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Corrections to the Born-Oppenheimer approximation by means of perturbation theory
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We develop an efficient method for the calculation of corrections to the Born-Oppenheimer approxi-
mation by means of perturbation theory. The perturbation terms through sixth order in the small pa-
rameter ~=(m/M)', where I and M are, respectively, electronic and nuclear masses, allo~ the con-
struction of an effective vibrational Hamiltonian that takes into account adiabatic and nonadiabatic
effects. The latter is negative and linearly dependent on the vibrational quantum numbers. We illustrate
the application of the main equations and verify the general results by means of an exactly solvable mod-

el of two coupled harmonic oscillators.

PACS number(s): 33.10.Lb, 03.65.Ge

I. INTRODUCTION

Recently Patterson [1] derived simple expressions for
the energy corrections to the Born-Oppenheimer approxi-
mation valid to first order in the particle-to-oscillator
mass ratio m/M. His results show that the diabatic (or
nonadiabatic) energy corrections for H2+ are negative
and depend linearly on the vibrational quantum number
in agreement with previous variational calculations [2].
Many years ago Van Vleck [3] derived a similar expres-
sion for nonadiabatic sects in diatomic molecules and
stressed its linear dependence on the vibrational quantum
number. This nonadiabatic contribution is proportional
to co/M, where to is the oscillator frequency [1,3]. Since
to ~ 1/~M, such a term is actually of order (m/M)
The perturbation method proposed by Patterson [1] is
not a pure expansion in rn/M and therefore it is unsuit-
able for the estimation of the magnitude of each correc-
tion in terms of that mass ratio.

The main ideas for the separate treatment of electrons
and nuclei in molecules and crystals are due to Born and
Oppenheimer [4]. The method was lately revisited by
Born and Huang [5] who worked out the separation
through the application of perturbation theory to the sta-
tionary states of the actual system and also to the station-
ary states of an auxiliary model in which the nuclei
remain clamped at a given configuration. Here the per-
turbation parameter is tt=(rn/M)' «1, where m is the
electronic mass and M is a typical nuclear mass. This
perturbation approach clearly reveals the dependence of
each term on the mass ratio m /M. Although straightfor-
ward, the method of Born and Huang [5] is lengthy and
requires great ingenuity to figure out how to combine the
two sets of perturbation equations to obtain the desired
results. Therefore, it is unsuitable for the treatment of
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larger orders.
It is our purpose to rewrite the perturbation method of

Born and Huang [5] in a simpler and more convenient
way. In Sec. II we develop the main equations of pertur-
bation theory up to sixth order, two orders more than
those considered by Born and Huang [5], for a system
with many electrons and nuclei and compare our results
with those obtained by Patterson [1] for the particular
case of H2+. In Sec. III we verify the general results and
theoretical conclusions by means of a simple, exactly
solvable, model. In Sec. IV we discuss the main results,
compare them with those from other approaches, and
outline the application of the approximation to other ex-
amples of physical interest.

II. METHOD

8 A 8
TE ~N (2)

are, respectively, the electron and nuclear kinetic-energy
operators and V(x,X) is the classical interaction poten-
tial. Following Born and Huang we neglect the transla-
tional and rotational motions of the system as a whole, an
assumption which is certainly valid for solids [5]. In the
case of molecules, on the other hand, the separation of
the coordinates of the center of mass leaves kinetic-
energy operators that differ from those in Eq. (2). How-
ever, one can easily adapt the method developed below to

For concreteness we consider the model discussed by
Born and Huang [5] that describes a set of nuclei with
masses {M;] and coordinates X= {X;] and a set of elec-
trons with mass m and coordinates x = {x;].In the par-
ticular case of two equal nuclei and one electron we ob-
tain the model for H2+ considered by Patterson [1] that
omits electronic terms arising from the separation of the
coordinates of the center of mass. In the coordinate rep-
resentation the Hamiltonian operator reads

H =TE + Ttv + V(x,X),
where
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treat such problems as well.
It is our purpose to solve approximately the

Schrodinger equation for the stationary states of the sys-
tern

HV(x, X)=EV(x,X) (3)
Therefore, Eq. (11) becomes

&elF &„=0 (8)

and therefore takes into account nonadiabatic effects.
One can also view F(x,X) as a measure of the coupling of
electronic and nuclear motions. It satisfies the
differential equation

(H E)F=—4—(TN+ U E)f+ [4,TN—]f,
obtained by application of H E to both sides o—f (7) and
use of (3} and (4). In this equation [4, TN] denotes the
commutator 4TN —TN4. Taking into account (8) and
choosing %' to be real it is not difficult to prove that

by means of perturbation theory based on the fact that
M; &)m. To this end we take into account the quantum-
mechanical equation for the stationary states of a system
of electrons moving around the nuclei clamped at a given
configuration X:

H@4(x,X)= U(X)4(x,X), H~ = TE+ V(x,X) . (4)

For simplicity we restrict ourselves to a nondegenerate
electronic state and without loss of generality we assume
that 4 is real and normalized to unity:

&4l4), =I4(x,X)'dx =1 . (5)

From now on we use the subscripts x and X in the brack-
et notation to indicate integration over electronic and nu-
clear coordinates, respectively.

We define the nuclear and nonadiabatic functions

f (x)= &el+&„,

F(x,X)=%(x,X)—f(X)4(x,X),
respectively. The latter is orthogonal to 4(x,X) with
respect to the electronic coordinates

[TN+ U(X)+ W(X) E]f—(X)= —R (X) .

If the terms 8'(X) and R (X), which couple electronic
and nuclear motions, were negligible then the solutions to
Eq. (14) would not differ greatly from the solutions to the
related homogeneous equation

[ TN + U (X)—P. ]g (X}=0

that give the Born-Oppenheimer energy 8. As shown
below Eqs. (9) and (14) remarkably facilitate the applica-
tion of perturbation theory

In order to introduce an appropriate perturbation pa-
rameter ~ we consider scaled nuclear displacements
u = [u; } from a given configuration Xo = [Xo;} according
to X;=Xo;+au; Be.cause a'/aX2=s-'a'/au; the nu-

clear kinetic-energy operator contains fractions 1/(M, ~ )

that we rewrite Ms /(mM; ) through the choice
~=(m/M)' . Here M is a representative nuclear mass;
it may be just one particular mass from the set [M; },a
reduced or effective nuclear mass or any other such
choice that satisfies m /M (( 1 and M /M; = 1. The
former condition assures us that a is a small parameter
for perturbation theory. The nuclear kinetic-energy
operator is of second order in a:

M 8
TN + TN& TN 2m, . M; u,

~

We next expand all the relevant quantities in power series
of ~ as follows:

G = y G'~'~J, G'~'= —, (~=-0) .
(.) 1 BG

& ~le &, = &FlF &„+f(X)',

&ql~&„=&FIF)„+&flf&„.

Applying „&4
l

from the left of (9) we have

(10a)

(10b)

If 6 depends on ~ only through X as it is the case of Hz,
4(x,X) and U(X} then

(TN+ U E)f+ &@l[TN,4])„f—= —R (X), (11)

where

R(X}=& ~ITNIF &.

I

a'e ),(
ae aa

L

(12)

To prove the second equahty in Eq. (12) simply
differentiate (8) twice with respect to the nuclear coordi-
nates. Expanding the commutator [TN, Ca] and taking
into account the result of differentiating (5) once and
twice with respect to the nuclear coordinates we obtain
the adiabatic potential

Repeated application of this process shows that O'J' is a
polynomial of u with only terms of order j; this is to say,6'" is linear, 6' ' is quadratic, etc.

%'e now show how the present method facilitates the
application of the perturbation theory of Born and
Huang [5]. The two derivatives with respect to X in the
function 8' defined by (13) give rise to a factor ~ when
we change variables from X to u. Therefore, the first
nonvanishing term in the expansion of 8' is at least of
second order. The coefficients of ~ and ~ vanish be-
cause they contain BN' '/Bu; inside the bracket and @' '

is independent of u. We conclude that W is at least of or-
der K . The same argument shows that R is at least of or-
der ~ from which it follows that ( TN + U E)f is at—
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[T)v+ U(X) E]f (—X)=O(x ), (19)

and that the adiabatic approximation is valid to order a .

[T~+U(X}+W(X}—E]f(X)=O(x ) . (20)

For instance, the latter tells us that the quantum-
mechanical equation for the stationary states of the nu-
clei moving in the adiabatic potential U(X)+W(X)
yields the energy of the actual physical system with an
accuracy of order a . The algebraic manipulation re-
quired to draw this conclusion by means of the original
approach of Born and Huang [5] is quite tedious and in-
volved. It is worth noticing that according to (10a) and
the argument just given f (X) gives the probability dis-
tribution for the nuclear positions with an error of order
(r6 coming from the first nonvanishing term of ( E~F )„.

%e next concentrate on the application of perturbation
theory to Eq. (14) to obtain formal expressions for the
calculation of corrections to the energy and stationary
states. According to Eq. (10) if )p is normalized to unity
then f will also be normalized to unity up to terms of or-
der ~ . It follows from the perturbation equation of order
zero [U' ' —E' ']f'0'=0 that E' ' is just the electronic
energy at the chosen, though yet undetermined, nuclear
configuration

E' '=U' '=U(X ) .0 (21)

The equation of first order reads [U"'—E"']f' '=0.
Since E'" is constant and U"' is linear in u we conclude
that both (Iuantities have to vanish. The consistency con-
dition U" =0 requires Xo to be a nuclear configuration
at a stationary point on the hypersurface U(X):

U (X=X())=0 .
BX,

The perturbation equation of second order

[T + U(2) E(2)]f(0) 0

(22)

(23)

describes the motion of the nuclei under a quadratic po-
tential energy function U' '. %e have bound states if and
only if this function is positive definite in which case Xo
is the nuclear con5guration at equilibrium, that is to say,
a minimum of U(X). If n and u denote the sets of elec-
tronic and vibrational quantum numbers, respectively,
then up to second order in x we have
E„„=U„(X0)+a E„'„' so that ~E„„—E„, ~» ~(E„„E„„-~=O(a. ). The—vibrational potential U' '

has inversion symmetry (i.e., with respect to the change
u~ —u) and the solutions to (23} belong to pure g or

least of this order [cf. Eq. (14}]. By simple inspection of
the right-hand side of Eq. (9) one realizes that it is at least
of order a. and taking into account Eq. (8) one convinces
oneself that Fhas to be at least of order a . Furthermore,
looking at the expressions inside the brackets in Eq. (12}
and remembering that 4' ' is independent of u and that4'" is linear in u one concludes that R'J'=0 if j & 6. It
follows from the results just obtained and Eq. (14) that
the Born-Oppenheimer approximation is valid to order

pure u representations [6]. The expressions of perturba-
tion theory for Eqs. (14} and (15) are identical up to
second order; therefore 8( '=E' ', ( "'=0 8' '=E' '

g(0) f(0)

The equation of third order for the nuclear motion

[7 + U(2) E(2)]f( )+[U( ) E( )]f( )—() (24)

Be(" Be("
2rnM, Bu; Bu;

(27)

is identical to the equation of second order for a harmon-
ic oscillator perturbed by cubic and quartic anharmonic
potentials. The adiabatic efFects amount to an additive
constant. By simple inspection of the symmetry of the
terms in Eq. (26) one expects degeneracy to be partially
or totally broken at this order. Arguing as before one
easily proves that f' ' and f' ' behave in the same way
with respect to inversion. Comparing (26) with the equa-
tion of fourth order for (15),

[T +U(» —E(2)] (2)+U(') (')

+ [U(4) g(4) ]g
(0)—() (2g)

and taking into account that f(~)=g(J) for j&2 we con-
clude that

is equivalent to the equation of first order for a harmonic
oscillator perturbed by a cubic potential O' '. In the gen-
eral case one expects some of the stationary states of the
harmonic oscillator to be degenerate. Since the matrix
elements of U' ' between degenerate harmonic-oscillator
eigenfunctions vanish because of symmetry (U' ' changes
sign under inversion} then E' '=0 for all the states and
degeneracy does not break at this order. Multiplication
of E . (24) by f' ' followed by inversion shows that
f ' 'f "belongs to a pure u representation and thereforef'" is orthogonal to f' ' (in agreement with the earlier
statement that f is normalized up to terms or order ~ ).
The perturbation equation of third order for the function
g (X) is identical to (24) so that 8( '=0 and g"'=f'".

Before proceeding with the perturbation treatment of
Eq. (14) we mention that the derivation of the forrnal ex-
pressions of perturbation theory for Eq. (4) is straightfor-
ward. Solving the perturbation equations

[a'"—U")]a 'J'= [U'"' —V'")]C 'J-"'J

k=1

j=0, 1, . . . (25)

hierarchically, with HE(0) =TE+ V(x,X0), one obtains all
the necessary coeScients O'J' for the expansion of the
stationary electronic states in powers of ~. This calcula-
tion is far from trivial for realistic models. Fortunately,
just formal solutions suSce for the present discussion.

The perturbation equation of fourth order for the nu-
clei

[ T + U(2) E(2)]f(2)+ U(3)f (1)

+ [ U")+W"' —E"']f"'=0, (26)

where
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+ [ v(5)+ w(5) g(5) ]f(0)—() (30)

E(4) @(4)+ pr(4) )@(4)

and f' '=g' '. The adiabatic energy is larger than the
Born-Oppenheimer energy ( because W(X) is positive
for all nuclear configurations and this fact is rejected ir

Eq. (29).
The equation of fifth order reads

[T + v(2) E(2)]f(3)+ v(3)f (2)

+ [ V(4)+ W(4) g(4)]f(()

Substituting (36) into (34) we have

()1'M ~
'd f' '

m'M, M,

ac'" g@(&)
lt „= [a,("—v"']-'p

BQ; Q»

(3&)

Equation (37) shows that we can incorporate the nona-
diabatic effects of order K in our calculation by means of
the kinetic-energy operator

where

3&PM ae") ae(2)

mM; »; ()u;
(31)

%ME,
m2MM, »;»,

In fact, the eigenfunctions of the effective vibrational
Hamiltonian,

is linear in the coordinates Q. This equation is equivalent
to the expression of third order for a harmonic oscillator
perturbed by linear, cubic, quartic, and quintic potentials.
Comparing (30) with the corresponding equation for g(X)

H„,„=T ~'7+ v"'+~v("+~'[ v")+ w"']

+~'[v'"+ w"']+~'[v"'+ w'"] (40)

[T + V(2) g(2)] (3)+ V(3)f(2) satisfy all the perturbation equations shown above. If we
write

+ [ v(4)+ w(4) g(4)]f(1)+[v(5) g(5)]f(0)—()
Hv(bfnv =EnUfnU (41)

(32)

we conclude that g"' is different from f '".
The first nonadiabatic correction appears at sixth or-

der,

[ T + v(2) E(2)]f(4)+ v(3)f (3)

+[V(4)+ W(4) E(4)]f(2)+[V(5)+ W(5) E(5)]f(I)

E =v' '+~ E +0(a ) . (42)

To obtain more explicit expressions for the coeScients
K, we have to solve the perturbation equation of first or-
der for the electronic states

where H„;& depends on the electronic quantum numbers
n through 4, then the energies of the stationary states of
the system up to sixth order are

where

+ [ v(6) + w(6) g (6)]f(0)— g (6) (33)
[~(0) v(0)](y(1)— y(1)(y(0)

F.

Making use again of the projection operator P we have

C)(1)—[ V(0) H(0)] —(py(1)@(0) (44)

ac'" ae("

a'M aC"'
mM, Bu; Bu,

(34)

The new adiabatic contribution 8' ' is quadratic in Q. In
order to calculate the nonadiabatic term we need F' '

that is a solution to

[II(0) g(0) y (3)—[II(0) v(0) y (3)

()1 M 84"' ()f( '

mM, (3u; ()u;

P(3) R M &(0) V(0) 1P ()4& df2 (&) (0)

IM, BQ; BQ;
(36)

%Kith the aid of the projection operator
P= 1 ~C&( ))„((p( )~, 1 being the identity operator, we

write F"' as

and Eq. (38) becomes

8V"' g y(1)
z =(c")~ [a"' v'"] 'p —~e"')

1»
BQ) BQ»

X (45)

because P commutes with any function of Hz ' and

P —P.
In the following discussion we assume that U' ' is the

ground-state electronic energy. If we insert P to the left
of [Hz( ' —V' )] 3 in Eq. (45) we obtain a more symmetric
expression showing that the diagonal elements E,.; are
positive. Moreover, since the quadratic form obtained by
summation of K;.Q;Q» over all nuclear coordinates is posi-
tive definite then all the eigenvalues of the matrix (E;J )

are positive. As a result the expectation value of Y is
positive and thus the nonadiabatic contribution to the vi-

brational energy is negative. Writing the nonadiabatic
kinetic-energy operator J. in terms of normal coordinates

[5] and taking into account the properties of the eigen-
functions of the harmonic oscillator one easily proves
that the nonadiabatic contribution of order x is linear
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with respect to the vibrational quantum numbers. There-
fore, if E" denotes the adiabatic energy then up to sixth
order of perturbation theory E —E is positive and in-
creases linearly with the vibrational quantum numbers.
We have thus generalized Patterson's result [1] to the
multidimensional case.

It is easy to prove that the Born-Oppenheimer and adi-
abatic energies bracket the exact energy of the system:
C(E(E" [7]. (Notice that Brattsev's notation [7] is
different from ours as he calls adiabatic and variational
what we have termed Born-Oppenheimer and adiabatic
energies, respectively. ) The values of 6 and E" given by
Beckel, Hansen, and Peek [8] and the nonadiabatic re-
sults obtained by Kohl and Shipsey [2] provide, for the
particular case of Hz+, an example of the two inequali-
ties just mentioned.

The perturbation coeScients for the stationary states
of the system are of the form

J
)p(j) y f(k)@(k j) —j (3

k=0

)p(J) f(k)@(k j)+F—(j) )3
l

k=0

(46}

E" E= ~' (f—"'i —
I
f"')„+O(~')AE ()

m Bu

6' K=a co(() +—')+O(a. ),
2m

(48)

where v =0, 1,. . . is the vibrational quantum number,
(o=&k/m, and k is the harmonic oscillator force con-
stant. Notice that it is the electronic mass that appears
in our definition of co, we recover the ordinary oscillator
frequency as a co=&k/M. Equation (48) shows that
E"—E increases linearly with the vibrational quantum
number in agreement with variational calculations [2].

Our expressions through fourth order agree with those
obtained by Born and Huang [5]. We have extended the
calculation to sixth order to show the occurrence of
nonadiabatic effects. The derivation of perturbation
corrections of larger order is straightforward following
the lines already indicated above.

In order to compare our general results with those ob-
tained by Patterson [1] for the particular case of H2+ we

specialize in one nuclear degree of freedom. Denoting
H(a, x, u ) the Hamiltonian operator after the change of
nuclear variables one easily verifies that
H( —~,x, u)=H(a, x, u) Si—nce .the state is nondegen-
erate E( —a)=E(a) and all the energy perturbation
corrections of odd order vanish.

Taking into account a complete set of electronic states
[4(o), n =0, 1,. . . ] at the equilibrium configuration of
the lowest one the only constant K» =K is

y(1)
f ( @(0)

( )

@(0)) f2
au

(0) (0) 3
(47}

„)() [U„—U() ]

As argued before for the general case E )0 because
U Uo )0. For this particular case we have

Pdtterson [1] drew the same conclusion by means of a
different argument. Our results clearly show that such
nonadiabatic effects are of order a =(m /M) ~ as argued
in the Introduction.

In closing we consider the expansion of the state of the
system in a basis set of electronic functions @„solutions
to

[Hz —U„(X)]N„(x,X)=0 .

Substitution of

(49)

)II(x,X)=g f (X)4 (x,X) (50)

into Eq. (3) yields a set of coupled equations for the
coefficients f (X) [5],

III. EXAMPLE

The best test of the general results and conclusions of
the preceding section is their application to an exactly
solvable problem exhibiting the main features of the more
realistic model considered there. The simplest test exam-
ple is

1 8H= ——
Bx

1 (} x +X+ +PxX,
2M ()X'

(52}

where we identify the "electronic" operator

1 (} x +XHg= —— + +PxX,
2 gx' 2

and the "nuclear" kinetic-energy operator
2

2M ()X2

(53)

(54)

For simplicity we use units in which 8=m =1 so that M
stands for the ratio of the nuclear to the electronic mass
and ~=M ' &&1.

By means of a straightforward change of variables one
transforms H into the sum of two uncoupled harmonic
oscillators with unit mass and force constants given by

M+ lg+(M —1) +4MP
(55)

The exact energy levels of the system are

E„„=(n+—,')/k++(U+ —,')Qk, n, u=0, 1,. . . ,

(56)

where n and v represent electronic and vibrational quan-
tum numbers, respectively, because k+ &)k . The per-

(T +U„+W„E)f—„=g (4„[[4,T ]&,f, (51)
mAn

where W„ is given by (13) with 4=4„. According to the
results above, in the neighborhood of the equilibrium
configuration of U„ the nonadiabatic terms on the right-
hand side of (51) are of order a . This conclusion is at
variance with the prediction of Landau and Lifshitz [9]
that those terms should be of order a .
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turbation expansion of (56) produces only even powers of
~ in agreement with the discussion in the preceding sec-
tion,

need the nonadiabatic kinetic operator

E =(n+ —') 1+ a — ~ +flU 2 8

2

+(u+ —')+1—P x — ~ +2
2 2

which follows from (63) and the corresponding expres-
sions of the preceding section, the series expansion for
the Born-Oppenheimer potential

This series shows plainly that n and U play the role of the
electronic and nuclear quantum numbers, respectively,
because E„,—E„„=0(» }. The second term in the
right-hand side of (57) vanishes when P=kl disclosing
the fact that the potential energy function exhibits a sad-
dle point for such values of the coupling constant (there
are bound states only when p (1}.The energies of this
model have branch points of unit modulus on the com-
plex M plane so that the perturbation series converges for
all v&1.

In terms of the variable s=x+pX the electronic
operator

and the series expansion for the adiabatic potential

p2W"'= " (n+-') W'J'=0
2 2

The eigenvalues of the resulting operator

8 1 —
2 vp

BQ

and

(66)

1 a' s' 1 P'
HE= —— +—+ g2

2 Q 2 2
(58)

2 2

e„„= (n+ —,'}+(u+—,')+1—P2+1 —a P2

6'„„=(u+—,
' )(/1 Pa+—n+.

—,
' . (60}

It follows from (57) and (60) that E„„—6„„=0(a ) in

agreement with (19).
To calculate the correction of fourth order to the ener-

gy we take into account that 84/BX =pd 4/ds which en-
ables us to write

d4„d4„
W„= = (n+ —,')=W„' 'z . (61)

2M ds ds, 2M

The change of nuclear variable is X=~u and noticing
that s =x+aPu we write

aC „(x,x) aC „(s)
a.

=
a, p" (62)

(63)

which is necessary for the calculation of the perturbation
correction of sixth order.

To construct the effective vibrational Hamiltonian we

describes a harmonic oscillator with unit mass and force
constant. Therefore, the electronic states
4„(x,X)=4„(s) are harmonic-oscillator eigenfunctions
and all the electronic energies

1 1—
U„(X)=n+ —+ X

2 2
(59)

have a minimum at the same nuclear configuration L =0.
According to (59) the nuclear states g„(X) are eigenfunc-
tions of a harmonic oscillator with frequency (/1 —p
and the Born-Oppenheimer energies are

K2 2 4~2

2 2
(n+ —')+(u+ —')+1—P 1 — +0(a )

2 2

(68)

The approximate energies E„' ~~=(n +—,')+a e„„agree
with (57) up to 0(a. ) thus confirming our general results.

The adiabatic energy E„„is just the Born-Oppenheimer
energy (60) plus the constant adiabatic term (61). One
easily obtains E„„E„",=0(~ —

) in agreement with (20).
Furthermore, this simple example also enables us to veri-

fy the inequalities discussed in the preceding section:
600 & E00 (E00.

IU. FURTHER COMMENTS AND CONCLUSIONS

We think that the perturbation method developed in
Sec. II is more suitable than the original procedure of
Born and Huang [5] for the systematic analysis of pertur-
bation corrections of large order in ~. Our two main
equations (9) and (14) greatly simplify the application of
perturbation theory because they reflect beforehand the
form of the results of Born and Huang [5]. Although en-

tirely equivalent to its predecessor the present approach
reveals in a simpler and clearer way the relative accuracy
of the various approximations usually made. Notice, for
example, that by just simple inspection of the main equa-
tions one derives the important results in Eqs. (19) and
(20) or compare the present calculation of the energy
correction of fourth order with the corresponding treat-
ment by Born and Huang [5]. Furthermore, present
derivation of the corrections of 6fth and sixth order and
of the effective Hamiltonian for the nuclear motion that
takes into account adiabatic and nonadiabatic effects is
straightforward.

Our treatment is more general than that followed by
Patterson [1]which applies to one nuclear degree of free-
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dom. We have extended to any number of nuclei the
proof that the nonadiabatic effects of lowest order are
negative and linear in the vibrational quantum number.

In the case of a system of Snite size (take a molecule as
a representative example) one applies the change of vari-
ables X,. =XO,. +scu; only to the degrees of freedom that
define an equilibrium nuclear configuration. If one sin-
gles out the corresponding coordinates then the applica-
tion of perturbation theory is straightforward following
the lines indicated above. To this end one simply substi-
tutes a/au, for t)/t)X, and tr M/(rnM, ) for 1/M, every-
where to rewrite the Hamiltonian operator in a form suit-
able for perturbation theory.

Some time ago Herman and Asgharian [10] derived an
effective Hamiltonian for the vibration-rotational ener-
gies of diatomic molecules by means of standard
Rayleigh-Schrodinger perturbation theory that takes into
account both adiabatic and nonadiabatic effects of order
m/M through functions of the internuclear distance.
Later, Bunker and Moss [11] obtained essentially the
same results by means of a more rigorous but at the same
time more difficult approach based on a properly
modified contact transformation. The expansion of those
functions in Taylor series about the equilibrium
configuration gives rise to a-power series showing that
the effective vibration-rotational Hamiltonian operator

obtained by both Herman and Asgharian [10] and Bunk-
er and Moss [11]contains corrections of higher order. It
is precisely the change of nuclear coordinates discussed
above followed by the appropriate expansions about the
equilibrium configuration that allows the systematic col-
lection of all the terms that depend on the mass ratio as
powers of the perturbation parameter a. For example,
the coeScient E that introduces nonadiabatic effects into
the effective kinetic-energy operator for the present mod-
el with one nuclear degree of freedom is clesely related to
the first nonvanishing term of the expansion of either of
the functions gz(R) [10]or P(R) [11]about equilibrium.

In general the adiabatic approximation allows the sepa-
ration of degrees of freedom associated to fast and slow
motions and is not restricted to the case in which one
clearly identifies heavy and light particles. For example,
the present method may be useful to treat vibrational
problems in which some of the frequencies differ marked-
ly from the others.
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