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Quadratic Zeeman efFect in hydrogen Rydberg states:
Rigorous error estimates for energy eigenvalues,
energy eigenfunctions, and oscillator strengths
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A variationai method, based on some results due to T. Kato [Proc. Phys. Soc. Jpn. 4,
334 (1949)] and previously discussed, is here applied to the hydrogen atom in uniform magnetic
fields of a few tesla in order to calculate, with a rigorous error estimate, energy eigenvalues, energy
eigenfunctions, and oscillator strengths relative to Rydberg states up to just below the field-free
ionization threshold. Making use of a basis (parabolic Sturmian basis) with a size varying from
990 up to 5050, we obtain, over the energy range of —190 to —24 cm ', all of the eigenvalues and
a good part of the oscillator strengths with a remarkable accuracy. This, however, decreases with
increasing excitation energy and, thus, above ~ —24 cm, we obtain results of good accuracy only
for eigenvalues ranging up to —12 cm

PACS number(s): 32.60.+i, 32.80.Rm, 02.90.+p

I. INTRODUCTION

The rapid progress of high-resolution laser spectrosco-
py and the investigation of the so-called "quantum chaos"
have recently stimulated a great deal of work on diamag-
netic Rydberg states of the hydrogen atom in uniform
magnetic fields of a few tesla. At present, the results ob-
tained [1—3] cover the whole region of the highly excited
discrete spectr»~ and the adjacent continuum. These re-
sults represent the most complete description of a quan-
tum system ever made and are rightly considered [4] a
spectacular confirmation of quantuxn theory. %ith ref-
erence to this latter context, it seems to us, however,
rather surprising that the various authors have not given
any particular emphasis to the evaluation of rigorous er-
ror estimates for each of the calculated quantities and
that the agreement with the experimental results is nor-
mally shown by xnaking use only of graphics. Although
this procedure of comparing theoretical with experimen-
tal values can be partially understood, for the plenty of
the data taken into account, nevertheless, the absence of
any quotation of numerical values makes the quantitative
aspect of the comparison somewhat vague.

In the present paper, we carry out again, but with
a larger and more rigorous accuracy, part of calcula-
tions which in Ref. [2] were compared with the experi-
ments. Our results are obtained by pushing, up to Ryd-
berg states shortly below the field-free ionization thresh-
old (E = 0), the error method described in works [5,6].
This method is based essentially on some results due to
Kato [7] and it provides error estimates for energy eigen-
values, energy eigenfunctions, and oscillator strengths.
The error estimates for eigenvalues are determined by
evaluating Rayleigh-Ritz upper bounds and generalized
Temple's lower bounds. The error estimates for eigen-
functions are given by some formulas (Kato's formulas),
whereas the error estimates for oscillator strengths are
obtained through upper and lower bounds, which are de-

rived in the present paper as a consequence of Kato's
results.

II. ERROR-ESTIMATE METHOD

In this section, we confine ourselves to give only a brief
account of the mathematical setting of our method and
of the consequent error formulas both for eigenvalues and
eigenfunctions. A complete treatment of these arg»ments
as well as an exhaustive description of the performance
of the method can be found in papers [5,6]. We discuss,
instead, in detail the point concerning the error bounds
for oscillator strengths.

On introducing the "semiparabolic coordinates" u =
(r + z)~~2, v = (r —z)~~2, and y = tan ~(y/x), separat-
ing out the angular y motion, and subtracting the linear
Zeeman shift, the Schrodinger equation for the hydrogen
atom in a uniform magnetic field lying along the z axis
can be written in the two following equivalent forms: the
eigenvalue problem

B Ag(u, v) = Eg(u, v)

in the space Lz(R++, (u2+vz) du dv) and the generalized
eigenvalue problem

Ag(u, v) = EBQ(u, v)

in the space Lz(R++, du dv) [8], with, in both cases,

B = (u2+v2)
and
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E'N = (0"NIA&*N) (3)

Notice that the proton mass has been assumed infinite
and that the Rydberg unit of energy and the atomic
units m = I = e = 1 have been used. Also, m de-
notes the magnetic quantum number, ~ is a nonlinear
variational parameter, and p denotes the magnetic field
measured in units of (e/h) m2c 2.35 x 10s G. Both the
equations above play a precise role in our method. We
find Eq. (2) convenient for the evaluation of approximate
eigenfunctions and of upper bounds to the exact eigen-
values Ei, i = 0, 1, 2, . . . . This equation, in fact, permits
the application of the Rayleigh-Ritz (RR) method with a
basis (parabolic Sturmian basis) [6], which is simple, effi-

cient, orthonormal, and complete according to the topol-
ogy of L2(IR++, du dv). In order to derive lower bounds
to eigenvalues and error estimates for eigenfunctions, it
is instead necessary to refer to Eq. (1). Let us now intro-
duce the following notation. (l) and

ll ll
are the scalar

product and norm of the space I2(IR++, (u2+U2) du dv).
(l) and

l l

are the scalar product and norm of the
space I (R++, dude). The symbol

l l
will denote also

the norm of matrices in Sec. III. Q, N is the normal-
ized (lip;N ll

= 1) approximate eigenfunction correspond-
ing to the exact eigenvalue Ei, obtained by the RR
method applied to Eq. (2) in an N-dimensional subspace.
AN, BN, and BN are the N x N matrices corresponding
to the operators A, B, and B . BN N, is the X x X'
matrix corresponding to the operator B . EiN
(g»NlB Ag»N) is the expectation value of the energy
4;N = ll(B A —E;N)@;Nll is the root-mean-square en-

ergy deviation. W,.N ——EiN —A, N is Weinstein's lower

~»N — » ~~N/(K +1,N EiN) ~ TiN EiN ~»N

is Temple's lower bound. rl, N = (E; 1 N + W»+1 N)/2.
Notice (see Refs. [5,6]) that the quantities E,N and A,N
can be also written as

have the estimate (Weinstein's formula)

R;-N & Ei & E,N.

If, in addition, TV;+q N is a lower bound to Ei+3 and

~+1,N + EN + +'N E —x,N + +'N

we get the more accurate estimate (generalized Temple's
formula)

(10)

In order to estimate the eigenfunction error, let us con-
sider the quantity'»N = [1—l(g»N[@»)l ] ~, where @;de-
notes the exact eigenfunction corresponding to the eigen-

1 The quantity F;N is
indeed a convenient measure of the eigenfunction error
because

N'

(EiN '9»N) + +~N

[(~ »+1,N Ei 1,N)/2—]' (12)

If in addition either E,N & g,N or EiN & g,N + biN) we
have, respectively, the more accurate formulas

Q2
g2 (»N —~2 (13)

(EiN Ei—1,N)(% 1+, N EiN)

Estimates for this quantity are given by Kato's formulas
[7]. Making use again of the self-adjointness of B A.

and assuming that all the conditions necessary to deduce
(10) are satisfied, the first Kato formula in our notation
is written

and

&'N = ((A —E'NB)0'NlB '(A —E'NB)0'N)' '
(4)

EN &Ei, i =0, 1,2, . . . . (5)

Furthermore, we assume that our RR procedure is con-
vergent, i.e. ,

: E;, ; 0 as N :oc. (6)

Making use of (5) and (6) and the self-adjointness of the
operator B 1A in the space L2(R++, (u2+v2) du dv), we
find [6] that the half-closed interval (W,N, E;N] contains
the sole eigenvalue E;, if N is high enough to satisfy the
conditions

6;N ( (E;+1 —E;)/2, b„N( E; —E;.
(wiien i = 0 we can set E 1

———oo). In other words, we

and that, to within the ru~merical accuracy of our cal-
culations, E;N can be identified with the RR eigenvalue.
Taking into account this fact and the result that the RR
eigenvalues are upper bounds to the corresponding exact
eigenvalues E» (Poincare's theorem, see Ref. [6)), we have
here

Q2
F2 g iN

(W —E ) +b,

It should be observed that estimate (13) is actually a
slight improvement of the corresponding estimate given
by Kato. It is obtained simply by making use of condi-
tion (5) in the original Kato derivation. We also point
out that, when our method yields only Weinstein's lower
bounds, estimate (14) becomes impossible and we cannot
have estimates (12) and (13) better than the useless ones

We now turn our attention to the derivation of upper
and lower bounds on oscillator strengths. For the sake of
brevity, we consider in detail only the case which concerns
the present paper, i.e., the case of the oscillator strengths
f; relative to b,m = 0 Balmer transitions to m = 0 even-

parity Rydberg states. In the units previously mentioned
and recalling that the space L2(R++, (u2+v2) dude) is
real, we have [9]

&* = (E' —Ei)(&ilz&-)'

where z = 2(u2 —v2) and Qi (llyill = 1) is the ex-
act m = 0 odd-parity eigenfunction corresponding to the
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eigenvalue Ei, whereas g; (llg;II = 1) is the generic m = 0
exact Rydberg eigenfunction associated with the eigen-
value E; and having positive parity. In order to find out
upper and lower bounds to f;, we first need to determine
an estimate for the quantity

gi ——@iiv. Indeed, since our method is more efFective for
low-lying states, we have found that our @iN is prac-
tically the exact eigenfunction gi (error o'(2) of order
10 ). Assuming thus from now on Qi ——gi~ in (16),
we get immediately the estimate

I (&i lz y;) —(vt'im
I
z vP;iv ) I (16) l(@ilz4') —(Wilzl'~)l ( Ilzlill II&*

where +iiv +'~ (II+iivll = ll@*ivll = 1) ~e the ap-
proximate RR eigenfunctions to gi and vP, , respectively.
The finding of this estimate becomes easier if one sets

When p takes on laboratory values (as in
the present paper), Qi is usually identified (see, for ex-
ample, Ref. [1]) with the corresponding unperturbed hy-
drogenic eigenfunction 4i. In so doing, one has obvi-
ously @i ——giiv = 4i. This procedure is (as we shall
see in Sec. IV) an excellent approximation. However,
here, given our rigor purposes, we have preferred the
more rigorous way of computing giN and of setting then

making use only of the Schwarz inequality and the self-
adjointness of z. Denoting by t,

' the value of the quantity
Ilz@i II [10] and taking account of the inequality

X/2
1 —&2()

(0;.(.) = o,(i), o;(g), o;(3)) which easily follows from (11)—
(14) assuming (Q;Ig;~) ) 0, we get the new estimate

TABLE I. Column 1 (i): indices numbering the states m" = 0+ according to decreasing binding
energy; column 2 (6): root-mean-square energy deviations [Eq. (4)]; column 3 (cr): eigenfunc-
tion-error estimates n, (i), cr,(2), and o;(s& [formulas (12)—(14)] according to the index in parentheses;
column 4 ( EP): upper —(u) and lcwer (l) bounds on the eigenvalues E, with sign changed and in
units of 10 Ry; column 5 (fP): upper (u) and lower (l) bounds (in units of 10 ) on the oscillator
strengths relative to the Am = 0 transitions Ei ~ E;. Notice that the lower-bound digits are
reported starting from where upper- and lower-bound digits begin to be diferent. Thus a single
value in column —E&" means that upper and lower bounds coincide. All the energy lower bounds
are Temple's [formula (10)], the dimension of the subspace is N = 990, p = 2.55 x 10, and the
energy interval (in cm ) 6lled by the results is I = —189.99 to —176.94.

144

145

146

147

148

149

150

151

152

153

154

4 (Ry)
1.2x10

5.9x 10

6.6x10

5.3x10-"

1.1x 10

9.8x10-"

9.6x 10

1.4x 10

1.0x 10

1.7x 10

1.2x 10

2.6x 10

1.4 x 10 (3)

8.0 x 10 (3)

1.1x10 ' (3)

8.7x10 i (2)

1.6 x 10 (2)

1.1 x 10 (2)

9.2 x 10 (2)

1.1 x 10 (2)

7.5 x 10 (2)

1.1 x 10 (2)

7.1 x 10 (2)

1.5 x 10 (3)

1.731 336 789 335 240 221 306 24

1.722 719902 236 339 176 51841

1.715 376 240 561 938 255 546 64

1.709 330 777 244 665 495 51740

1.703 168814 819053 515 567 78

1.695 337 785 375 935 474 162 34

1.685 725 763 428 141 706 856 31

1.674 413 523 110981 916406 85

1.661 429 436 070 235 009 018 15

1.646 778 374 139312 119779 03

1.630 454 041 816919955 91356

1.612 443 761 400 359 460 218 21

f
6.443 519062 783

18520

4.724 239 485 6417
1783

3.325 254 963 3795
28504

2.470 371 780 3461
799821

2.533 772 739 9931
3295

2.533 646 673 6351
1554

2.152 235 841 5901
2305

1.480 914 550 2986
499344

0.679 398 237 57641
41130

0.061 221 173455467
381646

0.388 875 861 08939
097063

5.674 623 074 0667
39731
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The required upper and lower bounds for f; are now ob-
tained simply by making use of (10). We thus find

i& l(&~Ized, ~)l ( C~.

where III. RESULTS

In Tables I—IV we report samples results for m = 0
even-parity states, relative to four situations character-

TABLE II. Columns 1, 3, and 5 and the p value are the same as in Table I; column 4 is the same
as in Table I, but in units of 10 Ry; column 2: b." values [estimate (19)]. All the energy lower
bounds are Temple's. N = 1540, and I = —104.90 to —95.27 cm

241

242

243

244

245

246

247

248

249

250

255

25?

258

259

b, (Ry)
1.3 x 10

1.4x 10

1.0x 10

8.4x 10

1.4 x 10

1.0 x 10

1.4x 10

1.4 x 10

1.4x 10

1.2 x10

1.5x 10

1.4 x10

1.6x10

1.3x 10

1.4x10

1.3x 10

1.4x 10

1.3x10

1.5 x 10

3.9x 10 (3)

3.4 x 10 (2)

2.9x10 ' (3)

5.6 x 10 (3)

3.2 x 10 (2)

4.0 x 10 (3)

9.9x 10 (3)

3.6 x 10 '
(2)

1.8 x 10 (3)

5.1x 10 (3)

1.3x 10 (2)

7.2 x 10 (3)

3.9x10 2 (2)

3.3x 10 (3)

9.8 x 10 (3)

4.3x 10 (2)

1.7x 10 (2)

1.1x 10 (3)

6.4 x 10 (2)

@l

9.559 222 020 050 969 738 024 97

9.525 206 844 746 397 390 986 18

9.473 794 895 371 959 936 11445

9.439 311332 600 689 994 567 47

9.424 359 256 813203 175 690 04

9.301 377 084 728 188 047 530 81

9.275 687 835 735 271 209 166 82

9.261 101 106 278 498 796 296 64

9.148 492 706 046 564 840 936 19

9.073 574 836 813626 875 958 61

9.071 169794 035 939 426 524 47

9.018 261 554 800 413 93393741

8.999 227 922 958 289 412 013 18

8.907 153356 962 977 316878 29

8.868 823 247 469 261 413 160 95

8.854 606 858 944 648 741 445 84

8.785 993402 045 736 984 528 92

8.694 743 216 386 771 826 574 37

8.682 319213 806 630 548 174 34

ftl

0.734 243 905 360 07
89631188

0.202 241 338 600 16
447548

2.085 385 996 805 1
856392

3.524 327 677 499 8
46857

0.743 053 669 167 82
169654

1.525 505 682 550 4
691599

0.028 965 023 448 211
18922439

0.648 354 092 933 37
8531894

1.093 130 131820 0
267028

2.668 158 500 346 9
2781122

0.488 079 718 72? 6?
69462839

0.765 856 317993 24
0108912

0.039 252 110432 466
08360794

0.596 790 327 671 06
083145

1.954 244 986 542 0
499G23

0.301 029 736 912 54
065801

0.616 082 434 79991
114397

0.528 541 892 092 58
7135851

1.397 387 610 899 9
5906?59
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ized by a different behavior [21 of the corresponding clas-
sical system: regular motion (Table I), the appearance
of the first irregular orbits (Table II), the presence of
a very high fraction of irregular orbits (Table III), and

the absence of regular orbits (Table IV). Our calculations
in Tables I—III reproduce, as we said, results which can
be found in paper [2]. As one can see, the efficiency of
our method decreases as the percentage of the irregular

TABLE III. Columns 1 and 3 as in Table I; columns 2 and 4 as in Table II; column 5 same as in
Table I, but in units of 10 . All the energy lower bounds are Temple's. N = 5050, p = 2.535 x 10
I = —26.96 to —24.05 cm

515

516

517

518

519

520

521

524

525

526

528

529

530

531

534

535

A (Ry)
2.6x 10

2.3x10

1.5x10

2.4x 10

1.2 x 10

8.0x10

3.] x]Q

4.3x 10

6.4x 10

3.3x 10

7.6x 10

7.4x 10

2.5 x 10

2.8x10 '

1.4x 1Q

9.8 x 10

3.3x 10

x10

x10

3.5x 10

5.7x10

2.0 x 10 (2)

9.2 x 10 (3)

1.5 x 10 (2)

1.8 x 10 (3)

2.0 x 10 (3)

1.2 x 10 (2)

3.3x 10 (2)

3.1x 10 (2)

1.4 x 10 (3)

3.1x 10 (2)

7.7x 10 (3)

5.9x 10 (2)

1.5 x 10 (3)

5.4x 10 (2)

8.1x 10 (2)

5.1x 10 (2)

5.3x 10 (3)

2.4x10 (2)

4.2 x 10 (3)

6.5 x 10 (2)

6.7x 10 (2)

2.470 609 889 480 5

2.448 513428 050 5

2.445 963 970 014 0

2.408 356 658 285 4

2.395 453 269 804 3

2.389 213071 844 1
5

2.381 840 844 896 2

2.369 282 182 665 8

2.354 076 587 899 7

2.349 564 797 472 3

2.325 189646 244 4

2.315333968 031 9

2.299 260 940 156 2

6

2.297 597 566 033 5

2.282 376 350 441 8
9

2.263 970 944 160 5

2.243 501 881 617 1
3

2.237 275 022 663 8
9

2.222 600 294 1700

2.217 711600 494 1
3

2.211 776 218 550 4
6

2.197641 369
5151327

1.896 124 321
85470384

0.451 084 4711
02068981

2.507 433 003
4982635

5.442 150 117
38195351

2.176467 810
61726290

1.843 552 121
39802881

0.116800 1253
58912785

0.666 636 4869
568584817

12.028 10357
1885271

1.711773 575
03203770

0.608 208 9130
43365664

4.965 075 526
688746522

2.856 032 696
48263053

0.038 827 39626
748632647

0.035 31467500
451096480

0.094 481 91551
8127475424

0.939 736 8140
197250375

3.817714 743
748380018

0.619265 2825
5764988748

4.938 203 943
811872136
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motion grows or, equivalently, as the diamagnetic inter-
action begins to dominate over the Coulomb one. The
explanation of this fact was given in Ref. [6]; here we

note only that increasing gradually the basis size, one
can make up for this behavior of our method. Thus the
conjecture in [6] that our method might be applied be-
yond the regime where the Coulomb interaction is pre-
dominant (weak-field regime) is found here to be correct.
Another conjecture in [6] is that the parabolic Sturmian
basis is probably the most convenient for dealing with
Rydberg states in 6elds of a few tesla. Comparing the
basis sizes in the present paper with those in Refs. [1,3]
and taking the accuracy of our results into account, one
Ends that this latter conjecture is also correct. Regarding
the results in Tables I—III (range of the energy —190 cm
to —24 cm i), our method, although with decreasing ac-
curacy, works at its best. That is to say, the RR method
appears to be convergent [11],conditions (7) and (9) are
always satis6ed, either E;~ ( g, iv or E;N & i7, iv+b, N [see
formulas (13) and (14)], and finally ](@i]zg;w)] & (~;
[see Eq. (17)]. As a consequence, we can always give
in this case the most accurate error estimates (Temple's
lower bounds to energy, either estimate o;t 2~ or o,~~~ for

the eigenfunction error, and a lower bound f & 0 for the

oscillator-strength value). It should be observed that,
strictly speaking, the fulfillment of conditions (7) needs
the knowledge of the exact eigenvalues. However, by
the convergence of the RR method, here it is enough to
replace in (7) E; i, E;,E,+i with E, i ~, E;N, E;+i ~.
Table IV shows that, even working with a large basis
(N = 5050), our method presents some di%culty above

—24 crn . The upper bounds on the eigenvalues in
Table IV can be still considered of good reliability, but.
in some cases, the lower bounds are only the less accu-
rate Weinstein bounds. These are rigorous (in the sense
that the interval (W,~, E;~] contains the only eigenvalue

E;) if conditions (7) are satisfied; otherwise, as shown in
Ref. [6], it may happen that W;N is a lower bound to Ei,
(k ( i) as well. In any case, as we said in Sec. II, in the
presence of Weinstein's lower bounds, no eigenfunction-
error estimates (and consequently no oscillator strength
error estimates) can be given. According to the calcula-
tions of the present paper, however, it seems reasonable
to expect that our method might also be successful over
the energy range of Table IV or even at higher energies,
if one works with suSciently large bases on a supercorn-
puter. With reference to this point, it should be observed
that, in order to save memory and computing time of

TABLE IV. Columns 1 and 3 are the same as in Table I; columns 2 and 4 are the same as in

Table II; blank space in column 3 means that either o,~i& or o,~z&
= 1 or that formula (14) cannot

be applied. All the energy lower bounds are Temple's, except those marked by (W) [Weinstein's

lower bounds, formula (8)]. Column 5 (f) reports (in units of 10 ) only the approximate values

of the oscillator strengths, i.e. , (E,N —EiN)(pipe]zg, ~), because in this case the error interval

[f,', f,"] turns out to be too large. N and p are the same as in Table III, I = —16.93 to —12.51
cm

600

605

A (Ry)
8.5x10

1.1 x 10

1.6 x 10 (2)

1.1 x 10 (2)

1.543 054 084
134524

1.500 172 786
270879

4.3119?0 288

0.421 075 2139

610

615

1.4 x 10

1.8 x 10

2.4x10 (2)

3.3 x 10 (3)

1.451 781 272
992061

1.404 444 666
5072361

9.248 899 340

49.249 849 13

620 1.9x 10 2.6 x 10 (2) 1.370 049 400
458945

1.6?7 731 946

625

630

640

650

2.6 x 10

3.0 x 10

3.3 x 10

4.4 x 10

8.6 x 10

4.6x 10

6.8x10 i (1)

1.327 870 367
30467884 (W)

1.291 976 700
4976781 (W)

1 ~ 252 587 571
5606070

1.213 791 349
8183136 (W)

1.176071 569
84710289 (W)

1.139834 112
85693231 (W)

4.669 441 570

0.336 642 4699

4.452 179956

8.099 233 736

3.248 659 940

0.100415 9659
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the computer used by us (Dec Alpha 3000/500), the cal-
culation of the quantity E;N [see Eq. (4)], in the cases
N = 1540 and N = 5050, has been performed using only
a part of the matrix corresponding to the operator B
and then evaluating the error coming &om this trunca-
tion. In order to illustrate this point, we note first that
the quantity A,N can be written [6] as

&;N = (X*-MIB 'X'M)' '

where X;M ——(A —E;NB)g;N is an M-component vector
(M & N). Introducing now the orthogonal projection
operators [according to the topology of L2(IR++, dudv)]
PN and PM N, where P~ projects on the subspace
spanned by the basis vectors Pq, P2, . . . , PN and PM
projects on the subspace spanned by the basis vectors
4'N+1 4'N+21 4'Ml one can write

+jN (PN XiM I
BN' PN XiM )

+2(PNXiMIBN M NPM NXiM—)

+ (PM NX Ml B—M N'PM NX M) ~— '

Since PNXiM = (AN —E;NBN)f;N [RR truncation of
Eq. (2)] is of order 10, the main contribution to the
value of 6;N comes from the last term in Eq. (18). De-

noting by A2~ its value, we have

I&fN —&'N I

=
I (PNX M IBN PNX'M)

+2(PNXiMIBN M NPM NXiM)l

& IPNX'MI' IBN I

+2IPNX Ml IPM NXi'MI IB—N M

where a is obtained by computing the vector norms

IPNX;Ml and IPM NX;Ml and estimating the matrix
norms IBN I

and IBN M Nl Thus we c. an write

a'.~ —n & a;N & 6'.~ + o. = 6".

The quantity b,"—b, t varies from about 10 ~ (Table II)
to about 10 s (Table IV). The results in Tables II—IV

have been obtained taking for 4;~ the most unfavorable
estimate, i.e., 4;N ——4".

IV. CONCLUSION

In conclusion, with the present paper we have extended
our previous work [5,6], improving the accuracy of re-
sults, showing the efBciency of the method up to highly
excited Rydberg states, and determining upper and lower
bounds to oscillator strengths. Our results (at least in
the energy range of —190 cm to —24 cm ~) are also
much more accurate than those in the literature. Indeed,
in this energy range our energy values have an accuracy
varying &om 13 to 24 significant digits and the oscillator
strengths (except some cases in Table III) have an accu-
racy of two to ten significant digits. On the contrary, in
Refs. [1—3] one has an accuracy of six to seven significant
digits for the energy and of two to three significant digits
for the oscillator strengths. It should be observed that
in the case of Tables I and II, we have actually obtained
energy eigenvalues with an accuracy even higher than
that mentioned above, i.e., up to 29 significant digits. Of
course, such levels of accuracy are only of academic in-
terest. However, for the Rydberg states considered here,
an accuracy of at least 10—12 significant digits for the
nonrelativistic energy is expected to be [6] a necessary
requirement to evaluate secondary contributions to the
binding energy, such as those due to the relativistic ef-
fects, to the /ED corrections, to the nuclear structure,
etc. Given the high accuracy of the oscillator-strength
values in Tables I and II, we have also been able to esti-
mate, in this case, the effect of approximating the state
Qq in (15) with the corresponding unperturbed hydro-
genic eigenfunction. We have thus found that this ap-
proximation gives rise to an error of some parts in 10 to
some parts in 10 . Finally, we want to stress that the ac-
curacy of our results is on a rigorous footing, in the sense
that it has been obtained by means of an upper-lower
bound technique. On the contrary, in the literature, the
accuracy of results is usually estimated numerically, i.e.,
by varying the size of the basis employed and the corre-
sponding nonlinear variational parameter.

[1] C. W. Clark and K. T. Taylor, J.Phys. B 15, 1175 (1982).
[2] A. Holle, G. Wiebusch, J. Main, K. H. Welge, G. Zeller,

G. Wunner, T. Ertl, and W. Ruder, Z. Phys. D 5, 279
(1987).

[3] D. Delande, A. Bommier, and J. C. Gay, Phys. Rev. Lett.
88, 141 (1991);Chung-Ho Iu, G. R. Welch, M. M. Kash,
D. Kleppner, D. Delande, and J. C. Gay, ibid. 66, 145
(1991);H. Hasegawa, M. Robnik, and G. Wunner, Prog.
Theor Phys. Sup. pl. 98, 198 (1989); G. Wunner and H.
Ruder, Phys. Scr. 38, 231 (1987).

[4] J. Maddox, Nature 349, 277 (1991).
[5] G. Fonte, P. Falsaperla, G. Schiflrer, and D. Stanzial,

Phys. Rev. A 41, 5807 (1990).
[6] P. Falsaperla and G. Fonte, Phys. Rev. A 47, 4143 (1993).
[7] T. Kato, Proc. Phys. Soc. Jpn. 4, 334 (1949).
[8] The symbols L (IR++, (u +v ) dudv) and L (IR++, dudv)

denote the Hilbert spaces of all equivalent classes of real-
valued functions @(u,v) square integrable on IR+ x R+ =
IR++, respectively, with the measures (u +v ) dudv and
dt's dv.

[9] H. A. Bethe and E. E. Salpeter, Quantum Mechanics
of One and Ttuo El-ectron Atom-s (Plenum, New York,
1972).

[10] In correspondence with the two values of p employed in
the present paper (p = 2.55 x 10 and p = 2.535 x 10 )
we have found, respectively, ( = 4.2426406576923 and

( = 4.242 640 658 037 5.
[11] The convergence of the RR method in the present paper

has been verified numerically. The question of the ana-
lytical convergence of our RR method has been discussed
in Ref. [6].


