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We discuss the formal basis and general advantages of magnetic-field-and-density functional the-
ory (BDFT) for the ground-state magnetic properties of many-electron systems. The ground-state
density p(r) and the magnetic field B(r) are the variables appearing in the energy functionals that
are the fundamental elements of BDFT. This is in contrast to the energy functionals of current-
and-density functional theory (CDFT), the most general density-functional way of treating systems
in a magnetic field, where the variables are p(r) and the ground-state paramagnetic current j (r).
Explicit calculations of magnetic properties have already been made that can be recognized as be-
longing to the BDFT paradigm, which this work therefore puts on a formal foundation. There are
also aspects of BDFT discussed here that may make it an attractive alternative to the more general
CDFT in some situations. In particular, we show that Kohn-Sham equations may be derived that
use purely real orbitals and for which the energy does not separate into para- and diamagnetic con-
tributions. We also show that in BDFT the zero-Beld electron density alone is sufBcient to calculate
the energy to Second order in the magnetic field. Thus calculation of, e.g. , diamagnetic suscepti-
bilities or chemical shifts can in principle be made directly from zero-field electron distributions,
without any need for the calculation of Brst-order corrections.

PACS number(s): 31.20.Sy, 41.20.Gz, 31.20.Lr, 33.25.Dq

I. INTRODUCTION

The linchpin of density-functional theory is the u»-
versality of its energy functionals. Electronic density-
functional theory (DFT) begins by writing the ground-
state energy E of an interacting many-electron system,
characterized by an external scalar potential V(r), in the
following way [1,2]:

E = O(p]+ f d r p(r)V(r) + — d r d r'
2 fr —r'[ '

where p(r) is the ground-state density. Equation (1)
is useful precisely because of the universality of the
kinetic-exchange-correlation functional G[p]. Although
constructing an accurate approximation to G[p] is a
formidable task, it need only be done once because the
form of G is independent of the form of V(r).

It is therefore natural that when density-functional
theory was extended to systems characterized by an ex-
ternal vector as well as scalar potential the most universal
form of G was sought [3—8]. Unfortunately it turns out
that if G is to be independent of the vector potential
A(r), it cannot be written as a functional of p(r) alone.
The canonical or "paramagnetic" current j (r) must en-
ter G as an additional independent functional variable
[5,8]. Thus the natural equivalent of density-functional
theory when a magnetic field is present is current-and-
density functional theory (CDFT), in which the equiva-
lent of Eq. (1) is [8]

E = G(p jr)+ f d r p(r)V(r) + —f'd rd r'

+ r Jpr +c pr r c r. (2)

The functional G[p, j„] in this equation will in general
bear no resemblance to the functional G[p] of zero-field
DFT that appears in Eq. (1).

The presence of j (r) as an additional independent
variable makes CDFT a more complex theory than DFT,
and although approximate forms of pieces of G[((j,j„]have
been made in the equivalent of the local-density approx-
imation (LDA) [5,6,9], no calculations using CDFT have
yet been reported.

Meanwhile, non-CDFT calculations have been made of
the lowest-order responses of many-electron systems to
weak magnetic fields [10—13]. The approaches have been
from different viewpoints, Thomas-Fermi-Dirac theory
[10,12], Xa theory [ll], and analogy to coupled Hartree-
Fock theory [13],but in all of them only p(r) appears as
an independent variable in the energy functional. How
can one reconcile this with the foundation of CDFT that
both p(r) and j (r) should be independent variables in
the energy functional? If this can be done, and a general
approach other than CDFT exists, what advantages are
there to proceeding in such a way? The work we present
here addresses these questions.

Our Grst and most essential result is that there does
exist a formal basis for ground-state magnetic property
calculations in which only p(r) appears as an independent
variable. Such an approach is what we call magnetic-
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field-and-density functional theory (BDFT) because the
magnetic field B(r) instead of the current j (r) appears
explicitly in the energy functional. That is, an equivalent
of Eq. (2) can be written which is

E = G[p, B]+ jd'r p(r, B) V[r)

p(» B)p(» B)

While G has the same form for all V(r), it depends ex-
plicitly on the form of B(r). That is, G is still universal
with respect to the scalar potential, but it is not universal
with respect to the vector potential.

At first glance it would appear silly to abandon the uni-
versality of G—which we labeled the linchpin of DFT—
when the option not to (i.e., CDFT) exists. Doing so does
of course allows a reduction in complexity by eliminating

j„(r) as an independent variable. Moreover there are po-
tential practical advantages of working with the magnetic
field directly, which we mention below. But the essential
reason why BDFT is not pointless is because the nonuni-
versality of G is a lot less important when it applies to
external vector potentials than it would be if it applied to
external scalar potentials. It is totally impractical to con-
struct a difFerent G[p] for each scalar potential because
there are an unlimited number of forms for V(r) (e.g. ,
possible arrangements of nuclei) that are of practical in-
terest. This cannot be said for external vector potentials.
In fact just a few forms of A(r) cover a large number of
the problems of practical interest. For example, when
studying the magnetic properties of molecules in the gas
or liquid phase it is unusual to consider forms of A.(r)
other than those corresponding to a constant magnetic
field, one or two spin magnetic dipoles, or a combina-
tion of these. Constructing different G[p, B] for different
forms of B(r) is therefore not impractical.

In what follows we first present the formal basis for
BDFT, which is essentially the Hohenberg-Kohn [1] the-
orem. We then show the formal derivation of the one-
electron (Kohn-Sham [14]) equations that allow one to
avoid construction of the kinetic part of G. We point
out that in BDFT there is no unique separation of the
one-electron Hamiltonian into "kinetic" and "potential"
operators and that one can define purely real one-electron
orbitals for which the energy does not divide into para-
and diamagnetic terms. Finally, we discuss the use of
BDFT for the calculation of the second-order responses
of a system to a weak external 6eld, e.g. , diamagnetic
susceptibilities or the shielding tensors (chemical shifts)
of spin magnetic dipoles [15]. We prove that in principle
these Second-order energy changes may be extracted &om
the zero-order (B = 0) electron density alone. There is
no a priori necessity for the calculation of the corrections
to the zero-field wave function that enters an ordinary a,b

initio calculation of second-order energies such as cou-
pled Hartree-Fock theory [16]. This suggests that BDFT
may have a powerful and perhaps unique role to play in
this particular kind of calculation.

II. THE FORMAL BASIS OF BDFT

We wish to describe completely the ground state of an
N-electron system in an external scalar potential V(r)
and vector potential A(r). The formal basis of current-
and-density functional theory [8] is the proof that this
can be done with the ground-state density p(r) and the
canonical or paramagnetic current j (r). However, in a
fixed gauge we argue that this can also be done with p(r)
and the magnetic field B(r). The proof is in two steps.

First, in the absence of accidental degeneracy and for
a fixed gauge, the ground-state X-electron wave function
4o is a unique functional of B(r) and V(r) because we

may explicitly construct il)'0 from them by solving the
N-electron Schrodinger equation. [Note that fixing the
gauge means B(r) determines A(r) uniquely. ]

Second, there is a one-to-one correspondence [17] be-
tween V(r) and p(r) for a fixed B(r). This is a result of
the Hohenberg-Kohn theorem [1],which holds urithin but
not across each domain defined by the set of all many-
electron Hamiltonians with a fixed B(r) and any V(r).

This last statement can be illustrated in a different
context that is familiar to electronic density-functional
theory: the Kohn-Sham [14] construction of one-electron
equations for the density p(r). In the Kohn-Sham con-
struction one assumes that the exact same density p(r)
results from two difFerent Hamiltonians containing two
different external potentials. One Harniltonian is that of
the system of interest in its particular external potential
V(r). The other is that of the reference or noninter-
acting system in the effectiv external potential V,ir(r)
that contains the usual exchange-correlation potential
V„,(r). The fact that two difFerent external potentials
give the same density would at first glance seem to vi-
olate the Hohenberg-Kohn theorem. But it does not
because the electron-electron. interaction is different in
the two Hamiltonians (the noninteracting Hamiltonian
has no electronic-repulsion term), that is, the Hamilto-
nians belong to difFerent domains defined by the set of
all Hamiltonians with a fixed form of electron-electrori
interaction and any V(r). The Hohenberg-Kohn theo-
rem does not hold across such domains, but only withiri
each. This particular domain definition is also apparent
in classical density functional theory [18],where difFerent
forms of particle pair interactions are commonplace.

We have thus established that 4o and hence all ground-
state properties are determined uniquely by B(r) and

p(r). We may therefore write Eq. (3) for the ground-
state energy and define the kinetic-exchange-correlation
functional G[p, B], which is "nonuniversal" in that it de-

pends explicitly on B(r).
As there is no practical value in regarding B(r) as an

independent variable, we regard it in the energy func-
tional as a parametric variable. The ground-state density

p(r, B) is then the only independent variable in Eq. (3).
The variational principle is easily shown in the usual way

[1], and so we may find the actual ground-state density

p(r, B} for any particular V(r} and B(r) by minimiz-

ing the right-hand side of Eq. (3) with respect to trial
densities p(r, B) [17]. Then, with p(r, B) inserted into
it, Eq. (3) provides the actual ground-state energy or,
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when subjected to appropriate derivatives, other observ-
able ground-state properties. E[p, B] can also be used
directly, e.g., within a Kim-Gordon [19,20,10,12] calcu-
lation for the contribution to ground-state properties of
nonbonded interaction.

Practical construction of a magnetic-field density-
functional theory requires an approximation for G[p, B].
Some of these have already been constructed, in whole
or in part, for various forms of B(r). In particular, LDA
forms have been constructed for B(r) weak and constant
or slowly varying [10,21] and for B(r) consisting of a weak
constant field plus a magnetic dipole field, i.e., the field
seen by an electron in a spin magnetic resonance experi-
ment [13,22]. It should also be straightforward, using the
propagator methods developed in Ref. [22], to construct
an approximation for G[p, B] for another B(r) of general
interest: that due to two magnetic dipoles. With this G
one could address at a rigorous level spin-spin coupling
experiments in many electron systems, which are impor-
tant in the determination of the solution structure and
dynamics of macromolecules [23].

For certain forms of B(r) it is likely to be easier to
construct approximations to G[p, B] than to the CDFT
functional G[p, j ], because the form of B(r)—unlike that
of j„(r)—is fixed and known at the begi»»ng. This ex-
tra information may be used to advantage in construct-
ing G[p, B]. For example, if B(r) contains a labora-
tory field B&~b(r), its magnitude B&~b must be very weak
(one atomic»»t of magnetic field is more than a bil-
lion gauss), so perturbation theory in B~ b may be used
in constructing G[p, B] [22]. A more general issue af-
fected by the form of B(r) is the ability to treat sepa-
rately exchange and correlation contributions to G. Ifone
makes the LDA, as is almost inevitable, and B(r) = B,
a constant field, then the B-dependent pure exchange
contribution to G[p, B] diverges [9]. Consequently the
B-dependent parts of exchange and correlation must be
treated together. This is true also if B(r) is assumed to
vary slowly and its position dependence is treated clas-
sically, as in the present incarnations of CDFT [8]. On
the other hand, for nonuniform fields, when the spatial
variation of B(r) is treated quantum mechanically, the
B-dependent exchange contribution may be well behaved
even within the LDA. This has been shown to be true ex-
plicitly for the spin magnetic resonance experiment fields
[22]. In these cases one can include B-dependent ex-
change contributions to G without having to treat B-
dependent correlation.

III. ONE-ELECTRON EQUATIONS

Little density-functional theory is attempted with the
full functional G. Generally one tries to avoid error in the
kinetic contribution to G, which is the largest, by writing
this part as the Hartree-Fock form of the kinetic energy
plus a correction. As the Hartree-Fock kinetic energy
is the expectation value of a kinetic-energy operator be-
tween one-electron orbitals, one must therefore introduce
such orbitals and the eigenvalue equations with which to
calculate them. These are the Kohn-Sham one-electron
equations [14,2], which we write here for a closed-shell

system:

The effective one-electron potential appearing in Eq. (4)
is given by

V,p(r) = V(r)+ d r', + "'[p],p(r') 6E„,

where E„,[p] is the usual exchange-correlation energy
functional. The density is given by twice (for double
occupancy) the sum of the squares of the (N/2) lowest
eigenfunctions P„,

N/2

E=2)-,„+E„.[,] -'

n=1
bE„,

d rp(r)

The explicit construction of the kinetic part of G[p, B]
in BDFT can be avoided by deriving one-electron equa-
tions in an essentially identical manner. The most natu-
ral generalization of Eq. (4) is

r

iV'+c 'A(r) —+ V,p(r, B) &P„(r,B)

e„(B)P„(r,B), (8)

where A(r) is the particular form of vector potential that
was chosen to give the particular B(r) in the problem.
We then define as usual the noninteracting kinetic-energy
functional T, as the expectation value of the kinetic op-
erator in Eq. (8) between the one-electron orbitals

N/2

T, [p, B] = 2) d rg(r, B)
n=1

1-
x — —iV'+c A(r) P„(r,B) (9)

and write G[p, B] as T, plus a correction

G [p, B] = T, [p, B]+ E„,[p, B].

Using Eq. (10) in Eq. (3) we can show in the usual
way that the energy is given by an equation identical
to Eq. (7) except that the eigenvalues e„, density p(r),
and exchange-correlation functional E„, all depend on
B(r). Minimizing the energy with respect to the density
we can then show that V,~(r, B) is given by the natural
generalization of Eq. (5),

N/2

p(r) = 2 ).C(r)4' (r)
n=1

and the total energy by the s»» of the corresponding
eigenvalues, less overcounting terms,
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V,tF(r, 8) = V(r) + d r' ', + "'
[p, 8]. (11)3, p(r, B) bE„,

r —r' bpr

Solving the self-consistent equations (8) and (11) for the
V(r) and 8(r) that characterize a system gives the eigen-
values e„(8)and, via Eq. (6), the density p(r, 8). Using
the e„(8) and p(r, 8) in Eq. (7) then gives the ground-
state energy or, through appropriate derivatives, other
observable ground-state properties. The difficult step in
this procedure is as always constructing a good approxi-
mation to E„,[p, 8].

Note that B(r) appears explicitly not only in the one-
electron kinetic operator in Eq. (8) but also in the po-
tential operator V,tF(r, 8). The presence of the magnetic
field in a potential operator might seem peculiar, but
there is in fact no significance to this. The operators in
Eq. (8) describe effective interactions that have no rela
tionship to the real interactions in the system. As a mat-
ter of fact, we are perfectly &ee to choose another form
for the kinetic operator in the Kohn-Sham-like equations.
While the general success of the Kohn-Sham equations
themselves compared to straight Thomas-Fermi theory
[24] strongly suggests retaining the V operator in the
kinetic operator, we have no such insight about keeping
the vector potential there. Suppose we choose not to and
instead put all of the explicit magnetic-field dependence
of the one-electron "Hamiltonian" into the one-electron
potential operator. Then we have a different set of one-
electron equations,

(12)

N /2

T, [p, B] = 2) d rP„'{r,B)
~

——7'
~

4„(r,B) (13)
n=1

instead of through Eq. (9). As usual we write G[p, 8] as
T, plus a correction,

G[p, 8] = T.[p, 8] + Ei,„.[p, 8]. {14)

But now the correction functional Ep„, contains not only
the normal exchange and correlation contributions, but
also the explicitly B-dependent kinetic contribution to
the energy of the interacting system.

There is no reason why we cannot choose these P„ to be
purely real, and for convenience [in particular the Her-
miticity of the potential V&(r, B)] we do so. Now it is
certainly curious to construct single-electron "orbitals" in
a magnetic geld that are purely real. This serves as a re-
minder that the solutions to Eq. (12) have no significance
other than as auxiliary functions with which the density
p(r) may be constructed via Eq. (6) and the energy via
Eq. (7). In particular they bear no relationship to the ac-
tual N-electron ground-state wave function @0(8).Note
that, for example, the expectation value of the canonical
particle current operator is generally nonzero for 40(8),
but identically zero for the "wave function" formed by
the Slater determinant of the (N/2) doubly occupied P„.

We now define T, as

The total energy E may be shown to be given once
again by Eq. (7), but with Ei,„,[p, 8] appearing instead of
E„,[p] and with B(r) appearing again in the eigenvalues
e„(B)and density p(r, 8). Minimizing E with respect to
the density in the usual way gives the potential V,&(r, 8)
that appears in Eq. (12) and V,ir(r, B) turns out to be
given by an equation identical to Eq. {11),except that
E~„appears instead of E„,.

One would have to construct some approximation to
Ek„,[p, 8] in order to use Eq. (12), but this may not be
more difficult than the approximation of E„,[p, 8] that
enters Eq. (8).

The general advantages of using Eq. (12) over Eq. (8)
are that one need only work with real orbitals and there
is no separation of the energy into paramagnetic and
diamagnetic terms. (There is also a further advantage
when calculating second-order susceptibilities, which is
discussed at the end of Sec. IV.) Whether Eq. (12) or
the more challenging Eq. (8) is numerically superior de-
pends on whether retaining the magnetic field in the ki-
netic one-electron operator is a better choice in practice,
with approximate forms of E„, and Ek„,. This cannot
be known without a direct test and may also depend on
the particular form of B(r) in the problem.

IV. SECOND-ORDER SUSCEPTIBILITIES

One is often interested in the magnetic properties of
a many-electron system only to second order in the 6eld
strength B, which is in such things as diamagnetic sus-
ceptibilities or chemical shifts. Perturbation theory in
the strength of the magnetic 6eld is then a natural ap-
proach. Because the energy is required to second order
in 8, one needs in all current ab initio methods (e.g. ,
Hartree-Fock [16] or CDFT [21]) to calculate wave func-
tions to 6rst order in B. An interesting point about
BDFT is that the zero-order (8 = 0) density is in prin-
ciple sufBcient to calculate the 8econd order corrections
to the ground-state energy and hence to calculate the
magnetic susceptibilities. One can avoid entirely calcu-
lating B-dependent corrections to the ground-state wave
function.

The proof of this statement is as follows. We ex-
pand the functional G[p, 8] to second order in the field
strength. First we expand with respect to the explicit
dependence on the magnetic 6eld

G[p, 8] = G[p, 0] + B [p, 0] + .2
62G

Note that only even powers of B can appear in the ex-
pansion by time-reversal syinmetry [25]. Now we expand
each term of Eq. (15) with respect to its implicit depen-
dence on B via the density

G[p, 8] = G[p('&, 0]

d rp rB p~, O+bc
bp(r)
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where the density can also by time-reversal syxnmetry

only have even powers of B in it,

p'"(r) = p(r o)
2

p(')(r, B) =B',(r, o), (17)

and we note, for future use, that normalization of p(r)
requires

We introduce the abbreviated notation for the part of
energy functionals second order in 8 only by virtue of an
explicit 8 dependence,

G(2)[p(0) 8] = B2 [p(o) 0]

Now inserting Eq. (16) into Eq. (3) and using the defini-
tions in Eq. (1?) we find that the energy to second order
is given by

E[p, 8] = E( )[p( )] + G( )[p(,8]

While E(„)„„, the explicitly 8-dependent part of
E( )„„,can presumably be picked out by inspection, the

same is not true of T( ), the explicitly 8-dependent part
of T( ). Because the Kohn-Sham orbitals are found as
functions of r and not functionals of p(r, B), one c~.wot
look at the actual expectation values in, e.g. , Eq. (9) or
(12) and just pick out which of the 8-dependent terms
come about because of the 8 dependency of p(r, 8) and
which represent an explicit 8 dependency. [The Kohn-
Sham orbitals can in principle be expressed as functionals
of p(r, 8) and 8 because T, can. Doing this would cer-
tainly obviate the problem of identifying the origin of the
8 dependency in each expectation value in, e.g. , Eq. (9),
but of course if we know how to write the Kohn-Sham
orbitals in terms of p(r, 8) and 8, there is no need for
the one-electron equations in the first place. ]

We can get around this problem by using the tech-
nique by which the coupled Hartree-Foek equations ean
be derived [16]. First we write the generic T, as the ex-
pectation value of a one-electron kinetic operator t,

N/2

T, =2) (nitin),

3 (2) ~ (o) O
p(r)

, p(o) p

fr —r'/

where E(0) is the energy in the absence of the field. The
requirement that the zero-field density minimize the zero-
field energy is expressed by the variational condition

where we have switched to Dirac notation for the expec-
tation values in, e.g. , Eq. (9) or (13). The entire second-
order dependence of T, on 8 is then

N/2 r

T( ) 2, (n(o) ~t( ) ~n(o)) + (n( ) ~t(o) ~n( ))
n=1

+(n(o) ~t(i) ~n( )) P (n(i) ~t(i) ~n(o))

—A=O,
6P(r)

(21)
+(n(o) ~t(o) ~n(2)) + (n(2) ~t(o) ~n(0)),

E[P,B] = E'"[P"']+G"'[P"' 8)+ " (22)

On}y the zero-field density p(0) is required to calculate
the right-hand side of t} s expression, wh ch completes
the proof.

If the full functional G[p, 8] is available, using Eq. (22)
is straightforward since the explicitly 8-dependent part
of G can be picked out by inspection. If, on the other
hand, the one-electron (Kohn-Sham) approach discussed
in Sec. III is taken, then G is only available in the form
of T, plus a correction functional E«»«t, [p, 8], where

E, „„t——E„, if Eq. (8) defines the one-electron equa-
tions and E,««« ——Ei,„, if Eq. (12) defines the one-
electron equations. In this case Eq. (22) takes the form

E[p 8] —E( )[p( )] + T( )(p ) 8)
+E(~) [p(0) 8] + . . . (23)

where A is a Lagrange multiplier. Using the result of
applying Eq. (21) to Eq. (1), and using Eq. (18), it can be
shown that the last term in Eq. (20) is zero for the actual
ground-state density. (Note that G[p, 8] as defined. by
Eq. (3) reduces to G[p] as defined in Eq. (1) in the limit
of 8 ~ 0.) So finally we have

where the superscripts (1) and (2) indicate corrections to
order Bi and B, respectively. The eigenkets ~n) satisfy
the one-electron equations

(t+ V.,) ~n) =.„~n). (26)

N/2

T( ) = 2 ) ( (n(') ~t(') ~n(') )

(n(o) ~t(i) ~n(i)) + (n(i) ~t(i) ~n(o)) )
1 1
2 2

d r p( )(r, 8) V,z (r). (27)

Now we can pick out by inspection fiom Eq. (27) which

parts of T, derive the 8 dependency from that of the
de~ity. Certaiay the lmt term does so. Equally clemly
the other terms do not: First of all, the ~n(o)) have no 8
dependency at all. Second, the ~n(i)) depend linearly on
8, which must be an explicit 8 dependence because the

If we use the equations that come from requiring Eq. (26)
to hold order by order in 8, and the orthonormality of
the ~n), we can show that
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density can only cause dependency on even powers of B.
Thus we have an expression for the explicitly 8-

dependent part of T, in terms of the Kohn-Sham or-
bitals

tion about the kinetic part of G to de6ne the one-electron
equations through Eq. (12) instead of Eq. (8), then the
one-electron kinetic operator is

N/2 p

T{2}—2
&

(~{o}~t{2}[~{o})
n=1

+ (&{0}~){1}~~{1})+ (&{i}~t{1}[~{0})t1 1

2 2
(28)

instead of as in Eq. (29), and &om Eq. (28)

This expression can be used in Eq. (23) to find the
second-order changes in E when Kohn-Sham orbitals are
used to calculate T, . We note that Eq. (23) with Eq. (28)
inserted into it differs by the presence of E{}„„&om
the equivalent expression in coupled Hartree-Fock theory.
More importantly, Eq. (23) cannot be derived &om zero-
field DFT because zero-field DFT has no provision for the

explicit appearance of the magnetic field in E{I„,~. This
explicit appearance must be considered in a consistent
theory of weak responses to magnetic fields since the ex-
plicit appearance of B(r) in the energy functional is what
allowed at the beginning the elimination &om the energy
functional of j„(r) as an independent variable. That is,
density-functional theory by itself, where the magnetic
field can only enter through the density, cannot consis-
tently describe systems in a magnetic field. It is only
current-and-density functional theory or magnetic field-
and-den8ity functional theory that can do so.

If Eq. (8) defines the one-electron equations, that is, if
the one-electron kinetic operator is given by

(29)

then the terms in Eq. (28) are all generally present. That
means we have to solve Eq. (8) to linear order in B;
that is, we must calculate the first-order B-dependent
corrections to the Kohn-Sham orbitals in order to get
the second-order changes in the energy. This does not
constitute an exception to the general theorem above,
because we can calculate these linear corrections with the
zero-field density p{o}(r) alone. The efFective potential
V,@[p,B] appearing in Eq. (8) is given to linear order in
B by V,ir[p{0},B].

Note that, since it is only through V,H that the one-
electron equation for each Kohn-Sham orbital P„depends
on the other orbitals {t ~„, the first-order corrections

P{ } to the Kohn-Sham orbitals do not depend on each

other. That is, if the zero-field P are known, the per-(o)

turbation equations that must be solved to find the P{ }

are uncoupled. This is in distinct contrast to the Hartree-
Fock equations, where the Grst-order corrections do de-

pend on one another and the perturbation equations to
find them are coupled. Using BDFT to 6nd the second-
order energy changes, even in the Kohn-Sham formalism,
even with Eq. (8) defining the one-electron orbitals, is
therefore much easier than solving the coupled Hartree-
Fock equations.

As a matter of fact if we have available enough informa-

and the energy to second order in B is given by

g[& B] g{o}[&{o}]+g ' [&{o}B] (32)

No B-dependent corrections to the Kohn-Sham orbitals
need to be calculated at all. The prospect represented by
Eq. (32) of being able to calculate ground-state second-
order magnetic susceptibilities for an arbitrary closed-
shell system without solving any differential equations
at all may make the effort required to contruct accurate
forms for Ek„, very worthwhile.

V. CONCLUSIONS

We have outlined basic features of magnetic-field-and-
density functional theory, an approach to the problem
of the ab initio calculation of the properties of interact-
ing many-electron systems in the presence of a magnetic
field. The theory is grounded in the Hohenberg-Kohn
theorem, which we emphasize is still perfectly valid in
the presence of a magnetic field B(r) provided that all
the Hamiltonians for which it is required to hold have
the same form of vector potential A(r). The energy in
BDFT is written as a functional of the ground-state den-

sity p(r), as usual, and also explicitly of B(r). Thus the
knotty part of density-functional energy functionals, the
kinetic-exchange-correlation functional G, is for BDFT
nonuniversa/ in (i.e., depends explicitly on) the vector
potential. It is, however, still universal for all possible
scalar potentials, e.g. , arrangement of nuclei.

While presumably in the most general situations
the universality of current-and-density functional theory
makes it the method of choice for calculating ground-
state magnetic properties of many-electron systems, it
seems possible that in certain situations the use of BDFT
may be as or more practically tractable. These situations
would in general presumably be where properties of the
exact form of B(r) make the construction of an accurate
appro'ximation to G[p, B] easier than an approximation
of equal accuracy to G[p, j„]. It is also possible that in
situations where the kinetic part of t is actually used

[12,20], instead of being represented with the Kohn-Sham
formalism, BDFT may be of more use since kinetic con-
tributions to G[p, B] are known in some cases already,
while the only attempts as yet to formulate the kinetic
part of G[p, j„]are not computationally tractable [9].

%e have demonstrated the construction of one-electron
(Kohn-Sham) equations to avoid construction of the
kinetic-energy part of G[p, B] and pointed out the inter-
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esting opportu»ty of constructing one-electron equations
not based on the obvious partitioning of the magnetic-
field dependency between kinetic and potential opera-
tors in the one-electron equations. Such equations give
purely real Kohn-Sham orbitals and no division of the en-

ergy into para- and diamagnetic contributions. Further-
more, when these orbitals are used to calculate second-
order susceptibilities one does not need to calculate the
magnetic-field-dependent corrections to these orbitals.

Finally, we have presented a theorem for the calcula-
tion within BDFT of the second-order magnetic proper
ties of the ground state, e.g. , diamagnetic susceptibilities
and chemical shifts. This theorem shows that knowledge
of the zero-field density alone is sidBcient in principal

to Bnd these quantities and, unlike any other ab initio
method, there is no a priori need to calculate the changes
in the ground-state wave function due to the magnetic
field.
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