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Calculation of the Bethe logarithm for the Rydberg states of helium
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A very efficient technique for the finite-basis-set calculation of logarithmic sums is introduced.
The basis sets contain sequences of nonlinear parameters determined by the zeros of Laguerre poly-
nomials. It is shown that one can easily obtain convergence to 12 digits in fast calculations involving
small basis sets. The method is then applied to calculations of the asymptotic expansion of the Bethe
logarithm for the Rydberg states of helium. As pertubation calculations of the sums involved di-
verge, the present method is used to obtain accurate results for atoms in dipole and quadrupole
fields from which the adiabatic contributions are extracted. A discussion of gauges in the multipole
case and the suppression of roundoK errors by working in a mixed gauge is presented. A strategy
for handling the nonadiabatic contributions to sums is presented and used to obtain preliminary
bounds on these contributions.

PACS number(s): 31.30.Jv, 31.20.Di, 31.50.+w

I. THE BETHE LOGARITHM

In the past few years, experimental measurements [1]
and theoretical predictions [2] of transition frequencies
among the Rydberg states of helium have advanced sub-
stantially in accuracy to the point that they are sensitive
to both /ED contributions and Casimir-Polder retarda-
tion corrections. The largest uncertainty in the theoret-
ical predictions was due to the uncertainty in the self-
energy contribution to the energy, specifically the Bethe-
logarithm contribution to the Lamb shift. Results for the
variational calculation of the electric dipole polarizabil-
ity contribution to the Bethe logarithm were published
recently [3], eliminating the gap between the uncertain-
tainties in the theoretical predictions and experimental
results and pointing to discrepancies between both that
cannot be accounted for by residual Casimir-Polder retar-
dation corrections [4]. It is still necessary to add to that
calculation the electric quadrupole and (of the same or-
der) the nonadiabatic dipole polarizability contributions
to the Bethe logarithm in order to have an estimate of the
uncertainty in the theoretical results. In this paper we
present the details of the difficult calculations that yield
the dipole corrections to the Bethe logarithm, as well as
results for the quadrupole contribution and an estimate
of the nonadiabatic dipole correction with a discussion of
the difficulties one encounters in this last case.

Following Kabir and Salpeter [5], the lowest-order
Lamb shift for a two-electron ion in an nI.S state can
be written as

b,EI„,= n'Z D —+ In—[(crZ) ']3' 30

+ ln[Z A~/k(nLS, Z)]

+2.296vra 2 + —CM

where

D = , (b(r, ) + b(r2))

is independent of Z in the hydrogenic limit and

(p/M)CM involves finite-mass terms. There is in (1) a
term that is difficult to calculate: the two-electron Bethe
logarithm (BL from now on) defined for a state with en-

ergy Eo by

ln[Z /k(nLS, Z)] = Ai/B, ,

where

Ax"' = ) 1(@.lpi+ p21@-)I'(E —E.)"»IE. —E.I,

(4)

Ba' = ):I(+.Ipi+ p2I~-) I'(E- —E.)"

The superscript (p) denotes that the expressions for the
sums are written in the velocity gauge (velocity form of
the dipole operator). The denominator Bi can be easily
calculated using commutator relations of the Hamilto-
nian with the operator pi + p2..

Bg ——Z D) (6)

with D defined in (2). There is, however, no correspond-
ing analog for the numerator in (3). Although the loga-
rithmic sum Az is very similar to Bz, in which each term
would be multiplied by a (slowly varying) logarithm of
I
E„EoI, it is actua—lly very hard to perform. To explain

this difficulty, consider the nS states in two-electron sys-
tems (or analogously, the ns states in one-electron sys-
tems): the sum BI, is finite for k & 1 but diverges for
k ) 1. The sum Ai is somewhere "in between" these
two cases and is therefore described as an "almost diver-
gent" sum. This sum involves large cancellations and,
as will be seen later in the simpler one-electron case, re-
quires an accurate representation of all @„close to the
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origin. Calculations of the BL for two-electron ions have
been performed based on treating the electron-electron
interaction as a perturbation [6] or in a simple screened
hydrogenic approximation [7], and extremely accurate
(correlated) calculations of the BL have been recently
performed for the low lying states of helium [8]. In this
paper, the BI of the Rydberg states of helium will be
calculated in the &amework of the asymptotic expan-
sion [9—11] in terms of multipole polarizabilities of the
inner electron induced by the outer one. This expansion,
which becomes exact in the high-L limit, has been very
successful in obtaining accurate energy levels and matrix
elements for the Rydberg states of helium.

The asymptotic expansion is best exemplified by its
expression of the energy levels [9]. The Hamiltonian for
the Rydberg state is written as

0 = Hp+ Vg2 ——kg+ 62+ U~2

with

(8)

where P„& is the BL of an hydrogen atom in the state
nL and Ap iAq is the correction to the BI of the core
electron Pi, due to the polarization induced by the outer
(Rydberg) electron. One could then try to apply stan-
dard perturbation techniques to Ai in order to obtain the
correction Ap ~Aq. In the following sections, an outline
describing the way in which to formulate such a calcula;
tion will be presented as well as the means to avoid the
divergences that would occur in the standard formulation
of perturbation theory.

II. ASYMPTOTIC EXPANSION
OF THE BETHE LOGARITHM

As mentioned in the preceding section, one could at-
tempt a simple second-order perturbation expansion of
the sum Ai for the inner-shell electron, with the pertur-
bation given by the interaction with the outer (Rydberg)
electron, formulated in terms of a multipole (asymptotic)
expansion. In order to proceed this way, consider the
dipole-adiabatic correction to the energy in Eq. (9),
namely,

where hq describes the inner electron, in the presence of
a totally unscreened nucleus, 62 describes the outer elec-
tron in the presence of a nucleus that is totally screened
by the inner electron, and U&2 describes the small cor-
rection to this last screened potential. Treating Vq2 as a
perturbation leads to a multipole asymptotic expansion,
which in the case of the energy, for example, yields a
correction of the form [9]

Replacing in (11) the analytic expansion of the dipole-
polarizability, we obtain

which can be rewritten as

. (ls[Fz(i) (i)Fz)ls)
1S 2

(9)

The last equation tells us that the perturbation to the en-

ergy can be interpreted as that produced by an external
static, constant electric dipole 6eld

where the o.~ and the o.~ „are the adiabatic and non-
adiabatic l-pole polarizabilities, respectively, of the core
electron. A similar expansion can be obtained for the
expectation value of the b function D in Eq. (2) and
therefore for the sum Bt in Eq. (6), with the coeffi-
cients of the asymptotic expansion (i.e., the coefficients
of (r2 ~)„)o1btained analytically as a result of a pertur-
bation expansion of D [12]. A similar expansion does not
exist however for the crucial quantity Ai in (2) given that
there is no closed form expression for that sum; therefore
a direct calculation of the perturbation to the sum Aq
must be performed. Aq can be written in terms of the
leading hydrogenic contributions in (7) plus the (small)
contribution of the polarization of the core electron due
to the potential V,2 in (8) as [3]

(Z —1)4

pi. + — p„l, + Ap iAi,

(14)

which is consistent with the concept of dipole polarizabil-
ity and Eq. (11) written as

bE~ ————og F

F, =F, "Cio(r) =Fi 4m

2t+i "" (16)

with

with F defined in (14). The problem of finding the
asymptotic dipole contribution to matrix elements or
sums is then reduced to finding the perturbation of the
field (14) to the uncorrelated Hamiltonian hi + h2 [Eq.
(8)]. This applies in general to any static /-pole operator,
so that in the adiabatic case we can write
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I"l' =
2l+2

II,e, = E,e, = (., +.; ) Ii) li'&,
h, , i) =e,-li&,
h, i') = e; Ii'),

Then the calculation of sum rules such as the BL for
the Rydberg states of helium can be formulated as an
asymptotic expansion of the one-electron sum of the inner
shell in the presence of l-pole Gelds obtained in terms of
expectation values of inverse powers of the position of the
Rydberg electron. This picture is based on the expansion
of the perturbing potential

1 1
Vi2 —— ————) u'q(ri) v'q(rs),

Pi2 T2

where

where E; = ei + ei In what follows we call

+ij Ei +j ij + a'j' 7

fi~ = Ci —
C~

&;~ =&i —eg ~

{24)

biE; = &4;lv»14;&,

E - &e*lv„le-&&@-Iv le*)
2 )

an

(25)

(26)

The jth-order perturbations to the energy and the wave

function, respectively, b~E„and b~4„, are given for j =
1, 2 by

l,q

v'q(rs) = Ci*q(rg)
r2" (2o)

with the perturbation to the energies and wave functions
expressed as a sum of perturbations due to each term in
(18). In this expansion, one starts with the uncorrelated
(screened) one-electron states for which we introduce now
the following notation:

) -l~ )(+-I&»l@'&
ann

(e Iv„le„&&@„lv„le,
@m

am an

&0 „lv»14;&(4;lv» 14;)
2

(27)

(28)

These expressions simplify substantially in the adia-
batic approximation, in which one assumes that e; ~

e;~ for j g i. With this assumption, one can use in the
expressions for b'~E; and b~@; the expansion

where a primed index will always refer to the Rydberg
electron; in particular &nm

2&n'm' + ~ ~ ~

2 3E
(29)

+o = 10)lo') =0,.( ) 0-.„., ( ) (22)

describes the state for which the BL is considered. The
one-electron functions are exact hydrogenic states:

The leading term yields the adiabatic correction while the
others yield nonadiabatic corrections of different orders.
The first adiabatic corrections of relevance to this paper
are then

(t) ( a) . &ilia Iii&&'iilqi li&
& I

i i 'I
'an

@(-s) - l~&&~lu" li& „iq,,i,1~1~
&in

l,q

@(-~) - l~&&~lu"l~&&~l~" li) „zq„i, , - li&&il~"l~&&~lu''li& l~'&(~'lv"v''li'&
&im &in &in &i' n'

t4 T7E nra~ll', qq'

ll', qq'

8 AQ Z XtL Z

2
an

One could apply directly these perturbation techniques
in the calculation of Aq or Bq., however, perturbation the-
ory yields diverging results given that the {excited) inter-
mediate states in the surninations in (4) and (5) are very
strongly perturbed even for weak external fields. No-

tice that unlike the case F = 0, no longer is there an
infinite number of bound states, but a Gnite number of
resonances describing an electron able to tunnel through
the Gnite potential barrier that occurs when the electron
is in the presence of both a Coulomb Geld and a constant
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/-pole Geld.
Our strategy will then be to calculate dzrectly A& and

Bi for a 18 electron in a Coulomb potential and a static,
homogeneous external Geld F~ for di8'erent values of its
magnitude Fj. Then, upon interpolation using a least-
squares Gt we will obtain for A&, for example,

The wave function can now be written as

~((, ~ v ) = 0+(()o (~-)"""

with the g~ satisfying

h+ (Z, , F; x)Q+ (x) = EQ+ (x),

4, =) a,"F,*,
i=o

where A& is the Geld &ee result, A&
~ ——0, and A& is the

adiabatic coefBcient of Ft being sought. This is a dificult
task because it involves a very accurate calculation of the
BL in order to extract a small perturbation out of the full
value of the BL which consists in its first 5—6 digits of the
purely hydrogenic value only.

III. THE HYDROGENIC BETHE LOGARITHM
IN A DIPOLE FIELD

In order to find the static dipole perturbation directly
from the BL values we need a variational procedure that
will calculate the BL to about 9—10 digits accuracy. This
will allow us to extract the sought second-order perturba-
tion effects to about 3 digits accuracy. An efficient one-
electron finite-basis-set variational BL calculation avail-
able makes use of a multiexponential basis set in which
the exponential parameters are gradually optimized by
an iterative process [6]. The accuracy obtained using this
method for the ground state is only 6—7 digits in a direct
calculation and 7—8 digits upon extrapolation of the re-
sults for different dimensions of the basis set. The direct
use of a variational basis set to represent both the initial
state and the intermediate states in the sums AA, and By
is appealing because it can be implemented in a straight-
forward way to problems involving external Gelds. In
this work, we will introduce an alternative method that
improves the results obtained in [6] by providing faster
computation times as well as (the necessary) higher ac-
curacies with smaller basis sets.

We start, as customary for an external dipole field [13],
by formulating the problem in the parabolic coordinates
(, g, and y. In terms of spherical coordinates, p denotes
the same angle in the x-y plane and

where

2d / dl 2Z, m'
h~(Z, , F; x) = ———

I

x—
I

— ' + + Fx —.
xdx ( dx) x 2x2 2

~
var ivnrPg)rn)/2 —

A$/2gl~l(P() )m /2e —Aq/2gl
2

(39)

However, although this basis set will yield excellent re-
sults for the calculation of energy eigenvalues, the results
obtained when it is applied to the calculation of sum rules
are very bad. Even for the very simple sum rule (5) in
the absence of an external field in its one-electron form

bi = ):l(Alpl&-) I'(E- —Eo) (40)

which can be checked against its exact value

bi = 2~Z(golb(r)IQo), (41)

this basis set yields extremely poor convergence: only 2-
3 digits even with very large basis sets. The reason for
this can be seen if we rewrite (40) in the following way:

bi = (golp ' ) (E Eo)I& )(& I pleo) (42)

With this choice of variables, one can then construct, a
variational basis set consisting of basis vectors that are
separable products of functions of (, g, and y, analogous
to the exact hydrogenic functions but containing also a
set of nonlinear variational parameters. Such a basis set
will consist of functions of the form

(=r+z, g=r— (34)

The advantage of parabolic coordinates is that the hy-
drogenic wave functions separate into the product of two
independent functions, one of ( and one of g, when a hy-
drogenic ion is in the presence of a constant dipole field
in the z direction. If the dipole Geld has magnitude F,
the Hamiltonian can be written as

H(Z, F)C = E4,

((+ g)H(Z, F) = (h (Zi, F;() + qh+(Z2, F;g),

Z=Z, +Z, . (35)

In this expression, the sum g„c„lg„)(g„lcan be seen
as a probe into V'go. But if go is in an s state, then
%go ro at the origin. In this case, however, the inter-
mediate states are p states, i.e. , Q ri at the origin. It
is then very hard for a finite basis set of the form (39) to
reproduce V'Qo ro and the convergence of the sum rule
becomes very poor. This is a fact recognized a long time
ago by Dalgarno and Epstein [14], who proved that in a
sum rule of the type (40), if the intermediate variational
basis set contains V'go, then the sum rule result will be
exact. This has been used already in previous calcula-
tions of' the BL in order to improve convergence by in-

cluding the radial function for go in the set of variational
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intermediate states [6], forcing the variational intermedi-
ate basis functions to behave (unphysically) as r at the
origin. We can attempt the same strategy here; however,
if the separable basis set (39) is forced to behave as ro

at the origin, the integrations involved in the calculation
of matrix elements diverge. Both the divergence in the
integrations and the convergence in the variational calcu-
lation of the sum rules can be overcome if a nonseparable
basis set is used, namely, the basis set

e&~l, &P ($~)I~a!/2 (( )&a (( + )jg e
—Ag(g+q)

(43)

This set of functions separates into states of even parity
and odd parity when the powers ii, of ( —q are even or
odd, respectively, corresponding to states with even or
odd values off t in spherical coordinates. In the case of a
hydrogenic ion in an external dipole field, the following

sets of vectors were used:

if m = 0

if [m[) 0

h jA: —0, 1) 2)

jI, ———1,0, 1, 2, . . .
then jI, = -1,0, 1, 2, . . .

if iI, = 0, 2, 4, . . .
if iI, ——1, 3, 5, . . .

and iI, ——0, 1,2, . . . .
(44)

With this basis set, the sum (40) is calculated to ma-
chine accuracy Alth. ough the new basis set is composed
by functions that are not separable, all the integrations
involved in the calculations of matrix elements are eas-
ily performed. These can be expressed in terms of the
general integral

I,",(a) = ((+ rI)dfdr) e ~+"
0 0

x (&&)"(&
—~)'(&+ ~)'

which, using the result

(45)

(-1)" " (2k) "( —1)"
n&~ i+2k —2n+1 (i+2k+1)!! '

can be written in closed form as

(46)

(i+ j+2k+ 2)! (2k)!!(i+1)!!
4"( +1)('+2k+ 1

Notice that once the separability of the basis functions
is lost, we lost also the main attraction for working in
parabolic coordinates, as the synUnetry of the problem is
built into those functions of f and r). However, the basis
set (43) and (44) is totally equivalent to a basis set in
spherical coordinates, as (+q = 2r and (( rI)/(f+ q—) =
cos 8. We can then use an equivalent Laguerre-type basis
set [15] in spherical coordinates:

Ci, = NI, e """1,2„(2AI,r) Yj„,(8, p) ~,

k =1,2, . . . , k

nr, = 0, 1,2, . . . , nI, , (48)
lg = 0, 1,2, . . . , l~

where the NI, are normalization constants, the L„are
generalized Laguerre polynomials, and the Y~ are spher-
ical harmonics. This basis set has the added advantages
that the functions are orthogonal for the same value of
the nonlinear parameter (same Ai, ) and is therefore stable
even for a very large number of powers [15] and that its
application can be readily extended to the case of exter-
nal multipole 6elds of higher order. Both parabolic and
spherical representations were used in these calculations;
however, from now on we will refer exclusively to basis
set (48).

IV. CALCULATIONS

A. Hydrogenic Bethe logarithm
with no external fields

Z )

AI, = Z exp (a zr, i), k = 2, 3, . . . , N~, .
(49)

In (49), the zr, are the zeros of a Laguerre polynomial of
order N~ „and a and b are arbitrary nonlinear parame-
ters. Notice that only two nonlinear parameters are var-
ied in order to optimize the calculations, although many
more (a number given by X~,) will actually be used in
the calculations as exponential parameters in the basis
set.

In order to perform the calculations, the overlap ma-
trix of the basis vectors is first diagonalized in order to
obtain an orthonormal basis set and then the Hamilto-
nian matrix constructed using these orthonormal basis
set is diagonalized to obtain the variational eigenvalues
and eigenfunctions. For the intermediate states in the
summations (4) and (5), these variational eigenstates
form a finite, discrete representation of the full energy
spectrum that satis6es an important factor to consider
in building a variational representation of the spectrum:
to obtain the best convergence to exact values of the sum
rules with the smallest possible size of a basis set.

In the present set of calculations, the results obtained
for Ai (and then the BL), were checked for convergence
as the size of the basis sets involved was increased, nu-

merical accuracy, and onset of numerical instabilities in

We start by searching for a basis set that is very ef-

ficient in the calculation of the one-electron BL in the
absence of external fields. It has been shown [6] that in
order to achieve this, two conditions must be satisfied:
the set of intermediate states should contain the radial
functions used for the initial state and a set of exponential
parameters must be chosen that represents adequately
intermediate states with very high energy eigenvalues or
equivalently regions of space very close to r = 0.

Upon consideration of the distribution of values of
the exponential parameters yielded by the iterational-
variational method, we propose here a much more effi-

cient distribution of exponential parameters given by
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(50)

The one-electron sums

b~" = ):l(&ol&l&-) I'(E- —Eo)"

&" = ):l(@olpIM-) I'(E- —Eo)"» IE- —E.
I (52)

acquire then, in the acceleration gauge, the form

4' = ) l(AItIO-)I'(E- -Eo)" ' (53)

=) I(&olt)@ )I'(E„—E )" '»IE„—E I, (54)

two ways: (i) for each calculation, the value of Bi was
also calculated and its convergence compared with the
analytical results available f'rom perturbation theory; (ii)
all the calculations were performed in two gauges, the
velocity gauge of Eqs. (4) and (5) and the acceleration
gauge. This gauge is obtained by using the identity

mediate p states / = 1 and n " = 2 while letting Ap
vary in order to analyze the convergence of the results.
The optimal values of a and b in (49) were found to be
2.75 & a & 3.25 and 6 = 0.6. In Table I, we show the
results obtained with this basis set as the number of ex-
ponential parameters Np is increased; we also tabulate
the largest exponential parameter in the basis set A„
to illustrate the importance of an accurate representa-
tion in regions that are very close to the origin. Because
of the enormous spread in the values of the exponential
parameters (&om A =- 1 to A = 10' for 28 exponential
parameters) it is very important to keep track of the nu-

merical results in order to avoid numerical dependences
in the basis set, i.e., when the orthogonalization proc~-
dure is unable to differentiate between vectors to a, sig-
ni6cant number of digits. In the fourth column in Table
I we tabulate Qi ——lb«»s'i»~' —ti'" "I. One can see the
deterioration in the ability of the diagonalization proce-
dure to overcome numerical dependency as the number
of exponential parameters increases substantially.

There is, however, a very interesting property of the
variational sums: if the commutation relation (50) is used
only once in bi or b'i we obtain a sum rule without ener-

gies appearing explicitly:

with
b'"" = ) (O. lpll-)(4-ltl&. ) (56)

t = Zr/r (55)

Although ai'l = al"l and bl'l = bl"l for an infinite set
of intermediate states, this equality is only approximate
for finite basis sets and the degree to which it is satisfied
is an indication of the completeness of the intermediate
set of states and the accuracy of the results presented.
All the calculations in this work have been carried out
in both gauges. This check becomes very important be-
cause of the critical form of the basis sets used. Consider,
for example, the Bl calculation for hydrogen in the ab-
sence of external fields. For the field-free case we use for
the 1s state t = n = 0 and 1V~, = 1 and for the inter-

b| i"' = ):l(&olpl&-) I b(E- —Eo) (57)

The results for lbI
' —bi" "I appear in the last column

of Table I. Notice the much larger accuracy of these as
compared with those of column four for the "pure gauge"
calculations. These imply that the error in the calcula-
tions in the velocity or acceleration gauges stems from
the variational energy eigenvalues rather than the matrix
elements. This is confirmed by the following argument, :
call bE„ the numerical round-off error in the nth varia-
tional energy E„; then the error introduced in the sum

by 1S

TABLE I. Field-free results for the hydrogenic Bethe logarithm in a.u. , as a function of the
number %par of exponential parameters used for the intermediate variational states. X„„tis the
actual number of intermediate states, Pq, is the variational BL, A „ is the value of the largest
exponential parameter used in the set, bbq is the error in b~ in the p or t gauges, and bY1 is the
error in bq in the pt gauge. The digits in italics in the BL did not converge. The "exact" value
obtained from HuÃ's method is Pq, ——2.290 981 375 205 552 301 342 544 968 59.

&par
8
10
12
14
16
18
20
22
24
26
28

exact

&vec t
23
29
35
41
47
53
59
65
71
?7
83

Px.
2.290966881/606
2.290979788// 02
2.290981i588670
2.2909813$2M89
2.290981369M72
2.29098137/1669
2.290981374996i
2.290981375160$
2.2909813751952
2.290981375208i
2.29098137520/8
2.2909813752056

&max

5.26 x 10
4.75 x 10
3.57 x 10
2.33 x 10
1.36 x 10
7.25 x 10
3.58 x 10
1;65 x 10'
7.22 x 10"
3.00 x 10
1.1S x 10

bb1

2.78 x 10
5.74 x 10
1 46 x 10
4.S2 x 10
1.46 x 10
1.93 x 10
1.50 x 10
1.53 x 10
2.20 x 10
2.37 x 10
1.36 x 10

bb",
'

5 42 x 10
S.SO x 10
4.81 x 10
7.34 x 10
5.68 x 10
2 8S x 10
5.80 x 10
3.76 x 10
6.38 x 10-"
1.35 x 10
1.00 x 10
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~b(i'= -) .1(AItl@-)I'~(&- —Eo)I(&- —&o)'

= -) .1(Alpl4-) I'~(&- —E.) (»)

12 dhgits in the BL with no extrapolations. This is more
than we need for our calculations of the effects of external
/-pole fields.

so that to lowest order

bb"" s'=b(b( +b( )/2=bb =0.
In other words, we can reduce the numerical round-ofF
error by working in the "pt" gauge or by just taking the
average of the results in the "p" and "t" gauges. Notice
that the round-off error in E„acn also be avoided in the
same way in the logarithmic sum az if it is written as

~i"' = ):(@olpl@-)(@-ltl&o)»
"

)
. (60)

~p o

B. The adiabatic dipole contribution

As outlined earlier, we will in this section calculate
Pi, (F), the BL for a hydrogen atom in the ls state, in the
presence of an external dipole field F = Fz We. will then
apply our results to the BL of the n = 10 states of helium,
in which the dipole field acting on the core electron is of
order F~ = (r2 )„g = 10 s a.u. The calculation will

be performed for a range of values of the external field
and then the lowest-order correction will be given by the
coefficient of F2 in the fit

From Table I we obtain that the variational calcula-
tion of the BL using basis set (48) and (49) converges
as N is s so that we can easily obtain a convergence of

P,.(F) =d,'+PF'+&F'+ ",
b1,18(F) cQ + c2F + c4F + ' ' '

(61)

(62)

TABLE II. Variational results of Pq„(b), and bz obtained for a hydrogen atom in the ground
state in an external dipole field with magnitudes 10 & I' & 10 in a.u.

log~o I'
—8.0
—7.9
—7.8
—7.7
—7.6
—7.5
—7.4
—7.3
—7.2
—7.1
—7.0
—6.9
—6.8
—6.7
—6.6
—6.5
—6.4
—6.3
—6.2
—6.1
—6.0
—5.9
—5.8
—5.7
—5.6
—5.5
—5.4
—5.3
—5.2
—5.1
—5.0
—4.9
—4.8
—4.7
—4.6
—4.5

A (&) -&i (o)
3.087518437 x 10 '
3.905533776 x 10
4.941815754 x 10
6.235248446 x 10
7.865870653 x 10
9.933821754 x 10
1.251238372 x 10
1.576874644 x 10
1.987843991 x 10
2.504411558 x 10
3.154675241 x 10
3.973423005 x 10
5.004182975 x 10
6.301477418 x 10
7.934958231 x 10
9.991350503 x 10
1.258035360 x 10
1.583993306 x 10
1.994280149 x 10
2.510809508 x 10
3.161552105 x 10
3.980374743 x 10
5.011343140x 10
6.309287329 x 10
7.943406251 x 10
1.000086979 x 10
1.259133345 x 10
1.585301659 x 10
1.995999414 x 10
2.513157984 x 10
3.164504293 x 10
3.984785891 x 10
5.017921490 x 10
6.319315064 x 10
7.958858651 x 10
1.002480810 x 10

2s'(b) —2
—3.100001538 x
-3.902671214 x
-4.913172760 x
-6.185319299x
—7.786857641 x
—9.803076125 x
—1.234134666 x
—1.553684287 x
—1.955973890 x
-2.462427231 x
—3.100015379 x
-3.902693151 x
-4.913207527 x
—6.185374402 x
—7.786944974 x
-9.803214541 x
-1.234156604 x
—1.553719056 x
—1.956028997 x
-2.462514571 x
-3.100153808 x
—3.902912554 x
—4.913555275 x
—6.185925578 x
-7.787818596 x
—9.804599270 x
-1.234376095 x
—1.554066979 x
-1.956580522 x
—2.463388890 x
—3.101539928 x
-3.905110242 x
-4.917040047 x
—6.191451908x
-7.796583915 x
—9.818504718 x

10
10
10
10
10
10
10
10
10
10
10
1O-'
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10-4
10
10
10
1O-4

10

t (P&)
1

-3.100001551 x
-3.902671224 x
-4.913172771 x
-6.185319308 x
-7.786857648 x
-9.803076134 x
-1.234134667 x
—1.553684288 x
-1.955973891 x
-2.462427232 x
-3.100015380 x
-3.902693151 x
-4.913207528 x
-6.185374404 x
-7.786944975 x
-9.803214541 x
-1.234156604 x
-1.553719057 x
—1.956028997 x
-2.462514571 x
-3.100153808 x
—3.902912556 x
—4.913555275 x
—6.185925579 x
-7.787818598 x
-9.804599271 x
-1.234376095 x
-1.554066979 x
—1.956580522 x
—2.463388890 x
—3.101539927 x
-3.905110241 x
—4.917040045 x
—6.191451906x
-7.796583912 x
-9.818504715 x

10
10
10
10
10
10
10
1O-'
1O-'
10
10
10
10
10
10
10
10
10
10
10
10
10
1O-'
10
1O-'
10
10
10
10
1O-4

10
10
10
10
10
10
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TABLE III. Parameters defining the basis sets used in the calculations. The rows involving F are for the dipole case and

those involving Q are for the quadrupole case. Notice that in the quadrupole case, lA., can assuine only even or only odd values.

Field strength

k=1 0&ii &4 0&n1 &11 k=&
2 -k&20

0&l» &4 0&n1r-11
lI, ——1 0&nI, &2

10 & F 10 k=1 0&le &6 0&nI &15 k=1
2 & k & 20

0&iI&-5 0cn
lg ——-1 0&nI, &2

10-' & F' & 10-4' k=1 0&lan &7 0&nI &21 k=1 0&LAN &5 0&nI &14
2&k&18 0&lan &1 0&ny &2

10 & Q & 10 k=1 0&ii &20 0&nI &18
(

k=1
2&k&18

0&ii &14
lA: =1

0 & ng & 12
0&ng &2

10 & Q & 10 k=1 0&le &24 0&ni &18 k=1
2 & k & 18

0&ii &14 0&nI &12
lg ——1 0&ng &2

We need an accuracy of about ten digits in the value
of Pi, (F) in order to extract c2 to less than 1%% accu-
racy, which can be easily achieved with the basis set of
Sec. IV A. The results of the calculations performed for
a large range of field values are presented in Table II
with the parameters defining the basis sets used appear-
ing in Table III. In Table II, we present, in the second
column, the deviations of the BL &om the field-&ee re-
sults for each value of the dipole field; in column three
we present the deviation of (b) &om its field-free value

of 2 and similarly in column four for the sum bI" ). The
values of (b) control the accuracy of the variational rep-
resentation of the 1s state, as well as serving as a check of
the intermediate states via the sum rule b~"' . This sum
rule is, on the other hand, used as a measuring stick for
the reliability of the results by comparing the expansion
coefficients in (61) with those obtained analytically in a
perturbation expansion of (b). As shown in Table IV,
the set of intermediate states includes a large number of
powers and angular functions for those vectors that have
the same exponential parameter as the ground state. For
the other vectors it is only necessary to include angular

functions with I & 1: only these contribute to the sums

given the fact that their contribution comes mostly &om
regions very near the origin.

In Table IV we present results of least-squares fits of
the values in Table II. Even with the enormous spread in

exponential parameters used, the variational representa-
tion of bi is still able to produce excellent agreement with
the variational-perturbational coefficients for (6). We ob-
tain then for the adiabatic dipole correction to the BL:

Ss; i,pi,, ——0.316205(6) (r2 )„L, ,

where r2 is the radial coordinate of the Rydberg electron
with quantum numbers n and I

C. The adiabatic quadrupole contribution

Consider now the perturbation due to an external
quadrupole field Q:

TABLE IV. Coefficients in the expansions in powers of Ii of the variational calculations of Pq,
[Eq. (61)], (b), and bz [Eq. (62)] for a hydrogen atom in an external dipole field F in a.u. The
numbers in parentheses denote the error in the last digit.

Term px.
2.2909813752(1)

0.316205(6)
25.9(6)

F6
F8
Flo

2n (b)
2+ 10

—30.99999999999(1)
—1537.875004(3)

—2.04841(3) x 10
—4.405(1) x 10
—1.36(2) x 10

b(J ~)
1

2+10
—31.00000001(2)

—1537.87(4)
—2.049(1) x 10
—4.3(2) x 10
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The expansions corresponding to (61) and (62) are now

p (q) dP + dPq2+ dPQ3+ dPQ4+. . . (66)

b (Q) db + dtq2 + dbqs + dbq4 (67)

Care has to be taken, however, when switching &om the
velocity to the acceleration forms of the dipole operator
p appearing in the sums. The form (55) of t is correct
for the field-free case or for summations involving an ex-
ternal dipole field, but it is not in the general case of

I

We repeat now the same procedure as the one used for the
dipole case with the difFerence that now the perturbing
potential due to (64) is

4m
Vg =Q —Y (r") .

5

V { 'Y
) = (-1)"+~+~+'/k+ 1 &

p, ~ kq

x Yi,+i q+„(b —k) r + ( 1) +—~+~@ k

fk —1 k 1"' v+s -e -s I

r
x Yj, i ~+„(b+ k + 1) r (68)

After some angular momentum algebra, we can obtain
the matrix elements of [V'„,r~Ci, ~] between the angular
functions Yi and Yi

a perturbing l-pole field. In the general case, the com-
mutator (50) will contain extra terms arising from the
corznnutator [V', Z—/r + V~„t], where V~„t is the per-
turbing potential. Consider in general the gradient of a
power times a spherical harmonic:

(l'm'IV' (r Ci, )Ilm) = (—1)"

k —1 k 1 I,
' k —1 l ) l' k —1 I)+(b+k+1)gk 2k —1)

I
(69)

From (68) we obtain, for the commutator on the Coulomb
potential, the dipole operator in the acceleration gauge:

t„=—Z[V'„, r '] = ZC (ir)/r2. (70)

For a dipole field I' r Cia we obtain, from (69),

(l'm'][V„, (rC,O)]lm) = b„ob'll'. (71)

(I'm'I [V'„,(r'C, p) Ilm)

= —b„obli' r + (—1) [10(2l +. 1)(2l' + 1)/3] ~
4

(21 1 & ( t' 2 tb ft'2 t)
&0 & I m'&m II 000

(72)

which will connect the state nl to states with l' = / —2, L,

and l+ 2. This contribution must be added to the matrix
elements of t„ in (70).

The parameters used for the basis sets in the

This term does not contribute to the sums because of
the fact that there is no function of r in the last re-
sult coupled with the fact that the matrix element forces
t = t': all states with l' = t are orthogonal, except the
one identical to the initial state in the sum, which does
not contribute because of the coefficient E„—Eo For.
the quadrupole potential, Q r C2o we obtain, however,
nonzero contributions:

I

quadrupole case are presented in the second portion of
Table III. Notice that because of angular momentum ad-
dition rules, for a given set, li, can be even or odd, so
that the total num ber of values of li, used is half of
the maximum value t&

" in the basis set. Again, only

li, = 1 is needed in the intermediate states with k ) 1;
the next possible value would be li, = 3, which con-
tributes insignificantly in the regions of space very close
to r = 0 which are represented by these basis vectors.
The values obtained for quadrupole fields in the range
10 9 & Q2 & 10 s are presented in Table V. The values
in each column are the analogs of those for the dipole case
in Table II. Care has to be taken while performing these
calculations for large values of the fields as the "ground
state" is now a resonance that may lay above other vari-
ational states that are now representing the continuum
of negative solutions to the problem.

As in the dipole case, we perform now a least-square
Gt of the values obtained, in terms of powers of the ex-
ternal quadrupole 6eld. These results are presented in
Table VI. Again, we have very good agreement for the
expansion coefficients of bi and (8) and enough digits in
the calculation of Pi, to obtain a good estimate of the co-
efficient of Q2 in its perturbation expansion. From here
we obtain then the quadrupole term in the asymptotic
expansion of Pi, .

„p„=5.81905(1) (r2 }„I,,

where r2 is the radial coordinate of the Rydberg electron
with quantum numbers n and I.
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TABLE V. Variational results of Pz„(b), and bi obtained for a hydrogen atom in the ground
state in an external quadrupole Beld with magnitudes 10 ( Q & 10 in a.u.

log, o Q
—9.0
—8.9
—8.8
—8.7
—8.6
—8.5
—8.4
—8.3
—8.2
—8.1
—8.0
—7.9
—7.8
—7.7
—7.6
—7.5
—7.4

7.3
—7.2
—7.1
—?.0
—6.9
—6.8
—6.7
—6.6
—6.5
—6.4
—6.3
—6.2
—6.1
—6.0

P& (Q) Pi (0)
5.435041433 x 10
6.941096783 x 10
8.835802412 x 10
1.122308762 x 10
1.422659672 x 10
1.800768145 x 10
2.276743435 x 10
2.875839120 x 10
3.630012481 x 10
4.579292806 x 10-'
5.774158129 x 10
7.278132015 x 10
9.171116220x 10
1.155362086 x 10
1.455219925 x 10
1.832607796 x 10
2.307539847 x 10
2.905232693 x 10
3.657357864 x 10
4.603786139 x 10
5.794645576 x 10
7.292978301 x 10
9.178063455 x 10
1.154956102 x 10
1.453276365 x 10
1.828514796 x 10
2.300463654 x 10
2.893994552 x 10
3.640356166 x 10
4.578761812 x 10
5.762744307 x 10

2vr(b) —2

-1.391813847 x 10
—1.752084886 x 10
—2.205596114 x 10
-2.776472080 x 10 '
—3.495076534 x 10
—4.399624962 x 10
—5.538213425 x 1G
—6.971371037x 10
—8.775270968 x 10
—1.104576953 x 10 '
-1.390348641 x 10
—1.750019386 x 10
—2.202685094 x 10
-2.772370555 x 10
-3.489299421 x 10 '
—4.391490565 x 10
—5.526764358 x 10 '
-6.955263684 x 10 '
—8.752621184 x 10
—1.101393758 x 10-'
-1.385877774 x 10
—1.743744355 x 10
—2.193884794 x 10
-2.760039694 x 10
—3.472038868 x 10
-4.367356764 x 10 '
-5.493063343 x 10
—6.908270647 x 10
-8.687200912 x 10 '
—1.092303514 x 10
-1.373275310 x 10

b(J ~)
1

—1.391813849 x 10
—1.752084888 x 10
-2.205596117 x 10
—2.?76472081 x 10
—3.495076536 x 10
—4.399624965 x 10
—5.538213427 x 10
—6.971371040 x 10
—8.775270970 x 10
—1.104576953 x 10
-1.390348642 x 10
-1.750019386 x 10
—2.202685094 x 10
-2.772370555 x 10 6

-3.489299421 x 10
-4.391490565 x 10
—5.526764358 x 10
-6.955263683 x 10-'
—8.752621182 x 10
-1.101393758 x 10
—1.385877774 x 10
—1.743744353 x 10
—2.193884791 x 10
-2.760039688 x 10
-3.472038856 x 10
—4.367356741 x 10
-5.493063299 x 10 "
-6.908270572 x 10
—8.687200844 x 10
-1.092303560 x 10
—1.373273871 x 10

D. The nonadiabatic contribution to the energy:

In this section we present a strategy for the calculation
of the nonadiabatic contribution to the BL and prelimi-
nary bounds on the value of this contribution. Consider
first the nonadiabatic contribution to the energy; we will
use this, as in the adiabatic case, as a guide to develop
a variationally viable approach to calculate this e8'ect.
Consider now the second term in the expansion (29) and
use it in (26) to obtain the first nonadiabatic correction

(i)@( d) - (tlat" lrt)(nlrb" lt)
2 2

n, n' in

The sumation over n' can be eliminated by eliminating
using a commutator

TABLE VI. Coefficients in the expansions in powers of Q of the variational calculations of Pi,
[Eq. (61)j, (|I), and bz [Eq. (62)] for a hydrogen atom in an external quadrupole ffeid Q in a.u. The
numbers in parentheses denote the error in the last digit.

Term
qo
Q2
Q3
q4

pi.
2.2909813752(4)

5.81905(1)
—67.47(6)

7.50(7) x 10

2vr(b)

—139.2499998(2)
2178.396(3)

—2.7229(2) x 10
1.929(5) x 10
—2.82(8) x 10
1.6(5) x 10

b(P&)
1

2+2 x 10-"
—139.24999999(1)

2178.398(2)
—2.7230(2) x 10

1.931(4) x 10
—2.85(5) x 10
1.8(4) x 10
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(l) (nonad) (ilu" ln) (nlu" li)
2

fl in
9~9

x(i'l[hz, u"] u'~ Ii')

with which the l-pole nonadiabatic correction results in

(l}E(nonad) ~ (lslrl Cloln)(nlrb Clol~)
2

n in

x (%+1)(2k+1)(„), (76)
1

and in the dipole case for the ground state it becomes

{
2

nL 1e n

where n and I are the quantum numbers describing the
outer electron.

The sum involving the core electron in (77) cannot be
interpreted any longer as pertaining to a second-order
perturbation to the la energy because the quadratic
power of el, „ in the denominator and then the method
used for the nonadiabatic operators are useless. A way
can be worked out around this problem following a
method introduced by Dalgarno and Lewis [16], based
on the existance of a function g = g(r, t)) satisfying

[h„g]lls) = zlls) . (78)

In terms of g, bd &,El, can now be written as

-(1
I I )( lgll )

nL lean

h = hl + u)l +u)z, u)g ——Fz, u)2 ——Gg. (80)

Notice that hl is a scalar operator; then from (78) g, like
z, is a tensor of rank one. The second-order perturbation
to the energy due to these two perturbing potentials is

(2) .(lslull + u)2ln) (nlu)l + u)2lla)1s-
&1e,n

.(slzln)(nlzlls)
&1e,n

+ .(lslzln) (nlglla)
&1e,n

- (»lgln) (nlgl»)
&1s,n

(81)

where &om now on we omit the subscript 1 in the opera-
tors acting on the core electron. In (79) we could replace
the remaining matrix element of z again by a comrnuta-
tor and in such way obtain a closed form expression for
the nonadiabatic perturbation. However, we propose to
leave this equation as is and use the following argument.
Consider the free Hamiltonian hq being perturbed by two
potentials:

The term in Fz yields the adiabatic dipole correction, the
term in FG yields twice the sought nonadiabatic dipole
correction, and the term in G2 yields the second-order
nonadiabatic dipole correction. Using the notation of (9)
we can write

$(2)Eq, —— F—2—aq —2FG al „——G a, „. (82)

g(r g) = lls)(lsl
I

r+1
~

r ciao
)

+
I

—r + 1 r Cl.o lls)( ls(Z
2 )

(84)

Although any of these forms of g will yield the proper
value for the nonadiabatic perturbation to the energy, the
same is not true in the calculation of matrix elements,
as the second-order perturbation to the wave function
is different. For example, (83) contributes a spurious
term to the second-order perturbation to the wave func-
tion that can be corrected by subtracting the first-order
perturbation due to a potential G2 gz. Our calculations
for the nonadiabatic corrections to Bl are in excellent
agreement with analytic perturbation expansion of the h'

function. For the BL, we have, for the time being, ob-
tained bounds on the possible values of' the nonadiabatic
dipole correction. Work is currently in progress in the
pursuit of the nonadiabatic correction through a care-
ful analysis of gauge transformations in the asymptotic-
expansion framework, as well through a full calculation
of the two-electron BL using a very efBcient, configura-
tion interaction technique. For the time being, we shall
use our bounds on the nonadiabatic dipole correction as
the error bound on the coefBciem of (r2 )„I,. With this
in mind, our value for the BI of the Rydberg states of
two-electron atoms becomes

(Z —1) 0.316205(6) 1
le+ Z4 8 ni+ ZS 4n T2

5.8(2.5) 1

S T
(85)

Interestingly, the (r2 )„I, contributions cannot explain
the discrepancy between the theoretical predictions and
the experimental results for the n = 10 levels of helium.

The value of ul „can be obtained by repeating the cal-

culation of b(z)E for a range of values of F and G, and
calculating the coefBcient of FG by means of a least-
squares fit. For the case of Rydberg states we would

then use F2 = (rz )„r, and FG = —3(r2 )„r, to calcu-
late the adiabatic and nonadiabatic dipole corrections,
respectively.

The operator g satisfying (78) can be easily obtained:

g(r, 8) =
I

—r+1
~

z =
I

—r+1
~

r Clo,(Z i (Z
r

where Z is the nuclear charge. Notice that this form of

g is not unique; for example, it can be written in a form
that explicitly states its validity, i.e., that of (78), for the
ls state only:
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