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The retarded long-range potentials for the dispersion interaction arising from induced multipole
moments of two ground-state alkali-metal atoms are evaluated as functions of the separation R for
Li, Na, K, Rb, and Gs. Accurate atomic properties, determined using published model potentials,
are utilized. Values for the potentials are given over a wide range of R. Results for H are also given.
For small R the results reproduce the accepted values for the unretarded dispersion dipole-dipole
(van der Waals), dipole-quadrupole, quadrupole-quadrupole, and dipole-octupole coefficients, while

for R -+ oo the Casimir-Polder potentials, due to retardation or effects due to the 6nite speed of
light, are obtained. The overlap between the retardation potentials and terms arising from the
Breit-Pauli Hamiltonian is explored.

PACS number(s): 31.30.Jv, 31.50.+w, 31.90.+s

I. INTRODUCTION

The long-range interaction Vj, (R) between two spher-
ically symmetric atoms, where R is the internuclear dis-
tance, occurs through the dispersion interaction of in-
duced multipole moments, primarily electric dipole. For
two ground-state spherically symmetric atoms for dis-
tances R s»iRciently large that the exchange interaction
is negligible [that is, for distances beyond the "LeRoy
radius ["1] Ro, typically of the order of (15—30)ao],
the dominant interaction is the van der Waals (electric
dipole-dipole dispersion) interaction (cf. [2—4])

Cs(a, b) R & Rp,

where Cs(a, b) is the van der Waals coefficient of the
atoms a and b, while for asymptotically large distances
the dominant interaction is modified by retardation giv-

ing rise to the Casimir-Polder potential. It is given

by (cf. [5—7])

23 a g(0)nbg(0) (1.2)

where n is the fine-structure constant and n z(0) and

abq(0) are the static electric dipole polarizabilities of, re-
spectively, the atoms a and b

A substantial amount of theoretical work has been
devoted to the study of long-range diatomic forces—
primarily to evaluating the small- and large Rlimits of-
Vj, (R) and in particular to including terms arising from
higher multipoles. The potentials arising Rom a given
pair of induced moments can be expressed in a form
valid over all R greater than several atomic units to infin-
ity [5,8,9]. In this paper, values of V&, (R) are given over
a range 10ap ( R & 10 ap including retardation for the
pairwise dispersion interactions of dipole, quadrupole,
and octupole induced electrical moments. Here we ap-
ply a recently published procedure [10], for integrating

the two coupled inhomogeneous differential equations for
the dynamic multipole polarizabilities, with model poten-
tials for the alkali-atom cores, to obtain the interactions
for two alkali atoms (we will use the term alkali atom in
reference to an alkali metal).

The results given are also of contemporary interest
as improvements that have been achieved in the spec-
troscopy of laser-cooled atoms and in low-temperature
surface physics have renewed interest in the empirical
characterization of the long-range part of diatomic in-
teraction potentials. Alkali atoms appear to be the most
popular system for low-temperature experiments (though
hydrogen [11] and helium [12] also have been studied).
The present results are relevant to the current interest
in the elastic scattering cross sections for alkali atoms,
Li2 and Na2 [13,14], and Cs2 [15,16], to the determina-
tion of the signs of scattering lengths for alkali-atom Bose
gases [16,13] and to photoassociation spectroscopy [17].

II. FORM OF INTERACTIONS

P, (x) = x'+ 2x'+ 5x'+ 6x+ 3. (2.2)

Since then, Eq. (2.1) has been reproduced using
many diferent theoretical methods; see for example,

For notational convenience the designations a and b

identifying the atoms are suppressed. Although the ex-
pressions are written for like-atom interactions, they can
be generalized readily. We use atomic admits throughout.
In 1948, Casimir and Polder [5] showed for the electric
dipole interaction

QO

Vj q(R) = — (kua (i(u) exp( —2(unR)Pg(urnR),
7t 0

(2.1)

where
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Refs. [18—22,6]. Equation (2.1) was generalized by Au
and Feinberg [23] to all multipoles, electric and magnetic.
They obtained for the electric multipoles

2, M = 2) or C10 dispersion terms

Cs Cs C10
R10 ' (3 2)

~~M(R) =—4 1

jrR (2N)!(2M)!
d2(N+M —2)

x de cx jv(ud) nM (ild)
0

Thus we have

V(R) =- ' '( )
R6

where

Csfs(R)
Rs

C10f10(R)
R10 (3.3)

x exp( —2aur R)P1 (auR) (2 3)
fs (R) = R—V11(R)/Cs (3.4)

where ajv(u) is the multipole dynamic polarizability of
the atom and N ) 1 and M ) 1 represent, respectively,
the order 2N and 2M of the electric multipole. Equa-
tion (2.3) may be written without derivatives. Recently,
it has been applied with N + M ( 4 to calculate VNM
for He2 [24,25].

Some comments about Eq. (2.3) are in order at this
point. The energy shiit due to the magnetic multipoles
is small; however, for specific atoms at large distances the
retarded magnetic dipole interaction may be larger than
the retarded electric dipole potential Eq. (1.2); for H2, for
example, this occurs at R 21 cm [26]. Additionally, due
to the appearance of a cross term between the retarded
electric and magnetic dipole terms, the asymptotic po-
tential describing the interaction between two difFerent
atoms need not be attractive [26]. The magnetic terms
contribute for small R also. The magnetic dipole terms
for Hz contribute an additional energy of about 0.24%%up of
C. [22].

Au and Feinberg [23] emphasized that Eq. (2.3) is jjot
an exact expression because it is obtained by replacing
the electric electromagnetic form factors F@~ for atomic
Rayleigh scattering by the approximation

Fz,N(~) j
+o(~ a a )ajv+1(oj)/a +"«cr jv(~) 2

(2.4)

and retaining the first term, where a is the atomic radius.
Because ua 1, this should be a good approximation;
however, we are not aware of any more quantitative as-
sessment of the error associated with this replacement for
specific systems.

III. EVALUATION OF THE CASIMIR-POLDER
FORMULAS

In this paper, we will evaluate the retarded potentials
V11, V12, Vj 0, and V22, for hydrogen and the alkali atoms,
and

V(R)—:Vj1(R) + 2Vj2(R) + 2Vjs(R) + V22(R). (3.1)

For n»merical evaluation, it is convenient to express
Eq. (2.3) relative to the small-R potential [27] for the
electric dipole-dipole (N = 1,M = 1) or Cs, dipole-
quadrupole (N = 1,M = 2) or Cs, and dipole-octupole
(N = 1,M = 3) and quadrupole-quadrupole (N

TABLE I. Retardation coeIIjcients fs(R), fs(R), and
fjp(R), Eqs. (3.4)—(3.6) for Hs in atomic units. In the last
row, labeled "Asymptotic, " we give the values of fs, fs, and

fjp calculated using the asymptotic forms, Eqs. (3.12)—(3.14).
Numbers in square brackets represent powers of ten.

B
1.0[1]
1.5[1]
2.o[1]
2.5[1]
3.0[1]
5.0[1]
7.o[1]
1.o[2]
1.5[2]
2.0[2]
2.5[2]
s.o[2]
5.0[2]
7.o[2]
1.0[3]
1.5[3]
2.o[s]
2.5[s]
s.o[s]
5.o[3]
7.0[3]
1.0[4]
1.5[4]
2.0[4]
2.5[4]
s.o[4]
5.0[4]
7.0[4]
1.0[5]

1.0[5]

C6
6.49903

fs
9.99641[-1]
9.99213[-1]
9.98635[-1]
9.97919[-1]
9.97072 [-1]
9.92545 [-1]
9.86506 [-1]
9.75304[-1]
9.52727[-1]
9.27221[-1]
9.00233[-1]
8.72675 [-1]
7.65880[-1]
6.72699 [-1]
5.60851[-1]
4.31138[-1]
3.46222[-1]
2.87601[-1]
2.45180[-1]
1.52655[-1]
1.10273[-1]
7.76721[-2]
5.19570[-2]
3.90144[-2]
3.12289[-2]
2.60320[-2]
1.56260[-2]
1.11628[-2]
7.81445 [-3]

7.81501[-3]

Cs
1.24399 [2]

fs
9.99802 [-1]
9.99561[-1]
9.99230[-1)
9.98816[-1]
9.98321[-1]
9.95608[-1]
9.91857[-1]
9.84645 [-1]
9.69397[-1]
9.51318[-1]
9.31394[-1]
9.10323[-1]
8.22815 [-1]
7.39854[-1]
6.33012[-1]
4.99902[-1]
4.07748[-1]
3.41972[-1]
2.93349[-1]
1.84661 [-1]
1.33873[-1]
9.44879 [-2]
6.32773[-2]
4.75341[-2]
3.80556 [-2]
3.17259[-2]
1.90468[-2]
1.36070 [-2]
9.52572 [-3]

Asymptotic
9.52658[-3]

C10
3.28583[3]

fjp
9.99870[-1)
9.99711[-1]
9.99492[-1]
9.99214[-1]
9.98881[-1]
9.97034[-1]
9.94434[-1]
9.89325[-1]
9.78230 [-1]
9.64673[-1]
9.49351[-1]
9.32769[-1]
8.60494[-1)
7.87663[-1]
6.88435[-1]
5.56957[-1]
4.61155[-1]
3.90527[-1]
3.37184[-1]
2.14809[-1]
1.56367[-1]
1.10625[-1]
7.41830[-2]
5.57530[-2]
4.46456[-2]
3.72243[-2]
2.23517[=2]
1.59689[-2]
1.11795[-2]

1.11807[-2]

with V11 given by Eq. (2.1),
OO

fs(R) = au B(~)exp( —2a~R) P2(n~R),
3z Cs

(3.5)
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TABLE II. Retardation coefficients fs(R), fs(R), and
fqo(R) for Lil.

TABLE III. Retardation coefficients fs(R), fs(R), and

f,o(R) for Nas.

1]
1]
2]
2]
2]
2]
2]
2]
2]
3]
3]
3]
3]
3]
3]
3]
4]
4]
4]
4]
4]
4]
4]
5]

5.0[
7.0[
1.O[

1.5[
2.O[

2.S[
3.0[
5.0[
7.0[
1.0[
1.S[
2.O[

2.S[
3.0[
5.0[
7.0[
1.0[
1.S[
2.0[
2.S[
3.0[
5.0[
7.O[

1.O[

1.0[5]

R
l.o[1]
1.5[1]
2.o[1]
2.s[1]
s.o[1]

C6
1.38830

fe
9.99991
9.99979
9.99963
9.99943
9.99919
9.99778
9.99572
9.99150
9.9S162[
9.96852[
9.95253
9.93392[
9.83775[
9.71498[
9.49768
e.ose67[
8.65262[
8.21991[
7.80130[
6.35212[
5.26302[
4.12151[
2.97617[
2.30888[
1.87904[
1.58127[
9.62995[
6.90770[
4.84652[

[sl

[-ll
[-1]
[-ll
I-ll
[-1)
[-11
[-1]
[-I]
-1]
-1]
[-1]
-1]
-1)
-1]
[-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]
-2]
-21

4.85911[-2]

C8
8.32365 [4]

fa
9.99992[-1]

[-1]
[-ll
-1]
[-11
-1]
-1]
-1]
-1]
-1]
-1)
-1]
-1]
-1]
-1)
-1]
-1]
-1)
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]
-2]
-2]

-2]

9.99982
9.99968
9.99950[
9.99928
9.99803[
9.99620[
9.99239[
9.98342[
9.97143[
9.95668[
9.93942[
9.84908[
9.73218[
9.S2284[
9.12206[
8.69478[
8.26631[
7.85020[
6.40287[
5.31122[
4.16450[
3.01117[
2.33777[
1.90340[
1.60223[
9.76253[
7.00389[
4.91423[

Asymptotic
4.92669[

Cio
7.36482 [6]

fio
9.99993[-1]
9.99984[-1)
9.99972[-1]
9.99957[-1]
9.99938[
9.99829[
9.99669[
9.99336[
9.98547[
9.97485[
9.96171[
9.94625[
9.86448 [
9.75722 [
9.56265[
9.18434[
8.77S44[
8.36135[
7.9SSS3[
6.53258[
5.44741[
4.29730 [
3.12750[
2.43712[
1.98871 [
1.67638[
1.02385[
7.350S5[
5.15976[

-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-ll
-1]
-2)
-2]

B
1.0[1]
l.s[1]
2.o[1]
2.s[1]
s.o[1]
5.0[1]
7.o[1]
l.o[2]
l.s[2)
2.o[2]
2.s[2]
s.o[2]
s.o[2]
7.o[2]
l.o[3]
15[3]
2.o[3]
2.s[3]
s.o[3)
s.o[3]
7.o[s]
l.o[4]
l.s[4]
2.o[4]
2.s[4]
s.o[4)
s.o[4]
7.o[4]
1.0[5]

5.17455[-2] 1.0[5]

C6
1.47220[3]

fs
9.99990[-1]

-1]
-1]
-1]
-1]
-lj
-1]
-1]
-1]
-1]
-lj
-1]
-1]
-1]
-1)
-1]
-1]
-1]
-1]
-1]
-1]
-ll
-1]
-1]
-1]
-1]
-2]
-2]
-2]

9.99977[
9.999SS[
9.99935[
9.99907[
9.99746[
9.99511[
9.99024[
9.978SO[
9.96SSO[
9.94499[
9.92330[
9.81113[
9.66823[
9.41679[
8.94683[
8.45835[
7.97904[
7.52234[
S.99121[
4.88803[
3.77180[
2.689OS[
2.07329[
1.6816S[
1.41238[
8.57447[
6.14495[
4.30919[

4.31788[-2]

-1)
-1]
-1]
-lj
-1]
-1]
-1]
-1)
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]
-2]
-2l

Cs
1.11877

fs
9.99992[
9.99983[
9.99969[
9.99952[
9.99931[
9.99811[
9.99633[
9.99264[
9.98390[
9.97215[
9.95764[
9.94057[
9.85055[
9.7S291[
9.52051[
9.11036[
8.67047[
8.22807[
7.7981O[
6.30718[
S.194OS[
4.o4o44[
2.8991S[
2.24185[
1.82122[
1.53096[
9.30781[
6.67329[
4.68OSO[

Asymptotic
4.69O62[

CI.0
1.10655[7]

fio
9.99994[-1)
9.99986[-ll
9.99975[-1j
9.99960[-1]
9.99943[-1]
9.99S44[-ll
9.99697[-l,:
9.99391[-1,
9.98663[-lj
9.97679[-l]
9.96457[-lj
9.95015[-1]
9.87323[-1]
9.771SO[-1]
9.58444[-l]
9.21630[-lj
8.81329[-l]
8.40111[-1]
7.99482[-1]
e.ssosl[-1]
5.44146[-l]
4.26840[-lj
3.08556[-1]
2.39486[-1]
1.949SS[-1]
1.64ose[-1]
9.99605[-2]
7.17110[-2]
5.03141[-2)

5.04350[-2]

with

B(41) = Cri(t(d)CXB(MV), (3.7)

P, (x) = 2x'+ 6x'+ 19x'+ 48x'+ 84x'+ 90x+ 45,

(3.8)

and

fio(R) = d~ C(~) exp( —2a~B)Ps(cr~B),18' io o

(3.6)

where

Knowledge of the various polarizabilities ctiv(i~) allows
one to evaluate the factors fs, fs, and fM in Eqs. (3.4)—
(3.6). The coeRcients Cs, Cs,CM for the alkali atoms I.i,
Na, K, Rb, and Cs have been evaluated using model po-
tentials for the atomic properties and a set of coupled
inhomogeneous differential equations to get aN(i~) [10]
and we follow the method of Ref. [10] to obtain the dy-
namic polarizabilities from the expression

aiv(iu) = Re[(olr giv(Zo + i(u)r 10)]~ (3.11)2X+ 1

with

C(u)) = —,oi(ter)as(t~) + a2(t~)o2(t~),

Ps(x) = 2x + 8x + 32x + 114x + 333x4

+750&'+ 1215&'+ 1260m+ 630.

(3.9)

(3.10)

where ( l ) are radial matrix elements and giv is the radial
Green's function for states vrith angular moment»m N.

In the tables numerical values of fs, fs, and fio a«
given for H in Table I, Li in Table II, Na in Table III, K in
Table IV, Rb in Table V, and Cs in Table VI. In the first
row of Tables I—VI we give the values of C6, Cs, and Cqo,



50 LONG-RANGE POTENTIALS, INCLUDING RETARDATION, . . . 3099

TABLE IV. Retardation coefficients fs(R), fs(R), and

fxo(R) for Ks.
TABLE V. Retardation coefficients fs(R), fs(R), and

fqo(R) for Rbs.

R
1.0[1]
1.5[1]
2.0[1]
2.5[1]
3.0[1]
s.o[1]
7.0[1]
1.0[2]
l.s[2]
2.0[2]
2.s[2]
3.0[2]
s.o[2]
7.0[2]
1.0[3]
l.s[s]
2.0[3]
2.s[s]
3.0[3]
s.o[s]
7.0[s]
1.0[4]
1.5[4]
2.0[4]
2.s[4]
s.o[4]
5.0[4]
7.0[4]
1.0[5]

1.0[5]

C6
3.81250[3]

fs
9.99994[-1]
9.99986[-1]
9.99976[-1]
9.99963[-1]
9.99946[-1]
9.99853[-1]
9.99715[-1]
9.99428[-1]
9.98746[-1]
9.97827[-1]
9.96690[-1]
9.95350[-1]
9.88250[-1]
9.78905 [-1]
9.61876[-1]
9.28497[-1]
8.92013[-1]
8.54608[-1]
8.17550[-1]
6.83317[-1]
5.76745 [-1]
4.59953[-1]
S.376S1[-1]
2.64095[-1]
2.15915[-1]
1.82201 [-1]
1.11454[-1]
8.00529[-2]
5.62070[-2]

5.64007[-2]

Cs
4.09609[5]

fs
9.99996[-1]
9.99991[-1]
9.99983[-1]
9.99974[-1]
9.99962[-1]
9.99896[-1]
9.99797[-1]
9.99591[-1]
9.99098[-1]
9.98428 [-1]
9.97593[-1]
9.96601[-1]
9.91249[-1]
9.84036 [-1]
9.70554 [-1]
9.43229[-1]
9.12334[-1]
8.79758[-1]
8.46708[-1]
7.21590[-1]
6.17195[-1]
4.98484[-1]
3.70003[-1]
2.91012[-1]
2.38648[-1]
2.01757[-1]
1.23788[-1]
8.89922 [-2]
6.25107[-2]

Asymptotic
6.27463[-2]

Cia
5.24761 [7]

fio
9.99996[-1]
9.99992[-1]
9.99986[-1]
9.99978[-1]
9.99968[-1]
9.99911[-1]
9.99828[-1]
9.99653[-1]
9.99233[-1]
9.98660[-1]
9.97944[-1]
9.97091[-1]
9.92453[-1]
9.86140[-1]
9.74208 [-1]
9.49658 [-1]
9.21466 [-1]
8.91342[-1]
8.60426 [-1]
7.40773 [-1]
6.38361[-1]
5.19563[-1]
3.88533[-1]
3.06825 [-1]
2.52216[-1]
2.13548[-l]
1.31358[-1]
9.45117[-2]
6.64174[-2]

R
1.0[1]
1.5[1]
2.0[1]
2.s[1]
3.0[1]
5.0[1]
7.0[1]
1.0[2]
l.s[2]
2.0[2]
2.s[2]
s.o[2]
s.o[2]
7.0[2]
1.0[s]
1.5[3]
2.0[3]
2.s[s]
3.0[3]
s.o[3]
7.0[s]
1.0[4]
1.5[4]
2.0[4]
2.s[4]
3.0[4]
s.o[4]
7.0[4]
1.0[5]

6.66894[-2] 1.0[5]

Cg
4.42548[3]

fe
9.99994[-1]
9.99987[-1]
9.99977[-1]
9.99965[-1]
9.99949[-1]
9.99860[-1]
9.99728[-1]
9.99454[-1]
9.98802[-1]
9.97923[-1]
9.96833[-1]
9.95549[-1]
9.88729[-1]
9.79729[-1]
9.63284[-1]
9.30931[-1]
8.95430[-1]
8.58909[-1]
8.22614[-1]
6.90307[-1]
5.84398 [-1]
4.67502 [-1]
3.44177[-1]
2.69625[-1]
2.20627[-l]
1.86276[-l]
1.14045[-1]
8.193S6[-2]
5.75372[-2]

5.77454[-2]

Cs
s.s060s[s]

fs
9.99996[-1]
9.99991[-1]
9.99985[-1]
9.99976[-1]
9.99966[-1]
9.99906[-1]
9.99818[-1]
9.99633[-1]
9.99190[-1]
9.98588[-1]
9.97835[-1]
9.96940[-1]
9.92092[-1]
9.85527[-1]
9.73187[-1]
9.47975 [-1]
9.19218[-1]
8.88653[-1]
8.57413[-1]
7.37266[-1]
6.34940[-1]
5.16475[-1]
3.85941[-1]
3.04609[-1]
2.50295[-1]
2.11860[-1]
1.30245[-1]
9.36901[-2]
6.58322 [-2]

Asymptotic
6.61041[-2]

C10
7.66476[7]

fio
9.99997[-1]
9.99993[-1]
9.99987[-1]
9.99980[-11
9.99972[-1]
9.99922[-1]
9.99847[-1]
9.99692[-1]
9.99319[-1]
9.98809[-1]
9.98171[-1]
9.97410[-1]
9.93256[-1]
9.87574 [-1]
9.76775[-1]
9.54373[-1]
9.28411[-1]
9.00439[-1]
8.71505[-1]
7.57578[-1]
6.57798[-1]
5.39634[-1]
4.06564[-1]
3.22302[-1]
2.65515[-1]
2.25106[-1]
1.38767[-1]
9.99073[-2]
7.02340[-2]

7.05480[-2]

23 a', (0)
4waR Cs

(3.12)

and

161 B(0)
4KAB C8

'

463 C(0)
4xaR Cgp

'

(3.13)

(3.14)

with B and C given, respectively, by Eqs. (3.7) and (3.9).

which are in agreement with those of Ref. [10]. The in-
tegrals in Eqs. (3.4)—(3.6) were evaluated using a combi-
nation of Gauss-Laguerre and Gauss-rational quadrature
methods. For H, our results for fs agree to within 10 4

with those of [28], while the other calculations of fs [22]
and fs [23] lie, respectively, 0.16% and 0.25% above ours,
but there does not appear to be a prior calculation of fop,
except for He [25]. We note that our value of Cs is iden-
tical to the exact value [29]. The expressions have the
expected asymptotic limits [5,23] for R oo,

In the last row, labeled "Asymptotic, " of Tables I—VI,
we give the values of fs& fs& and fop calculated using the
asymptotic forms above, Eqs. (3.12)—(3.14). O'Carroll
and Sucher [9] have proposed a formula to approximate
fs(R), the "arctangent formula, " which involves only nu-

merical factors aq(0), 5, c, and Cs. Au [22] has investi-
gated the arctangent formula for the rare gases and found
over a range of R that it differs by no more than 6% from
a more accurate calculation using Eq. (2.1). It could
be used here if one desires a less accurate, but easily
parametrized, potential.

In Fig. 1 the retardation coefficients fs,fs fop for H
are presented; plots of the values for a given alkali atom
are similar to each other and to those for He given in
Ref. [25]. In Fig. 2 the values of fs for the alkali atoms
are presented. Note that the curve of fs for Nai is not
in the expected order. It lies below that for Li2 because
the 3s-3p excitation energy for Na is larger than that of
the 2s-2p excitation energy of Li, while the dipole matrix
elements are about the same magnitude. We also find
that for Na2 the fs and fop curves, respectively, lie below
the Lii fs and fop curves. We can also define retardation
coefficients that measure the approach of the potentials
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TABLE VI. Retardation coefficients fe(R), fe(R), and

fso (R) for Css.
1.0

1]
1]
1]
1]
1]
1]
1]
2]
2]
2]
2]
2]
2]

2]
3]
3]
3]
3]

1.O[

1.S[
2.O[

2.S[
3.O[

s.o[
7.O[

1.O[
1.5[
2.O[

2.5[
3.0[
s.o[
7.0[
1.0[
1.S[
2.0[
2.S[
3.0[
s.o[
7.0[
1.0[
1.5[
2.O[

2.S[
3.O[

s.o[
7.0[
1.0[

3]
3]
3]
4]
4]
4]
4]
4]
4]
4]
5]

1.0[5]

C6
6.32995[3]

fe
9.99995[-1]
9.99990[-1]
9.99982[-l]

-1]
-1]
-1]
1]

-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]
-2]

9.99972[
9.99959[
9.99888 [
9.99782 [-
9.99560[
9.99032[
9.98317[
9.97427[
9.96373[
9.90723[
9.83177[
9.69206[
9.41240[
S.OSSSO[
8.77330[
8.44414[
7.20939[
6.18416[
5.01582[
3.74212[
2.95238[
2.42574[
2.OS324[
l.26232[
9.08067[
6.38120[

6.40967[-2]

C8
9.62952[5]

fe
9.99997[-1]
9.99994[-1]
9.99989[-1]
9.99982[-1]
9.99974[-l]

-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]

9.99929[
9.99862[
9.99722 [
9.99385[
9.9892S[
9.98349[
9.97661[
9.93906[
9.88764[
9.78977[
9.58625[
9.34957[
9.09351[
8.82744[
7.76608[
6.81S73[
5.66173[
4.32235[
3.45222[
2.85663[
2.42863[
1.50414[
1.08447[
7.62975[

Asymptotic
7.67211[

C'I.o

1.52019[8]
10

-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-1]
-2]

9.99998[
9.99995[
9.99990[
9.99985[
9.99978[
9.9994O[
9.99883[
9.99764[
9.99478[
9.99085[
9.98592[
9.98003[
9.94766[
9.90297[
9.81709[
9.63619[
9.42292[
9.18948[
8.94440[
7.94650[
7.03030[
5.89302[
4.54190[
3.64746[
3.02823[
2.58001[
1.60384[
1.15775[
8.15070[

8.19989[-2]

CO

:g 0.6

O

I
II

P II
g~

~ pl Cg
fp ~l

0.2 I
»~

Il

»»

I

»

0.0 ~ I ~ I

2 4 6 8
internuclear distance (10 a.u. )

3

to their asymptotic values. Thus, for the electric dipole
potential Vii by analogy with Eq. (3.4), we define

g7(R) = R'V„—(R)/KP, (3.15)

FIG. 2. For the alkali atoms Li, Na, K, Rb, and Cs, values
of the retardation coefficients fe (solid lines), Eq. (3.4), and

gz (dashed lines), Eq. (3.15), calculated as described in the
text. Note that the Na coefBcients are not in the expected
order as discussed in the text.

z, = a, (0).=23 2

4m+
(3.16)

In Fig. 2 the values of gr for the alkali atoms are plotted.

1.0 IV. "SHORT-RANGE" LIMIT

0.8

6
0.660

O

0.4

0.2

The short-range limit needs to be properly character-
ized in order to match ab initio calculations of the di-

atomic potential. Relativistic corrections obtained from
the Breit-Pauli equation are often simply added to the
diatomic potential. We will investigate the consistency
of this procedure with the inclusion of retardation effects.

A. Expansion of the retardation potential
for small R

0.0
0

I ~ ~

2 3
3

internuclear distance (10 a.u. )

FIG. 1. For H, values of the retardation coeKcients fe, fe,
and fio, Eqs. (3.4)—(3.6).

OO

F (2, +)2( RN, M) = dx a~(ix/aR)nM(ix/aR)
R 0

x exp( —2x)P, (x), (4.l}

Rather than work with each of fs, fs, and fio,
Eqs. (3.4)—(3.6), we define the generating function
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where a~ is given by Eq. (3.11). Then

fs(R) Cs(R) = (I/x) Fs(R; 1, 1),

fs(R}Cs(R) = (1/3x)Fs(R; 1,2),

and

(4.2)

auxiliary functions f and g of the sine and cosine inte-

grals [31] giving

X2q(a) = (—1)"a " f(2a)

+ „,) (2k —2l)!(—4a )' ', (4.12)
l=1

fop(R)Cyp(R) = (1/18m)[&Fop(R; 1,3) + Fyp(R; 2, 2)].

(4.3)

Inserting the definition of the radial Green's function
gN(Ep + iver) into Eq. (3.11), we obtain, for the polariz-
ability,

a~(iz/aR) = aR ) (0~r ~~) -, (4 4)

where the state ~n) and energy E„correspond to the
angular momentum N and b,„=aRE„p, with E„p =
E„Ep. Usi—ng Eq. (4.4) above for N and M in Eq. (4.1)
we have

~»+ (a) = (-1)""g(2a)

+
& ) (2k —2l+ 1)!(—4a )'

l=1

Thus

(4.13)

2(~+1) 2(~+1)

T, (a, b) = (b —a ) aR ) P&X!(a) —) P&Xi(b)
l=o l=o

(4.14)

7, (a) p, za + p, 2+ &, sa+ &, 4a + O(a ). (4.15)

, P.(a) —~(b)].

In order to obtain explicit forms for the potentials at
small R we need the small-a expansions for Eq. (4.14),

2 2
('+ ~ ' ' 2N+ 12M+ 1

x ) (0[r (n) (0(r ~m} E„A
1l~TH

xT (b,„,6 ),

where

(4 5)

In Table VII values of the p, ;, in agreement with
Eq. (3.3) of [23], are given for s = 1,2, 3 and i = 1, ..., 4.

Because a = b,„and b = 6 are small quantities, we

may expand Eq. (4.14) to find

aR a —b
T, (a, b) p, , q + p, ,s(a —b)

e 2 P, (z)
8 ) —

2 + 2 2 2
~ (4.6)

-p, 4(a —b )+2 2 (4.16)

Since P, is a polynomial

2(e+1)

p, (z) = ) p)z'
t=o

(4 7)

where the p, 2 terms cancel. Substituting the small-a
expansion above, Eq. (4.16), into the generating func-
tion F2(,+2l (R; NM), Eq. (4.5), and using the definitions
Eqs. (4.2) and (4.3) with the identities given in the Ap-
pendix, we obtain the final results

and a, b ) 0, we can write

2(~+1)

T.(a b) = aR ) P&Zi(a, b)
l=o

with

(4.8)

Csfs ——Cs —(aR) W4+ (aR) Us+

W4 = — a~(i~)~ d(u,
0

(4.17)

(4.18)

OO ~l~ —2a

+&( b) = +( 2+ g)(b2+ 2)
(4.9)

The integral T, (a, b) can be evaluated in closed form
[5,8,21] through the use of the identity

with aq(i~) as defined in Eq. (3.11) and

TABLE VII. Values of coefficients p, ,; in the smaQ-a ex-
pansions in Eq. (4.15).

with

&~ = (b' —a') 'P~(a) —~~(b)] (4.10)
7d, 1 pd)2 fd~3 Td,4

~l ~
—2a

Xj(a) = dz (4.11)a2+ z2

The analysis is standard using the integrals 3.356.1—2 of
Ref. [30]. The final result is expressed in terms of the

45—7r2

315m

11
4

1156
4

46—7r2

7
2

35
2
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Us=~ S(l), (4.19) In atomic units, the dispersion coefEcient can be writ, —

teIl

Csfs = Cs —(aR)'Ws + (aR)'U, +

where

(4.20) (olrlf)'(olrl~)
&io+& on, l

(4.28)

OG

Wp = — B(u))(u'd~, (4.21)
where the intermediate states ~n) and ]t) are p states and
Eio = Er —Eo and E o = E —Eo. Using Eq. (A3) we
obtain the well-known expression

Us ——s S(1)S(2), (4.22) a,'(i~) du).

and
Using Eq. (A8), another expression can be obtained,

Cypfyp = Cip —(aR) Ws + (aR) Ur +

where

OO

Ws ——— C(ur)(u du),
27' p

(4.23)

(4.24)
where

QG

Cs = — p (i~)d~,

p(z~) = -Im[(0[rgi(Eo + iu)rlO)].

{4.30)

(4.31)

U7 ——
ss [sS(1)S(3) + S'(2)], (4.25)

and we have defined a generalized-multipole sum and os-
cillator strength

Although it has no advantage in the present work, this
relation is useful if one atom is excited.

An alternative expression for S'4 is

Sy) =)-ff", l,

f( ) g (0i Nri~)2
2N+ 1

(4.26)

(4.27)

(4.32)

which can be used to obtain the relation given in
Eq. (4.18) using Eq. (A9). Using Eq. (A5), we obtain
the equivalent formula

We give expressions for the higher multipole terms in
a2 and as because they are useful in making contact
with relativistic and /ED theory for small R. In the
next section, the question of the numerical values of the
coefBcients is addressed. For atoms other than H, higher
multipoles than the electric dipole term W4, Eq. (4.17),
are probably too small to be significant.

B. Relativistic dipole term W4

The term W4 is contained in Vji(R), but it also can
be obtained from a reduction of the Breit equation in the
Pauli approximation, where it arises from the orbit-orbit
term H . (See Power and Zienau [32,33] and Meath and
Hirschfelder [8].) Our Ws and Ws terms also could be
obtained from higher electric multipoles in an analysis of
the Breit equation similar to that of Ref. [8] or along the
lines of the calculation of Hessels [34] for Rydberg states
of helium. The effective potentials can be derived by ex-
panding the "large" distance in the problem in multipoles
and using perturbation theory with H

To introduce the notation, we give some relations,
some old, some new, that can be used to obtain numerical
values of Cs and then we evaluate W4, Ws, and Ws for
H. Our model potential method does not yield accurate
values of the W coefficients for the alkali atoms. Numer-
ical values of S'4 for Li and Na have been obtained in
Refs. [35] and [36].

where

OG

W4 ——— /3 (iu))d~,
7I 0

(4.33)

P(i(u) = 2s(0~r ~0) —(up(ia). (4.34)

e2(R) = a W4/R + O(a /R ) (4.35)

TABLE VIII. Numerical values for H of the coefBcients
W4, W6, and Ws appearing in the small-R expansions.

W4
0.462807 4.79533

Ws
234.702

Again, this expression is useful if one atom is excited.
We used these expressions to evaluate W4 for hydro-

gen and we obtained precise agreement with prior cal-
culations [35,37]. Similar procedures yielded numerical
values for Ws and Ws, which are given in Table VIII.
The numerical value of the coefBcient WL, r, 4,2 appearing
in the potential of order a2/Rs obtained in Ref. [8] and
evaluated in Ref. [37] for H is exactly 1.5 times our value
for Ws. There are other terms entering at O(a2/Rs)—
see, for example, Eq. (49) of Ref. [8]—but all these terms
of O(a /R ) are insignificant compared to the a2W4/R
term.

The matrix element e2(R) of H has the form
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for values of R that would be called "asymptotic" in a
molecular calculation, but are in the present context —as
described in the Introduction —in the small-R domain.
It has been obtained by Kolos and Wolniewicz [38,39]
by a direct evaluation of the matrix element using varia-
tionally determined nonrelativistic eigenfunctions of H2.
The calculated values have the same sign for R ) 5.8ao
as Eq. (4.35), but otherwise disagree qualitatively and
quantitatively. Wolniewicz [39] noted that his results for

e2(R) are sensitive to the expansion length of the rep-
resentation of the eigenfunction. It appears that they
are unreliable in the region beyond 10ao where they are
becoming small in magnitude.

The terms U3, U5, and Uy, which are of order a, pre-
sumably correspond to two-photon exchange effective po-
tentials from /ED [40,41] and would form a long-range
approximation to the radiative shift EL, in the notation
of [42]. While Wolniewicz [42,39] has estimated, using
variationally determined nonrelativistic eigenfunctions of
H2, some terms of order n lno. and a at various inter-
nuclear distances, there do not appear to be available any
aues o E

V. CONCLUSIONS

The values of V(R) calculated for H and alkali-atom—
atom interactions and given in the tables are exact in
the sense that given the semiempirical core potentials
and the experimental values of the electric dipole po-
larizabilities, the dynamic multipole polarizabilities have
been obtained with no approximations. We have also pre-
sented expressions for the small-R expansions of V and
shown that they are related to the Breit-Pauli relativistic
orbit-orbit term.
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APPENDIX

a+ b 7r, (a'+ ~')(b'+ ~') ' a, b & 0 (Al)

and using the identity

Iq (a)—: 2 2
——Re

a
a2+a2 (a —iur)

'

we have, by substituting Iz(a) and Iz(b) into Eq. (A1),

(A3a+ b z o ~a —i~)~ ~b —i~)
'

Similarly, using

(A2)

I2(a) =
2 2

=1—~Im~ .
~

(A4)
a ( 1

a +co &a
—iv) )

we have, by multiplying Eq. (Al) by ab and using I2(a)
and I2(b), the identity

ab 2 ( 1
1 —tdIm

a+b ir o Ea —i

x 1 —(uIm —tld )
(A5)

Analogous identities may be derived using the (less)
well-known identity

1 2

a+b 7r o (a'+A)2)(b2+~2)'

a&0, b&0ora&0, b&0. (A6)

Given the definition

Is(a) =, , = Im
~

( 1
a2+~~ &a

—i~)~
' (A7)

and substituting Is(a) and Is(b), Eq. (A7), into Eq. (A6)
we get

a+ b ir o t, a —i&u) qb —i(u)' (As)

and following a similar procedure using It(a) and Iq(b),
Eq. (A2), into Eq. (A6) we get

dependent polarizabilities. Given the well-known integral
representation

In this appendix we give some useful identities in-
volving integrals that can be related to the frequency-

Rei ~ Rei (A9)a+& x 0 '~a —iu) '~b —iu)
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