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The position- and momentum-space entropies of the isotropic harmonic oscillator and the hydro-
gen atom in D dimensions are shown to be related to some entropy integrals which involve classical
orthogonal polynomials. These integrals are exactly calculated for Chebyshev polynomials and only
in an approximate way for Gegenbauer polynomials. The physical entropies are explicitly obtained
in the ground state and in a few low-lying excited states. Finally, the dimensionality dependence
of the ground-state entropies of the two above-mentioned quantum-mechanical systems is analyzed
(numerically) and the values of the entropies in a large class of excited states of the D-dimensional
(D = 1, 2, 3) harmonic oscillator and hydrogen atom are tabulated and discussed.
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I. INTRODUCTION

A D-dimensional n-particle system is completely char-
acterized in quantum mechanics by means of its wave
function 4'(rz, r2, . . . , r„), where r = (zy, z2, . . . , Zg7).
The basic variable in the modern density-functional ap-
proaches [1—3] to study the physical and chemical prop-
erties of these systems is the single-particle density p(r),
l.e.)

+1/2

p(rQ = ) ~4'( r, r2, . . . , r„, o~, 02, . . . , 0„) 'i

cr; =—1/2

x dr2drs dr„,

where (r;, tr;) denotes the position-spin coordinates of the
ith particle and the wave function @is assumed to be nor-
malized and antisyrrunetrized in the pairs (r, , o;.). The
density p(r) is then normalized to unity.

An information measure closely related to the concept
of entropy and disorder in thermodynamics is the so-
called Boltzmann-Shannon entropy [4,5], which is defined
as

S~= — pr lnpr dr

in the position space and

~u 1 ~udJ
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in the momentum space. The moment~~ single-particle
density 7(pg is given as in (1) for the moment»m wave

function 4(pq, J72, . . . ,p„,0'q, 0'2, . . . , 0' ), which
Fourier transform of the position wave function @.

These two entropies have shown to play an important
role in the quantum-mechanical description of physical
systems [6—11]. They have allowed Bialynicki-Birula and
Mycielski (BBM) [6] to find a new and stronger version
of the Heisenberg uncertainty relation; the corresponding
BBM inequality for n = 1 is given by

S +S )D(1+ln7r),

which emphasizes the reciprocity between the position
and momentum spaces. Indeed, in particular, high values
of S~ are associated with low values of S~, which indicates
that a diffuse p(pg is associated with a highly localized
p(r).

In addition, they show a close relationship [7—11] with
fundamental andior experimentally measurable quanti-
ties, such as, e.g. , the kinetic energy and the magnetic
susceptibility. Both characteristics have been used in the
study of the dynamics of atomic and molecular systems
[1].

Here we will initiate a detailed physico-mathematical
study of both position and moment»m information en-
tropies. To begin with, we consider the simplest
quantum-mechanical system, namely, a spinless particle
in a central potential V(r) The D-dime. nsional motion
of this system is governed by the associated Schrodinger
equation which, in atomic»nits, is
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——v'+v(r) 4(r") = @(r"),

where

D

r'=) z,'.

Then the position and momentum single-particle den-
sities are simply given by

respectively, where 4(p) is the Fourier transform of 4(v"').
The corresponding information entropies S~ and S~,
given by Eqs. (2) and (3), give a measure of the "spread"
of the single-particle density in position and momentum
space, respectively. Thus, S~ measures the uncertainty
in the localization of the particle in the position space
and S~ measures the uncertainty in predicting the mo-
mentum of the particle. Atomic units (m = e = h = 1)
will be used throughout the paper.

Our attention will be centered around two specific sys-
tems: the isotropic harmonic oscillator whose potential
ls

polynomials corresponding to the names of Gegenbauer,
Laguerre, and Hermite.

The analytical evaluation of the entropy integrals (9)
has never been undertaken to the best of our information.
In this paper we initiate this project by calculating the
values of the entropy of Chebyshev polynomials T„(z) =
2 lim 0 C„(z) in an exact form (Sec. V) and the values
of the entropy of Gegenbauer polynomials C„(z) in an
approximate way (Sec. VI).

Finally, to have an idea of the spread or extent of the
wave functions which describe the physical states of the
systems under consideration, we have numerically com-
puted the position and momentum information entropies
of the one-, two-, and three-dimensional harmonic oscilla-
tor and hydrogen atom in the ground state and a few ex-
cited states (Sec. VII). The resulting values are discussed
and the fulfillment of the BBM inequality is checked in
all cases. Then some concluding remarks are given and
a few open problems are pointed out.

II. THEORETICAL BACKGROUND

A. The D-dimensional harmonic oscillator

vao(r) =
2

The Schrodinger equation of this system, given by Eqs.
(5) and (7), can be transformed into

and the hydrogen atom for which we use the Coulomb
potential

1 (d~ D —1d A2) 1
+ —I+ ~" e,i,( &(

l2 dT T dr T i 2

&H~(~) = ——.
r

First, in Sec. II the energies and wave functions of
these two D-dimensional systems are collected in both
position and momentum spaces and the corresponding
single-particle densities are explicitly shown. Then, in
Sec. III we face the calculation of the position and mo-
mentum information entropies of the harmonic oscillator.
The same problem is attacked in Sec. IV for the hydrogen
atom. Brie8y, as main results in these two sections, one
has the following.

(i) The position and momentum information entropies
of the aforementioned systems in the ground state and
a few low-lying excited states are explicitly given. One
finds, in particular, that the BBM inequality gets ex-
hausted in the ground state of the harmonic oscillator.

(ii) For a general wave function of these systems, the
entropies are shown to be expressed in terms of the en-

tropy integrals

= E@ i ( I(7), (10)

where the kinetic-energy operator has been written down

by means of the spherical polar coordinates (r, Aii). The
principal quantum number n, the orbital quantum num-
ber t, and the magnetic quantum numbers (p,) are inte-
gers satisfying

t = Pi & P2 & '' & IP&-il~

with p~ i ——m. The nonradial part A2 of the Hamilto-
nian operator is known [12] to fulfill

A Yi,(»(Oa) = l(t + D —2)Yi („I(Oii))

where Yi (»(Dii) are the hyperspherical harmonics de-
fined by

Yi,(,)(fez)) = iV, („le' ~

and other closely related ones, where p„(z) are orthonor-
mal polynomials with respect to a measure p. The sign-
reversed integrals (9) are to be called "entropies of the
orthonormal polynomials p„(z)." Specifically, the poly-
nomials that appear in the two physical problems con-
sidered in the present work are the classical orthogonal

x(sinO ) ~+

with the normalization constant

N,
- ( '+ )(~'- '+)'Il'( '+ '+)j

2~ ... . ~2i 2~ 2P +&I'(2~ ~ + y, . + p. i')j=1 2 2 2+

{11b)
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xy —T sin 8y

X2 = TSln81

X3 = TSln81

Sln 82 ' SlIl 8D 2 COS p)
sin82 .sin8D 2siny,
S1Il 82 .COS 8D

xD 1 ——rsin81 cos82

xD = T cos 81)

Here 2a~ = D —j —1, C„"(t) is the Gegenbauer poly-
nomial of degree n and parameter A, and the angles

8&, 82, . . . , 8D 2, $ are given by

lator. These quantities are

2 Q 2

I'(n+ l + ~)

x Yi l„}(Og)
D

I' (n+ I + ~2)

2
x Yil»(Q~)

(15a)

with 0 & 8~ & x, j = 1, . . . , D —2, and 0 & y & 2~.
Since the hyperspherical harmonics are eigenfunctions

of the operator A2, we can look for solutions of the
Schrodinger equation (10) having the separable form

@„i ~„}(r)= R„i(r) Yi &„}(Q~), (12)

where R„i(r) is a radial function which remains to be
found. Inserting (12) into the Schrodinger equation (10)
and taking into account (ll), we obtain, for the radial
function, the di6'erential equation

(p&= peal p I

(15b)

E„=A(n+ —,') (16)

respectively.
Finally, let us consider the special case D = 1. For

the one-dimensional harmonic oscillator we only have
one quantum number n and no angular part in the
Schrodinger equation. The energy of this system is given

by

1 fd2 D —1d l(l + D —2) ) 1 ~2 2

r l+

x R„i(r) = ER„,i(r). (13)

and the eigenfunctions can be expressed by means of the
Hermite polynomials [13]. The corresponding position
and moment»m densities are

1

2ntA'+
14,l, li}(»I p ( t g7

)

x (Ar2) Yi,~&}(Aa),

re ~ I„'

where n = 0, 1,2, . . . and I = 0, 1, 2, . . ., which corre-
sponds to the energy

Note that the magnetic quantum numbers do not appear
in this equation; therefore, the radial function is inde-
pendent of this quant»m n»mber.

Equation (13) can be solved in the conventional man-
ner. One obtains the following normalized solutions:

(17a)

(17b)

B. The D-dimensional hydrogen atom

The Schrodinger equation (5) for the D-dimensional
radially symmetric Coulomb potential (8) can be solved
in a similar way to the oscillator case. The eigenfunctions
in the position space are given in atomic»»its by [14]

(14)

@ra,i, li»}(PQ
2ntA '

I' (n+1+ D)
z ~i+ q

—1 (ppe 2»+
(A)

On the other hand, the Fourier transform of the eigen-
function»li„ i I„}(r)gives the wave function in the mo-
Inentum space

with

(n l 1) ~

I(2)7(n+ I+ D 3)!)I

&', r, &,&(~) = N. ,i~ "
(» )

I'„'+, i
'

~ » ~

»'i, &,&(&o),
), A&

where N„,i are normalizing constants given by

x Yi I„&(Ag)),
D —3g=n+ )2 2

where OD is the solid angle in moment»m space. The
symbol L (t) used in the description of the eigenfunc-
tions in both position and momenti~m spaces denotes the
well-known Laguerre polynomial.

As pointed out by Eq. (6), the modulus squared of
these two eigenfunctions describes the position and mo-
mentum densities of the D-dimensional harmonic oscil-

The quantum numbers n = 1, 2, 3, . . . and l

0, 1, . . . , n —1 correspond to the energy

1
29'

The associated probability density then is
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The eigenfunctions for the excited states are [15]

L l+D — y

(18)

By using a generalization of the method used by Fock [12]
we find that the eigenfunction in the momentum space is

D+y
(2»o) ' "

@,~, (~l(R = o, & -i,(,l (fix+i),
2~/2 (»2+»2)

where»2o = 2E„—= )7 2. If we use the known relation-
ship between the hyperspherical harmonics in a (D+ 1)-
dimensional space and those in a D-dimensional space,
the eigenfunction is also equal to

4 gg(x) = — !*')"XL„',(2~x~/n),

where 4, „(x) is the wave function for the even states
and 4 gg(x) is the wave function for the odd states. In
the momentum space the wave functions are [16]

g& +2in arctan(np)
@-(»)—

with n = 1, 2, 3, . . .. The state n has the energy E„=
—I/n . Then one has the expressions

(21a)

x Y( („&(QD),

2n
V(») = —(1, ,), (21b)

where C„(t) is a Gegenbauer polynomial, g has the same
meaning as in the position space, and

for the densities in position and momentum spaces, re-
spectively.

(n —I —1)!
2n. (n+ I + D —3)!~l

2"+Dr(I +
2

Then, according to Eq. (6), the momentum density is

III. INFORMATION ENTROPIES
OF THE HARMONIC OSCILLATOR

Taking into account the densities of the D-dimensional
harmonic oscillator in position space (15a) and momen-
tum space (15b) and that

(~»)" ~~+-;-' &1-A') '
, , 2i+~+i1+9 p +7» )

dT = 7' dTdO~,
f'a-2

dA~ = sin ' 8~d8~ dP,

x~Yi, ( l(OD)~ . (19)

e(x) = ~-'~2e-'-,

By taking the Fourier transform we obtain the eigenfunc-
tion in momentum space

It is worth treating the Coulomb potential in one di-
mension separately, i.e. , V(x) = —

! !.The ground state
of this system has a degenerate energy Eo ———oo and
thus some care has to be taken in analyzing this state;
its eigenfunction in the position space is most appropri-
ately given by [15]

D (Aq D
S, = ——ln

I

—
I

+
2 I 7l') 2

D DS = —1n(Am) + —.
2 2'

(22a)

(22b)

It is worth pointing out that the entropy sum saturates
the BBM inequality (4), that is, one has

we obtain from Eqs. (2) and (3) the following expres-
sions for the information entropies of this system in the
position and momentum spaces denoted by S~ and S~,
respectively.

(i) For the ground state

2 o.'/'+(»)— o. —+0.
S, +S, = D(1+in~).

(ii) For the excited state

Then the ground-state probability densities in both po-
sition and momentum spaces are

2p(x) = n 'e

2n!

I I'(n + l + D/2)
&

+—(1 —ln A) + 2n + I
D
2

2 0.'
~(») —

(,+, ,), (20b) I'(n+ (+ D/2) ' (24a)
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where

( 2n!

Er(n+l+ D/2) )I

y —(1y ink) y2n pl
D
2

(24b)

which is independent of the strength A of the potential.
This is because of the scale invariance of the entropy s»m,
which comes from the special relationship (15b).

In the following we give explicit expressions for the en-
tropies of the one-, two-, and three-dimensional harmonic
oscillators for both ground and excited states.

(a) For the one-dimensional oscillator we find in the
ground state n = 0 that

gl 1+D—/2 t h t—l [Il 1+D—/2(t)]2dt
0

t'-'+ /' -'[L,'-'+ /'(t)]'
0

xin[L, ' '+ / (t)] dt,
2 2

Iii = f Yi,&„&(&&ii) &ii &'i, &p&(&&ii) i&&&o

(25a)

(25c)

According to Eq. (9) the integrals I2 and Is are the
entropy of the orthogonal Laguerre polynomials and in
extenso the entropy of the hyperspherical harmonics, re-
spectively. The last integral Is can be reduced to

S~ = —ln(ex/A),
1

P

S~ = —ln(ex%),
1

2

and for the first excited state n = 1

Sp ————ln —y C,
1 Ae

4m A

(30a)

(30b)

(31a)

(31b)

where C = 0.5772156649. . . is Euler's constant. For
arbitrary states n we have

Is —lnN, f„)

+ (~. +»)(» —»+~)' [r(~'+»+~)l'
21—s™—2& +lr(2A~ +» +»+1)

x (I4+»+&Is),

where

S, =in(~~2"n!A--) gnat ——,Is,n 1 1

n 1 1
S~ = ln(~n. 2"n!A & ) + n + —— „(Is&

where

I=e'H„t n„t t

(32b)

+1
(].—t )»»+' & C ' "'+'(t)

—1
- 2

2

+1 2
I, = (1 —t')»»'+~--* C '+"'+'(t)

P~ —P~yi—1

x ln(1 —t') Ct.

(27a)

(27b)

is the entropy of the orthogonal Hermite polynomials.
It follows from Eqs. (32a) and (32b) that the s»m of
entropies S~+ S~ is independent of the strength A of the
oscillator potential.

(b) For the harmonic oscillator in two dimensions we
have two quant»m numbers n and m. The ground state
has the usual entropies and the first excited state n = 0,
~m] = 1 has the entropies

Sp+8~ = —21nl r ) D 2 I

+4n+2l+D
2n!

-r(„~l~D/2)('+") -" (29)

Accords»g to Eq. (9), the integral I4 is the entropy of the
orthogonal Gegenbauer polynomials. To obtain (26) from
(25c) we have used the explicit form (lla) and (lib) of
the hyperspherical harmonics and taken into account the
orthogonality condition of the Gegenbauer polynomials,
namely

f
+1

(1 —z )" &C" (z)C„"(z)dz
—1

x2' '"r(2vyn)
!( + )[r( )]' "

The expressions (24a) and (24b) allow us to find that
the s»m of entropies is given by

S~ = 1n(ex/A) + C,

S~ = ln(exA) y C.
(34a)

(34b)

nf
y2n y ~m~ y 1—,(I& + I2),ny m!

( n!A

( (n+ ~m~)!x)
n!

+2n + ]m~ + 1 —
~
(Iy + I2),ny m!

(35a)

(35b)

where the integrals I;, i = 1, 2, 3 are given by Eqs. (25a)—
(25b) with D = 2 and l = ]m~. We note that the entropies

For arbitrary states n,,m the entropies involve the inte-
grals Iq and I2 given above, associated with the Laguerre
polynomials I„(t).That is, the corresponding expres-
sions are

n&

Sp ——-ln
i

& (n~ /m/)!A7r)
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S~ and S~ of the states (n, m) and (n, —m) have the same
value.

(c) Finally, for the harmonic oscillator in three dimen-
sions we have three quantum numbers n, /, m. For the
ground state we have the usual simple expressions (22a)
and (22b). The first excited states n = 0, / = 1 have the

entropjes S

IV. INFORMATION ENTROPIES
OF THE HYDROGEN ATOM

Operations similar to those already done in the pre-
ceding section lead to the following values for the po-
sition and momentum information entropies of the D
dimensional hydrogen atom.

(i) For the ground state

S,"'= in[2(~/A)')'] + C + 1/2,

S,' "= in[2(~A)'~']+ C+ 1/2,

(36a)

(36b)
( 22D —& I'( D

)

(D —1) +'(D —2)'mD~' (40a)

So" = —in[or/A] + C+ 3/2, (36c) S, = (D+1) (—1)~+'+1 ln2 —)
S,"'= —in[~A] + C+ 3/2,011 {36d) (40b)

where again C is Euler's constant. For arbitrary states
we need to use Eqs. (24a) and (24b) with D = 3. In this
case, the integral Is is

I3 —— Yj 03 ln Yj ~ 03 d03

The sum of entropies is

S~ + S~ = D 1n(err) + ln 2

+ '(D+1)-q /'D" q&D+-1, (41)

((2/+ 1)(l —m)! ) ((2l + 1)(l —m)! )
4 (l+ )! )~ ~( 2(l+ )!

+1
x [P, (t)] in[Pi (t)] dt,

—1
(37)

where Q(z) is the psi function; note that this sum is
always larger than D(1 + in+), in agreement with the
BBM inequality (4). Moreover, the entropy sum is D(1+
ln vr) -I 0(l) for large values of D.

(ii) '"or the excited states

where Pi (t) are Legendre functions. If we use the rela-
tionship with Gegenbauer polynomials

Sp ———lnN„, + A N„, (Ji —2/J2 —J3) —J4, (42)

where

the expression (37) becomes

(n+ l + D —1)! (n+ l + D —2)!
(n —l —1)! (n —l —2)!

(n+ l + D —3)!
(n —l —3)!

(43a)

with

)(2/+1)(l —m)! y

4~(/ + m)! )
f (2l + 1)(l —m)![(2m)'. ]2 1

22m+ & (/ + m) t (mt) 2

((2m)!y+2'
~

(43b)

(43c)

with k = n —l —1, ~ = 2l + D —2, and

t-+'e-' ln t [L,g (t)]' dt,
0

J3 —— t+e LI, t nL~t
2 2

J4 —— Yj („) D ln Yl („) OD OD ——I3) 43

+1
I = [C, +~(t)] (1 —t) ln(1 —t) dt,

—1

I5 —— C, +~ t 1 —t lnC)+ t dt.

(39b)

Alternatively, the expressions (38) and (39b) follow di-

rectly from Eqs. (26) and (27b) in the case D = 3. Let us

6nally comment that again here the entropies S~ and S~
have the same values in the states (n, l, m) and (n, l, —m).

S = —ln K2
i + (2l + D + 1) ln 2

[/J5+ (D+ 1)Js+ J7] —J4,
go 22&+D+1

where

(1 —t')" ' ln (1-t') [C„"(t)]'«,
—1
+1

J, = S —t' ]. +t ln S+t C„" t dt.

(45a)

(45b)
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+1
J 1 g2 / g/

g
2 gj t(

2
(45c)

V. ENTROPY OF CHEBYSHEV POLYNOMIALS

with k = n —l —1 and v = l+ (D —1)/2.
The entropies for the Coulomb potential in two and

three dimensions can easily be obtained Rom the general
expressions (42)—(45c) by setting D = 2 and D = 3,
respectively.

For the one-dimensional Coulomb potential we use the
densities (20a) and (20b), which, together with the ex-
pressions (2) and (3) produce the following values for the
position and momentum entropies

(a) In the ground state the entropies for a & 0 are
given by T„(x) = cosn8, z = cos8, n= 0, 1,2, . . . .

In this section we begin with the notation and defi-
nition of the Chebyshev polynomials of first and second
kind, and then we give the entropies of both polynomi-
als in the form of theorems 1 and 2 below, which are
proved in detail by extensive use of the algebraic prop-
erties of these polynomials [17—19]. For the harmonic
oscillator these entropies appear in (27a) for p~ = pal+1
and p~ = y~+1+ 1 and for the hydrogen atom in (43d)
for the same parameters.

Chebyshev polynomials of the first kind are

S~ = 1+inn,

S = ln
(

—
)

—lna.
(8n' )

e2~

HenCe the S11ro Of the entrOpieS iS

(46b)

They satisfy the following orthogonality relation:

T„(z)T (z) = —b
gl —z2 2

m, n & Om +F0

S, +S, =ln
~

—~,
(Sx)

P

and for m+n = 0

+1
To (z)

independent of a.
(b) In the excited state

(2n
p= ni

(87r )

where

(48a)

(48b)

The orthonormal polynomials are thus p„(z) = +2T„(x)
when n & 1 and po(z) = T()(z).

Chebyshev polynomials of the second kind are

sin n+1 8
(z) = . , z=cos8, n=0, 1,2, . . . .

sin 8

The orthogonality is

J, = t'e-'1 t L„',(t) dt,
0

(49a)

+l
U„(z)U (z) Ql —z2dz = b'

7l
m, n&0

Js —— t e ' L„1(t) ln L„1(t) dt.
0

(49b)

and hence these are orthonormal polynomials.
Theorem 1. The entropy of the orthonormal Cheby-

shev polynomials of the first kind has the values

Proof. Use

to Gnd

+1
T~(x)lnT„*(z)

ln 2 —1 when n & 1

gl —z' when n = 0.

T-(z)/1 —z2U„, (*)
1 —x2

+1
T (z) inT„(x)d gl —x2U„(x)

Integration by parts gives

+' , d~ y
+' +1

T (x) lnT (x) = Ql —x~U 1(x)T'(x) lnT (x)dx+ Ql —x2U 1(x)T„'(x)dx.
7l nx All
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From T„'(x) = nU„q(x) we then find

+1 d 1 +1

-1 T„(x)lnT (x) = — Ql —x2U„, (x}lnT (z)dx y — Ql —x2U„,(z)dx.
]

Euler's formula (1 —x2)U„,(x) + T„(x)= 1 gives

+1 dx ]. +' dz
T„'(x) ln T„(z) = — ln T„(x)

1l 1 z + —g 1 z
+1 d 2 +1

T2(z) lnT„(x) y — Ql —z'U„', (z)dz
-1

Then, since

+1
U„',(z)gl- z2dz =1,

—1

1 +' dx 1
ln T„'(z) = — ln

~

cos n8~'d8
7t'

g ] —z2 x o

ln d8
1 +

27t p 2
(z =e* )

2' ] +
ln d8 = —2ln2

2Ã p 2

n ~

(the last equation follows because ln +2 is harmonic in ~z~ ( 1, so that the integral over the unit circle is equal

to the value of the integrand at 0), we find for n & 1

+',
T„'(z) ln T„(z) = —2 ln 2 + 1.

] ] z2

For the orthonormal polynomials we just set p„(x) = +2T„(z) to find the desired result (50) for n & 1. The result
for n = 0 is checked immediately.

For the Chebyshev polynomials of the second kind we can also make an exact computation.
Theorem p. The entropy of the Chebyshev polynomials of the second kind has the values

+
2p'„(x) ln p2 (z) Ql —z2dx =

n+1 n&0.

Pmof Use T'+z (x.) = (n + 1)U„(z) to find

2 +'2
U2(z) ln U2(x) /1 —z2dx = U„(z) ln U„(z)y 1 —z2dT„~g(x)

] m n+1

Integration by parts gives

2 +'2 +1
U„(x) ln U„(x)Ql —x2dx =— T„~g(x)U„'(x) Ql —x2dx

Ã —1 ~(n+ 1)

2 +1 - I

T„~g(z) U„(x)Ql —x2 ln U„(x)dx.
m n+1

The use of

gl —z'U„(z) = (n i 1) "+'— U„(z) y gl —z2U„'(x)

allows us to find
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+1 +1
2 dx

U„(z) ln U„(z)gl —z2dz = — T„+~(z) ln U„(z)
7l 1 —z2

+1 dx
+— T-'+i(x)

7l 1 —x2

4 +1 dx
xT„+g(z)U„(x)en+1 ~

"
1

Euler's formula (1 —x2)U2 ~(z) + T2(z) = 1 gives

+1 +' d& 2 +1
U„(x) ln U„(x)gl —z dz = — ln U„(x) —— U„(z) ln U„(x)gl —z2dz

7l 1 —Z2

4 +1 dz+- T.'+i(x)
—] 1 x

4 +1 dx
zT„+g (x)U„(x)

n n+1 q 1 —x2

The third and fourth terms on the right-hand side can be computed by

+1 dx
zT„+,(z)U„(z) = 1,

7I —1 1 —x2

and furthermore

+1 d 1 2m j 2Ã

(*) = — » l»n(n+1)8I'd8- — » l»n8
gi —x2 7l Q

d8 —— ln
Q 2i

z~+1
ln d8

Q 2i

j ~ z "+ —j j ~ z —j j j
ln d8 —— ln d8 = 21n ——21n —= 0,

X Q 2 7l Q 2 4 4

where we have used the mean value property of harmonic
functions. This gives the desired result (51).

VI. ENTROPY OF GEGENBAUER
POLYNOMIALS

Let us calculate the entropy of the Gegenbauer poly-
nomials (also called ultraspherical polynomials) C„"(z),
A ) —2. This entropy, as well as some related integrals
which involve the same polynomials, appears when one
computes the angular part of the information entropies
of the hydrogen atom and harmonic oscillator in both
position and momentum spaces; see, e.g. , Eq. (45c) as
well as Eqs. (27), (39), (45a), and (45b).

The Gegenbauer polynomials are symmetric Jacobi
polynomials [18—20]; they satisfy the following orthog
onality relation:

+1
C„"(z)C"(x)(1 —x2)" ~ dx

—1

2' 2"I'(n+ 2A)= r (~)(.+~).. '--- (")

By taking into account the expression

.).+,C.+i(,)(2k+ n)n

(which follows from the Rodrigues formula) we find

f
+1

[C."(z)]'»[C."(z)]'(1—*')" ' d*
—1

+1
C„"(x)ln[C„"(z)]

2A+ nn

x d (1 —z )
"+~ C„"+i(x)

Integration by parts and the difference-differential rela-
tion

C„"(*)'= uC„"+,'(*)

gives
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+1
[C."(*)]'»[C."(x)]'(I—*')'

2(2A) +
&+i 2 z w+-'

(2A + n)n [C."'i (x)l'(1 —x')""«

~„p„(x)+ iB„sin 8q„,(*) = 2z-"y,„(z),
A„p„(x) —i B„sin8q„, ( x) = 2z"$2„(l/ ),

~„'p„'(x) + (1 —x2)B„'q2, (x) = 4]y.„(z)~',

(2A)

(2A+ n)n [C."'i (x)]'

x ln[C„"(x)]'(1—x') "+2 dx. (53)

which is the desired generalization of Euler's formula. If
we take w = (1 —x2)" 2, then by (52) the orthonormal
polynomials are

The first term on the right-hand side can be computed
by (52) and is

+'

(2A+ n)n
[C."",(-)I'(1-")":-d*

2z.2' 2"I'(2A+ n)
I'(A)(n+ A)n!

In the case of Chebyshev polynomials we were able
to make the explicit computation by using Euler's for-
mula. An analog of this important formula can be ob-
tained via orthogonal polynomials on the unit circle. Let
p„(x) be the orthonormal polynomials on [

—1, +1] with
weight function u(x) and q„(x) those with weight func-
tion (1 —x )u(x). If P„(x) are the orthonormal polyno-
mials on the unit circle with weight ur(cos 8)

~

sin 8], then
(see [20] Sec. 11.5)

~ p (x) z '6 (z) + z 0'2 (1/z)

z —z '
B„q„ i(x) = z "$2„(z)—z"$2„(1/z),

(n+ A) (n —1)!~(A+1) 2- — I „+2A+
xC„"+,'(x),

and for the weight function
~

sin8~2" on the unit circle
one has Pz„(0)/K2„——A/(n+ A) [21,22] so that

n+ 2A"
+A

and (54) becomes

[C."(x)]'+ (1 —*') „+2A, [C."-'i(x)]'

4F(n+ 2A)=
2 ~ .( +2A)r (A)

~'"'

Insert this into (53) to find

[C„"(x)] ln[C„"(x)] (1 —x )" ~idx

where z = e'e,

0 -(o) &-( )

&2n

2' 2"I'(n+ 2A) ~n+ A 1 +'

I'(A)( + ) '
~

x ln[C„"(x)] (1 —x )" dx

and ~2„ is the leading coefficient of $2„(z). From this,
we find for x = cos 8 and z = e's Furthermore,

142-(z) I'»[C."(x)]'(I x')" 'dx—
—1

27r ~z+z
~$2„(z)] ln z"C„"

I ~

~sin8~2~d8 (z = e'0)

2' z+z 2' z+z '

The first integral on the right-hand side can be computed
by the mean value theorem for harmonic functions and
is equal to 21nc„/2", where c„ is the leading coefficient
of C"(x). By [20], Sec. (4.7.9), this gives From the result in [23] Corollary 2.2, p. 243, we know
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that

] 2&

[[&t„(z)f'fsin 8)'" —l[d8 = 0
'A~oo 27/ p

For the normalized entropy integral we use the probabil-

ity weight function

I'2(A) A"'*)= --r(A). ('- ) '

and thus

+1
[C„"(z)] ln[C„"(z)] (1 —z )" &dz

—1

2'-'"r(n+2A) ( n r(»+A)+ 21n 1+ol=
r2(A)( + A) !

~
+ A r(A) !

with orthonormal polynomials

p„(z) =
~

I'(2A)
~

C„"(z).(n+A)n! )
+2A )

Straightforward calculus gives the following values for the
entropy of the Gegenbauer polynomial:

E„=— p„(z) lnp„(z)u (z)dz = — —21n
&

[1+o(1)] —ln
+1 r(n+ A) I (2A)(n+ A)n!

n I'(A)I'(A+ 1) A(A —1)= .+A+ r(2A)
+ +' (56)

where we have used Stirling's formula for the last equal-
ity.

VII. PHYSICAL ENTROPIES:
NUMERICAL VALUES

For the ground state we have calculated the exact val-
ues of the entropies of the two D-dimensional systems un-
der consideration in both position and momentum spaces
as shown by Eqs. (22a) and (22b) for the oscillator case
and Eqs. (40a) and (40b) for the hydrogen atom. In
the oscillator case we observe from Eqs. (22a) and (22b)
that both position and momentum entropies (i) increase
linearly with the dimension D for a fixed strength A and
(ii) have a logarit&m&c dependence on A, though of op-
posite sign, for a fixed dimensionality. Then the sum
of entropies of the ground-state harmonic oscillator has
a linear dependence on D and it is independent of the
potential strength; it reaches the saturation value of the
BBM inequality.

Figure 1 shows the dimensionality dependence of the
position S~ and momentum S~ entropies of the hydrogen
atom in its ground state for the range D = 2 —60. We
observe that S~ and S~ present an opposite nonlinear
behavior with increasing dimension such that its sum has
a d&mensionality dependence of practically linear type.

For the excited states we have not calculated the exact
values of the two complementary physical entropies of
both D-dimensional systems because we cannot yet eval-
uate the necessary entropy integrals (9) of the involved
classical orthogonal polynomials. Because of this and
to study the variation of these physical entropies with
the dimensionality of the system and with the quantnm
nnmbers which characterize a state, we have computed
nnmerically the values of the entropies of the one-, two-,
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FIG. 1. Dimensionality dependence of the ground-state in-
formation entropies in the position space S~ and in the mo-
mentum space S~ as vrell as of the entropy sum S~+ S~ for
the hydrogen atom in the range D = 2 —60. All values are in
atomic units.

and three-dimensional harmonic oscillator and hydrogen
atom in various excited states. The results are shown in
Figs. 2—5 and 6 for the oscillator case and in Figs. 7—9
for the hydrogen atom.

Figure 2 gives the values of the entropies S~ and S~ of
the one-&hmensional harmonic oscillator (with strength
A = z~) given by Eqs. (32a) and (32b), as well as its s»m

S~+S~, in various excited states: those with the quant»m
number n = 0 —60. Both quantities S~ and S~ increase
rapidly for small values of n (say, n ( 15) and at a much
slower rate for larger n They mig. ht be asymptotically
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FIG. 4. Information entropies in position space S~ and
momentum space S~, as well as their sum S~ + S„, of the
two-dimensional harmonic oscillator with strength A = — in
the excited states (n = 4, ~m~) with ~m~ = 0 —55. All values
are in atomic units.
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two-dimensional harmonic oscillator with strength A =

2 in
the excited states (n, ~m~ = 3) with n = 0 —60. All values are
in atomic units.

convergent, but to know this we need to calculate the
asymptotic value of the entropy integral of the Hermite
polynomials (33). The entropy sum has a increasing be-
havior with n This t.rend was pointed out by Gadre et
al [9] in a .numerical examination of the five lowest ex-
cited states of this one-dimensional system. This should
be expected since exp(S~+ S~) is proportional to the un-
certainty product Ezbp, which is equal to n + 2 as it
follows inunediately from the virial theorem [14].

Figures 3 and 4 gives the values of the entropies S~

and S~ of the two-dimensional harmonic oscillator (with
strength A = z~) given by Eqs. (35a) and (35b), as well

as its sum S~ + S~, in the excited states characterized
by the quantum numbers (n, ~m~ = 3) with n = 0 —60
and (n = 4, ~m~) with ~m~ = 0 —55, respectively. In
both figures we observe a global dependence on n and ~m

~

similar to the dependence of the same quantities of the
one-dimensional system with respect to n One sho. uld
remember in order to understand both phenomena that
the energy of the physical states increases linearly with n
in both systems and also with ~m~ in the two-dimensional
case as given by Eqs. (16) and (14) for the one- and two-
dimensional harmonic oscillators, respectively.

Figure 5 gives the dependence on n of the entropies S~
and S~, as well as their sum, for the three-dimensional
harmonic oscillator with strength A =

2 in the excited
states (n, t = 3, ~m~ = 2) with n = 0 —50. Again here we
observe a behavior similar to that previously described,
possibly due to the fact that the energy of this system in-
creases also linearly with increasing n Most intere. sting
in this case is the behavior of the entropies with the mag-
netic quantum number m since the energy is degenerated
in m (i.e., it does not depend on it). This is analyzed in
Fig. 6, where the values of the position and momentum
entropies and its sum are shown for the excited states
(n = 4, 1, (m~) with / = 0 —10 and ~m~ = 0 —/. Deliber-
ately there are no units on the abscissa axis, where the
values of l and ~m~ are assumed; one should keep in mind
that for each 1 there are 1+1 values of ~m~ and then there
appears l+ 1 values of the corresponding entropies which
have an arc form. According to Eqs. (35a) and (35b)
with D = 3, this arc behavior corresponds to the depen-
dence on m of the entropy integral Is given by Eq. (37)
to be called entropy of spherical harmonics Y& (Qs) or
just spatial entropy. The numerical results shown in Fig.
6 seem to indicate that both entropies reach the highest
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FIG. 5. Information entropies in position space S~ and
momentum space S~, as well as their sum S~ + S~, of the
three-dimensional harmonic oscillator with strength A =

~ in
the excited states (n, I = 3, ~m~ = 2) with n = 0 —50. All
values are in atomic units.

FIG. 7. Information entropies in position space S~ and
momentum space S~, as well as their sum S~ + S~, of the
one-dimensional hydrogen atom in the excited states with
n = 1 —60. All values are in atomic units.

value at ~m~ = [(l + 1)/2] in the multiplet characterized
by the quantum nnmbers (n, l), where [a] is the largest
integer & a.

The information entropies S~ and S~, as well as their
snm, for the one-dimensional hydrogen atom are dis-

played in Fig. 7 for the excited states with n = 1 —60.
We observe that both entropies have a monotonic behav-
ior of increasing and decreasing type, respectively, with

this quantum nnmber, so that the entropy snm enhances
with n The s.ame behavior with the principal quantnm
number n is observed for the corresponding quantities in
various excited states of the two- and three-dimensional
hydrogen atoms as shown in Figs. 8 and 9, respectively.
This behavior was pointed out by Gadre et aL [9] in their
numerical analysis of the states (n, l = 0) with n = 1 —4
in the three-dimensional system. The present work ex-
tends this analysis not only because of the consideration
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FIG. 6. Information entropies in position space S~ and
momentum space S~, as well as their sum S~ + S~, of the
three-dimensional harmonic oscillator with strength A = —in
the excited states (n = 4, I, ~m~) with / = 0—10 and ~m~ = 0—I.
Vertical dotted lines are drawn to separate entropy values of
the states with the same quantum number l. All values are
in atomic units.

FIG. 8. Information entropies in position space S~ and
momentum space S~, as well as their sum S~ + S~, of the
two-dimensional hydrogen atom in the excited states charac-
terized by the quantum numbers (n, ~m~) with n = 1 —ll and
~m~ = 0 —(n —1). Vertical dotted lines are drawn to separate
entropy values of the states with the same quantum number
n. All values are in atomic units.
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the same n and same / for given n, respectively. All values
are in atomic units.

of the one- and two-dimensional atoms but also because
we analyzed the trend of the entropies with not only the
principal quantum number n but also with the orbital
and magnetic quantum number l and m, respectively,
in a much larger class of states (n, l, m) of the three-
dimensional hydrogen atom.

Indeed, Fig. 8 gives the position and momentum infor-
mation entropies of the two-dimensional hydrogen atom
in the excited states (n, ~m~) with n = 1 —11 and all
possible values of ~m~, i.e., ~m~ = 0 —(n —1). In addition
to the above mentioned behavior with n of S~ and S~,
these entropies are such that for a given n the position
entropy decreases with ~m~ and the momentum entropy
first enhances up to a maximum and then decreases with
increasing ~m~. This unimodal ~m~ dependence of S~,
which is specially apparent for states with a large princi-
pal quantum number, is even more striking in the entropy
sum S~+ S~.

Finally, we display in Fig. 9 the position and momen-
tum information entropies of the three-dimensional hy-
drogen atom in the excited states (n, l, ~m~) with n =
1 —6, l = 0 —(n —1), and ~m~ = 0 —l. Vertical dashed
and dotted lines have been drawn to separate out the en-

tropy values of the states with the same principal quan-
tum number n and, for a given n, the same orbital quan-
tum number I, respectively. In addition to the above
mentioned behavior with n of S~ and S~, we observe that
(i) the position entropy globally decreases with l for fixed
n and has a dependence on m, for fixed (n, l) values, of
arc form; (ii) the momentum entropy enhances with l for
fixed n and has also a unimodal or arc behavior with m
for fixed (n, l) values; and (iii) the values of the entropy

sum S~+ S~ show a light enhancement with excitation of
the system in the region of quantum numbers (n, l, ~lm~)

considered in the present work, always in agreement with
the BBM inequality.

VIII. SUMMARY AND OPEN PROBLEMS

The present work is the first step in the analytical
determination of the position and momentum informa-
tion entropies of the D-dimensional (D & 1) harmonic
oscillator and hydrogen atom for both ground and ex-
cited states in terms of the strength of the potential and
the quantum numbers which characterize the states un-
der consideration. Each of these entropies are known to
decrease without bound when the corresponding proba-
bility density becomes more concentrated, that is, when
(technically speaking) information increases. However,
according to the BBM inequality (4), the sum of both
entropies and then the total uncertainty in positions and
momenta cannot be decreased beyond a certain value.
We have shown that the evaluation of these entropies
can be reduced to the calculation of the entropy inte-
grals (9), which involve the classical orthogonal polyno-
mials of Gegenbauer, Hermite, and Laguerre. We have
called these integrals entropies of orthogonal polynomi-
als, denoted by E„,where n is the degree of the involved
polynonuals.

The complete evaluation of E„ for the classical Ja-
cobi polynomials is an open problem which requires a
deep knowledge of the algebraic aspects of the theory
of orthogonal polynomials and other analytical meth-
ods such as, e.g. , potential theory. Here we have il-
lustrated this statement with the calculation of the ex-
act values of the entropies of Chebyshev polynomials
T„(z) = limq~o z C„"(z); this has been possible because
the algebraic properties of these polynomials are partic-
ularly simple and well known. The problem becomes
much more complicated for the Gegenbauer polynomials
C„"(x), where we have calculated the entropies only in
an approximate way. Thus the present work urges for
the determination of the entropies E„ofgeneral orthog-
onal polynomials on both compact and noncompact sets
as well as its asymptotic (n large) limit. Let us point
out that only recently [24] an asymptotic formula for the
entropy of general orthogonal polynomials on finite inter-
vals has been obtained by means of the relative entropy
of the equilibrium measure and the weight function of
these polynomials. This has been possible because the
theory of orthogonal polynomials in compact intervals is
well established [20]. This is not true in the noncompact
case where much more efFort is required [25,26].

Finally we have numerically evaluated the information
entropies in position space S~ and in momentum space
S~, as well as their sum S~+ S~, of the harmonic oscilla-
tor and the hydrogen atom to know (i) the dimensionality
dependence of the ground-state entropies and (ii) the de-

pendence of these entropies with the excitation of the
speci6c one-, two-, and three-dimensional systems. Let
us highlight the following findings.
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The position space entropy enhances with the dimen-
sionality of the two quant»m-mechanical systems un-

der consideration. The momentum-space entropy has a
dimensionally increasing behavior in the oscillator case
while it has the opposite one in hydrogen. However, the
entropy sum has the same, approximately linear, increas-
ing dependence on the dimensionality in both ground-
state systems.

The position-space entropy globally enhances with the
excitation of the two systems at any dimensionality. It in-
creases monotonically with increasing values of the prin-
cipal quant»m number n (Figs. 2, 3, 5, and 7). A similar
behavior is observed with the second quantum number

[m[ for the two-dimensional oscillator (Fig. 4).
The momentum-space entropy behaves differently with

the excitation in the two systems considered in this work.
For the oscillator, it increases monotonically with the
principal quantum number n at any dimension and with
the quantum number [m] in the two-dimensional case.
For hydrogen, S~ decreases monotonically with increas-
ing values of the principal quantum number.

Both position and moment»m entropies present a
global dependence on (l, ]m]) of »»modal and/or arc
form in the three-dimensional oscillator and hydrogen
systems.

The total uncertainty or entropy sum S~+S~ enhances
with the principal quantum number at any dimension-
ality and also with [m[ in the two-dimensional oscillator
case, having a dependence on (l, [m[) of unimodal and/or
arc form in the two- and three-dimensional cases.

The theoretical interpretation of all these phenomena
requires the evaluation of the entropies of the Gegen-
bauer, Hermite, and Laguerre polynomials, as well as
their asymptotic limits [24—26].
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