significant, smaller internuclear distances
far removed from R, are equally significant and dominate
at higher energy for the X curve [Fig 4(c)] and .at both
the energies for the II curve [(b} and (d)]. On the whole,
the R (R, region seems more significant and electrostat-
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ic interactions which would dominate the spin-orbit cou-
pling in this region should play an equally important role
in triggering the fine-structure transitions for this system.
The curve crossing region is well separated from the radi-
al coupling region and although there is interesting struc-
ture centered at R„in the adiabatic analysis of Fig. 3 the
total cross section is not sensitive to features in the region
near and beyond the curve crossing point. Lemoine,
Robbe, and Pouilly [14] have argued that large nonadia-
batic coupling for J=100.5 seen at R =20.5 a.u. in Fig.
3(d) indicates a prominent role for the outer radial cou-
pling region. The total cross section is completely insens-
itive to any features in the outer coupling region and
their contention is not supported by our results.

The points R„andR, are much closer for Na-Ar than
Na-He and the nonadiabatic coupling elements for Na-Ar
shown in Fig. 5 peak at the crossing point as anticipated
earlier. Just as in the case of the Na+He system (Fig. 3)
the coupling matrix elements G, 2 (parity e), G, 3 (parity
e), and 6,2 (parity f) have additional structure in the
curve crossing region. A magnified plot of the curve

crossing region is displayed in the inset. The critical role
of the crossing is obvious from Figs. 5(a) —5(c) and the
sharp peaks from adiabatic analysis of Fig. 5 isolate a
narrow region of potential significance centered at
8, /8, . The sensitivity profiles 5 incr, z2 3&~(E)/
51nWo(R) and and 51no, &2 3&2(E)/51nW, (R) of Fig. 6
however identify a much broader region of potential
significance, and this shortcoming of results from adia-
batic analysis is made apparent by Fig. 6(a) where the
two-parity resolved sensitivities do indeed have large
magnitude at R„butthe total sensitivity being their suln

cancels out to essentially zero. This emphasizes the need
for care in eliciting insights based on individual parity-
resolved results froxn kinematic analysis of structure in
the nonadiabatic coupling matrix elements. The higher
frequency and larger domain of ringing structure in Fig.
6(b) —6(d) as compared to that in Fig. 4 for Na-He is due
to the larger reduced mass of Na-Ar and greater breadth
of the Na-Ar 0 and X wells. As opposed to Na-He„ the
rotationally induced outer radial coupling is clearly
significant for Na-Ar as the maxima in all the sensitivity

0.16-

0.14-
NaHe (parity f )

0.16
&oHQ (parity e)

0.14-

0.12-

( o
0.10-

0
0.08-

0.06-

0.04-

0 02-
(a)

0.10-

0
OX)8-

0.06-

0.04-

0.02-

.3 l8 5

0.00
4.5 6.5

R

8.5 10.5 12..5 14.5 165 18.5 20.5 22.5

R (a.u. )

0~00 e s I ~ r r r r s4.5 65 8.5 10.5 125 14.5 16.S 18.5 20.5 22.5
R (O.u.)

0.40

0.3S-

0.30-

7 o 02S-

0.20-

0.15-

0.10-

6

0 li

183 1b2 fb.3 1b.4 1d.5

NoHe (parity f )
0.40

0.35-

0.30-

025-

020-

0.1~-

0.10-

NaHa (parity a)

0.05-

0.00
4.5 6.5

R

8,S 10.5 12.5 14.5 16.5 18.5 20.5 22,S

R (a.u. )

0.05-

4, '5 6.S 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5
R (a.u.)

FIG. 3. De endence on internuclear distance of the absolute values of nonadiabatic matrix cleml ents 6 and 6 for the collision
system Na+He for di6'erent values of J. A magnified plot of the curve crossing (R, =18.33 a.u.} region is displayed in the inset. The
vertical scales in the inset for (b} and (c}are in the units of 10 ' a.u. and in units of 10 a.u. for I'd).
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profiles is for R =14.60 a.u. (as compared to R, =11.64
a.u.) and the sensitivity densities remain nonzero for
R »R. While the nonadiabatic coupling matrix ele-
ments from static adiabatic analysis portrayed in Fig. 5
are comparatively parity independent, the contribution
from e levels again dominates the dynamic sensitivity
profiles. This indicates that a subtle admixture of parity-
dependent rotationally induced outer radial coupling and
parity independent spin-orbit coupling is responsible for
the collisional fine-structure transition P, &2 ~ P3/2 in-
duced in Na by Ar. The exaggerated role of the curve
crossing region as well as the parity independence of the
regions of potential significance identified by the adiabat-
ic analysis of Fig. 5 is not seen in the dynamic sensitivity
profiles plotted here.

Due to the marked difference between the predictions
from the sensitivity and adiabatic analyses, the 5cr, 5o',
and 5o were recalculated by adding an infinitesimal
smooth perturbation 5V(R) to the X curve for the ¹
Ar collision and calculating o(V+5V) by solving the
coupled equations with the modified potential. The 5o
for each 5V was extracted from 5o =o( V+5V) —o ( V).
To ensure that the sensitivity densities accurately
represent the system dynamics, 5o', 5crf, and 5o were
also calculated using the sensitivity densities reported in
Fig. 6 (but without log-normalization) and the same
5V(R) used in the close-coupling calculations of 5o', of,
and So. Both the methods produced identical results and
those from integration of sensitivity densities are collect-
ed in Table I. These results have the same rational trend
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a.u. for Na+ He. The dynamical dependence of the sensitivities is clearly seen. The area centered around the radial coupling region
R, (10—15 a.u.) seems most important as identified by the adiabatic analysis in Fig. 3 and the contribution from parity e dominates
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static adiabatic analysis is, however, not supported by the dynamic sensitivities plotted here.
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between the different regions as those in Fig. 6 except for
the sign. The sensitivity densities of Fig. 6 have been
multiplied by the potential which is negative over the re-

gion of interest and hence produces the sign difference.
The results of Table I independently alarm the con-

clusions from the sensitivity analysis, e.g. , the much
greater importance of the regions centered around
R =14.60 (R,„)compared to that for the R, or R, re-

gions. Although the individual parity-resolved cross sec-
tions from perturbing the potential at R, are of the same

order of magnitude as those from perturbing it at R
the two add up to produce a sum which is almost two or-
ders of magnitude smaller. The results of the table also
reaSrm that the adiabatic analysis has limited utility for
identifying the important potential regions.

IV. CONCLUDING REMARKS

The adiabatic analysis has a long history of offering
valuable insights into the mechanism for fine-structure

TABLE I. Values of 5cr for Na-Ar calculated using Eq. (1) by
integrating the sensitivity densities reported in Fig. 6 (but
without log-normalization) with 5 V(R) =q(1/&2mo. )exp—[(R —Ro) /2o']. (t)=1.0X10 ", o =0.02S, and all values
are in atomic units. )

Ro 11.64(R, )

5.21 X 10
3.34 X 10
5.55 x 10-'

12.20(R, )

—1.45 X 10
1.36x10 '

—9.14x10 '

14.60(R,„)
--3 60X10
—1.28 X 10
—4.88x10-'

transitions and the specific regions of the underlying
curves responsible for this [14]. As argued previously
[15],this is, however, based on an energy-independent ki-
nematic analysis of the apparent coupling structure
alone. Hidden couplings and subtle interference struc-
ture from parity and angular-momentum contributions
can be extremely significant and may nullify the results of
adiabatic analysis. Some of this is indeed borne out by
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FIG. 5. Dependence on internuclear distance of the absolute values for nonadiabatic matrix elements (G&2+ 6» ) for J= 1.5 and

G&2 and G» for J=200.5 for the collision system Na+Ar. Just as in the case of the Na+ He system (Fig. 3) the coupling matrix ele-

ments G, 2 (parity e), 6,3 (parity e), and G,2 (parity f) have additional structure in the curve crossing region. A magni6ed plot of the

curve crossing region R, = 12.2 a.u. is displayed in the inset.
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the present analysis where the mechanistic picture
brought forth by the energy-independent parity-resolved
adiabatic analysis. Some of this is indeed borne out by
the present analysis where the mechanistic picture
brought forth by the energy-independent parity-resolved
adiabatic analysis is seen to be undone by the fully dy-
namic sensitivity analysis. Furthermore, the adiabatic
analysis (1) cannot deconvolute the dependence of col-
lisional cross section on individual potential curves and
(2) precludes any energy dependence of the region of po-
tential significance. The sensitivity analysis presented
here demonstrates the dynamic dependence of the regions
of potential significance and that these difFer for the X
and II curves for both the systems including as a func-
tion of energy. The sensitivity densities presented here

may also be used as the kernel of an inversion algorithm

[30], and an insight into invertibility of the cross-section
data is an automatic adjunct of sensitivity analysis. The
pronounced ringing structure in the sensitivity profiles
for the 0 curve for both the systems and the compara-
tively small sensitivities at larger 8 values indicates that
the fine-structure transition cross-section data may be less
valuable for extracting the II potential curves over the
well region.

Both adiabatic and sensitivity analyses involve only a
minor expense beyond that involved in the routine close-
coupling calculation of cross sections themselves and we
conclude by emphasizing the complementary role of
these two techniques in providing a detailed picture of
fine-structure transitions. An adiabatic analysis can be a
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a.u. for Na+Ar. The region of potential significance is much broader than that identified by the adiabatic analysis and the area cen-
tered around R„(radial coupling region) does not seem as important as made out by the adiabatic analysis. The sensitivity of the
cross section in the region 14 to 18 a.u. indicates that the outer radial coupling region is most important. The exaggerated role of the
curve crossing region as well as the parity independence of the regions of potential significance identified by the adiabatic analysis of
Fig. 5 are not seen in the dynamic sensitivity profiles plotted here.
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useful first step, but a complete picture of what regions
are important can only be revealed by a dynamical sensi-

tivity analysis.
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