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Spline-Ggerkin methods ayylxed to Rydberg series between the 4S 'S and 3d 'D limits of calcium
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The recently introduced nonvariational spline-Galerkin method [T. Brage and C. Froese Fischer,
Phys. Scr. 49, 651 (1994)] for Rydberg series is applied to the J=O, 1, 2, and 3 even states between the
two first limits in neutral calcium. Energies for 3dnl levels up to n = 15—20 are reported and the position
of different perturbers belonging to the 4p and 4p5p configurations are investigated. The 4p5p 'Pl level

is predicted to have an excitation energy of about 61200 cm ' and the 4p5p 'D level is predicted at
about 61 600-62 000 cm ', while the 4p Sp P is just at the 3d ~D limit.

PACS number(s): 31.20.Tz, 32.80.Rm

I. INTRODUerrON

The study of Rydberg series presents us with many fas-
cinating challenges. In some cases a number of series are
interleaved and interact strongly. The presence of per-
turbers causes irregularities and gives important contri-
butions to the observed spectra. The identification and
labeling of these perturbers has caused a lot of activity in
recent years, where different methods give quite difFerent
answers (see [1]and references therein).

Calcium is of particular interest due to its special com-
plications originating in the fact that the outermost core
subshell is 3p, while the 3d subshell is empty. Even
though the 4s electron has the largest binding energy, the
3d's binding energy is similar to both that of 4s and 4p
shells. Therefore there are many overlaps between series
with difFerent limits, causing strong perturbations. An
added complication is the strong correlation between the
3d subshell and, primarily, the 3p core subshell. To use a
very simplistic argument, the fact that these two sub-
shells have the same n quantum number gives important
contributions from core-valence correlation. Calcula-
tions that include this differ in essential ways from ones
which only treat the valence correlation [2,3].

Earlier works have mainly been concerned with the
truly bound Rydberg series of calcium, below the first
ionization limit 4s S [4]. In this work we will concen-
trate on the interesting, and in many ways more complex,
region, between this limit and the second one, 3d D.
Here a number of Rydberg series, of the form 3dnl, are
interleaved and perturbers exist in the whole range, from
among the first few members of the series to close to the
3d limit. The only other calculations for the even series

[5] reported on these systems utilize the eigenchannel R-
matrix method and multichannel quantum-defect theory
[6-8]. On the experimental side, for the even-parity
states, the only investigation concerns the J=O and 2

states [9]. The odd series, of the form 3dnp and 3dnf,
have been studied much more extensively both experi-
mentally [10-12]and theoretically [12—16].

In this paper we use the recently introduced [16,17]
spline-Galerkin method to investigate these 3dnl series.
We are interested in both a nonrelativistic treatment, to
detect the possible perturbers (the 4pnp perturbers are
quite well described in LS coupling), and a relativistic ap-
proach, where shifts and spin-dependent effects are in-
cluded in the form of Breit-Pauh operators. The earlier
works are concerned only with J =0 and 2, while here we
extend the study to inc1ude also J= 1 and 3.

II. THEORETICAL METHOD

M M

%(yLS)= g c(i)P(a;LS)+ g 4(y, LS) . .

We use a notation where all functions that are overlined
are unnormalized. The first sum in this equation is over
configuration state functions (CSFs), which consist of a
coefBcient times a fixed, normalized pseudo-CSF. The
second includes channel CSFs

4(y;LS)= ((target;. ~n;I, ) )' +"L ) .

The
~ n; f; ) denotes an unrenormalized channel function

(2)

(3)

where
~ I;s ) denotes the spin angular part of the one-

electron function. In the calcium case, the target is a

The approach used in this work basically consists of
two difFerent steps: first the spline-Galerkin method,
which leads to a generalized eigenvalue problem, and
second the Breit-Pauli configuration-interaction (CI) cal-
culation, where the relativistic e8'ects are added. The
method has recently been described in quite some detail,
both for continuum- [17] and bound-state calculations
[16], so we will only outline here the most important
properties and assumptions of the method.

Very important for the present discussion is the mul-
tichannel form of the atomic state function (ASF) with
pseudostates. In the nonrelativistic case it is
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CSF with one electron outside the closed core. The nota-
tion implies that the channel function is coupled to the
target according to the usual angular momentum rules, to
form a total L and S. The basic philosophy will now be
that all the radial functions for the target and the pseudo-
states are taken from Hartree-Fock calculations for Ca
For a given set of limits, all possible pseudostates, with
two electrons outside the closed core, and all possible
channels, which can couple to the given LS, are included.
To be able to treat the quasibound states above the 4s S
limit we exclude all pseudostates and channels built on
this limit and orthogonalize all s channel functions to the
Hartree-Fock 4s level of Ca+.

As an example, let us look at the 'D' series. %e in-

clude the target states

31 D, 4p P, 5s P, 4d D, 5p P, 4f F,
which are the six lowest, above the 4s S level. The pseu-
dostates included will then be

nel functions

P„ i (r)= g a (i)B,(r) .
t =- t

All through this work we are using 8 splines of order 8.
By inserting the approximate form of the ASF from

Eq. (1) in the Schrodinger equation, we get

l8 —E)'P(yLS) =residual=O .

According to the Galerkin condition [23], the residual
should be orthogonal to the solution space. To impose
this, we need to choose a set of basis functions, so-called
test functions ~, which spans our solution space. This set
consists of all pseudostates

~(i)=$(a,LS) for i =1„M

and "spline channels" obtained by exchanging the radial
part of the channel functions for a 8 spline

31 4p 4d 5p 4f 315s,

3d4d, 4p5p, 4p4f, Ss4d, Sp4f

and the channels will be

3dns„3dnd„3dng„4pnp, , 4pnf„Ssndz, 4dns,
(6)

4dnd3, 4dng2, 5pnp2, Spnf2, 4fnp3, 4fnf3, 4fnh, .

The subscript denotes the orthogonality restrictions.
Only channel functions with the same subscript are con-
strained to be orthogonal. Channel functions belonging
to CSF for different total LS are never required to be or-
thogonal. All are required to be orthogonal to target
functions, which have no subscript.

Our model for the calcium atom (and ion) is improved
and the important core polarization contributions are
taken into account, by the inclusion of a model potential
[18,19]

1 r'
Z Z3(r2+r2)3

The ad is the dipole polarizability, which is known
theoretically to quite high accuracy. For calcium it is

[20]

nd =3.254 .

The cutoff radius r„however, can be chosen quite arbi-
trarily. In this work we adjust it to reproduce the experi-
rnental energy difference of 3d D and 4p P of Ca+. The
resulting value is

r, =1.35627 .

This approach is designed to get the best possible relative
position of the Rydberg series, based on the 3d D limit,
and the perturbers, based on the 4p P.

A. The spline-Galerkin method

The 8-spline basis [21,22] is introduced in our method
through the expansion of the radial part P„ I of the chan-

i

r'(i) = ((target; 8 ~l;s ) )'-' ' ' L )

for i =1,M, ; j =1,% . (11)

The Galerkin conditions then leads to

(ri'(i) ~iresidual) =0 for i = 1,M

( r~ ( i) ~
residual ) =0 for i = 1,M„j= 1,E,

which leads to a generalized eigenvalue problem of the
form

(H —ES)c=O,

where H is the multichannel interaction matrix, as de-
rived earlier [16,17], and S is the overlap matrix, consist-
ing of diagonal blocks of the overlap matrix 8

one for each channel. The c can be written

a(1)
a(2)

a(M, )

where c~ is the column vector of pseudo coefficients

c~=(c(l),c(2), . . . , c(Mp))'

and each a(i) is a column vector of 8-spline coefficient,
according to Eq. (8), for the unnormalized, radial channel
functions.

By this we can see that the form of our approximation
leads to a linear problem that can be solved by standard
procedures. Our choice of grid is based on the definition
of grid points through the array t, „
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t, =.0 for i=1, . . . , k,

t;+h for i =k„.. . , k, +m, m =1/h

t, +,= t, (1+h) for h &t, +, t,—&h,„

t,-+h,„ for —(r,„z

r. =—Vi .
Z

(16}

throughout this work:

h =0.125, hm, „=r,„=1000.

A major complication, for the bound case, occurs when
orthogonality conditions are applied on the radial chan-
nel functions, since it in principal destroys the eigenvalue
character of the problem. This is solved by a transforma-
tion as suggested by Landtman et al. [24].

B. Orthogonality constraints
%e have found that in the case of bound states, the loga-
rithmic grid is quite sufBcient. Therefore, unless other-
wise stated, we use the following grid parameters

By using the spline-Galerkin method, the multichannel
case with orthogonality constraints can be written

h(pp) EI—
h( lp)

h(2p)

h( lp)'

H(11)—EB
H(21)

h(M, p) H(M, 1)

h(M, p}'

H(1M, )

H(2M, )

H(MGMQ ) EB—
g s(M, k)Bb(k)

k

0

g e( lk)Bb(k)
a(1) a

a(2) + g s(2k)Bb(k) =0,
k

a(M)

(17}

where the H(ij)'s are the matrices describing interaction
between different "channels. " The h(ip)'s represent the
interaction between a channel and the different pseudo-
states and h(pp) is the pseudo-pseudointeraction. The
b(k) column vectors constitute the expansions for
different constraining functions and e{ik) is a Lagrange
multiplier that is nonzero only if the solution vector a(i)
is constrained to be orthogonal to b(k).

Again, Eq. (17) is transformed to an eigenvalue prob-
lem

(H' —ES)c=0,
where

H'(ij) =H(ij) — g Bb(k)ob(k)'H(ij)
k;c(ik)%0

for j=1, . . . , M, , (19)

i.e., a whole "superrow" for channel i is transformed for
each orthogonality. Spurious zero solutions will turn up
for each b(k) introduced. The matrix H' is not sym-
metric any longer, but all eigenpairs are still real. %e use
the RGG routine of EISPACK [25] to find the eigenvalues
of the H' matrix and inverse interation to find the corre-
sponding eigenvectors.

C. Breit-Pauli CI

Nzs

%(yJ)= g g o g(LSJ)+g(yLSJ),
LS k=1

(20)

III. RESULTS

The even Rydberg series between the 4s S and 3d D
limits are of the form 3dnl ' L and possible perturbers
are built on the 4p P limit. For some values of LS there
are a number of different interleaved series and the pres-
ence of a perturber enhances the complexity of this sys-
tem. To analyze these series and detect irregularities, we
will use two properties. First, the effective quantum
number n ' is defined according to

where the +t, (yLSJ)'s are a set of solutions from the
spline-Galerkin calculations, one set for each allowed LS
value. The basis functions for this CI type of calculation
are given by Eq. (1}.The details of this method are out-
lined by Brage and Froese Fischer [16]. The CI matrix
will consist of blocks, one for each pair of LS values.
Standard Racah algebra methods [26] are used to find the
angular coeScients, while the different radial integrals
appear as matrices {describing channel-channel interac-
tion}, vectors (pseudochannel interaction), and scalars
(pseudo-pseudointeraction), which have to be folded into
the interaction matrix.

The solutions obtained from the spline-Galerkin calcu-
lations, as given in Eq. (1), can be used for a CI-type cal-
culation including the Breit-Pauli operators [26,27]. In
this model the atomic state function %(yJ) is a linear
combination of (LS)-dependent functions

E (1 )
(Z N + 1 )

n '(limit)

and the quantum defect is defined as

5(limit) =n n'(limit), —

(21)

(22)
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where E~ is the binding energies relative to a given limit,
Z is the atomic number, and X is the number of elec-
trons. It is important to notice that the effective quan-
tum number and the quantum defect are dependent on
which limit is used to de6ne the binding energy.

To show the irregularities introduced by perturbers, we

will plot the quantum defect with respect to the second
3d limit, 5(3d), as a function of the efFective quantum
number with respect to the third 4p limit, n*(4p). The
latter is then basically just an energy scale.

A. Nonrelativisiic results

The 6rst step is to generate results for all difFerent I.S
terms of interest. Our aim is to investigate states with
J =0—3, so for completeness we need to include 6, F,
'F, D, 'D, P, 'P, S, and 'S. They all have different
behaviors, depending on the number of interleaved Ryd-
berg series and the presence of perturbers, so let us dis-

cuss them one at a time.

The set of pseudostates included in this case is 3d4d,
4p4f, and 5p4f and the set of channels is 3dnd, , 3dng, ,
3dni, , 4pn f„4pnh, , Ssng2, 4dnd2, 4dng3, 4dni2, Spnf 2,

Spnh2, 4fnp~, 4fnf3, 4fnh3, and 4fnk, . There are three
difFerent interleaved series present, namely, 3dnd, 3dng,
and 3dni. As can be seen in Fig. I, the behavior of these
series is very regular and no perturber is detected.

3+8

3dng&, 4pnf„4dnd2, 4dngz, Spnfz, 4fnp, , 4fnf3, and
4fnh, . In this case there are two interleaved Rydberg
series 3dnd and 3dng. Again, no perturber could be
detected.

The 'F' is very similar to F'. The same channels are
included and the three pseudochannels that will couple to
a 'F' are 3d4d, 4p4f, and Sp4f. The n'(4p)I5(31) plot
is almost identical to the F', with the 3dnd and 3dng
Rydberg series and no perturbers.

4. D'

Considerably more interesting is the D' series. The
set of pseudostates used are 315s, 3d4d, 4pSp, 4p4f,
Ss41, and 5p4f while the channels included are 3dns&,
3dnd „3dng „4pnp, , 4pnf, , Ssnd2, 4dns2, 4dnd 3, 4dngz,
Spnp2, Spnf2, 4fnp3, 4fnf3, and 4fnh&. Again we have
three interleaved series 3dns, 3dnd, and 3dng, but from
Fig. 2 it is obvious that a perturber is present. By exam-
ining the total weights of different symmetries, it is clear
that this perturber should be labeled 4psp D. In Fig. 2
we have also indicated the total weight of the 4pnp CSF
(that is, 4p 5p and 4pnp & ), for some states around the per-
turber. It is clear that no single state has a major com-
ponent of 4pnp character, but that the perturber is rather
spread out over, predominantly, the 3dns and 3dnd series.
We will return to this when looking at the relativistic re-
sults.

For this symmetry we include. the pseudostates 3d,
4d~, 4f2, 3d4d, 4p4f, and 5p4f and the channels 3dnd „

1.0 D.3dI11
9

;3 CI. Il Cl

19.3%

2.6%

3d.Ils

3

3dng Bdng

1.9 2.0 2. 1 2.2 2.3 2.4 2.5 2.6 2.7 2.B 2.9 3.0 3.1 3.2
n (4p)

0 ~ I

2. 1 2, 2

W~ rv~
I t i i i t 0 i i 0

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

n (4p)
FIG. 1. The quantum defect with respect to the 3d limit, as a

function of the e8'ective quantum number with respect to the 4p

limit, for the 6' terms above the 4s S limit of neutral calcium.
The results are from the nonrelativistic calculation with

r,„=1000a.u. {see text). The vertical line represent the posi-

tion of the 3d D limit.

FIG. 2. The quantum defect with respect to the 3d umit, as a
function of the effective quantum number with respect to the 4p
limit, for the 'D' symmetry above the 4s S limit of neutral cal-

cium. The results are from the nonrelativistic calculations with

r,„=1000 a.u. (see text). The vertical dashed line represents

the position of the 4s S limit. The numbers represent the per-

centage of 4pnp (including 4p5p and 4pnpl ) character for
di6'erent "perturbed" states.
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De

For the 'D' case we include the same pseudostates and
channels as for D', with the addition of the "equivalent
electron" pseudostates 3d, 4p, 4d, Sp, and 4f . This
series is our Srst example when 4p is the lowest per-
turber. This leads to a much lower perturbation than for
the D' case, as can be seen in Fig. 3. The perturber is
well below the 4s S limit, as represented by the vertical
dashed line in this figure.

1.0

4p

I I 1 I I

I

I

I

I

I

I

I

I

I

I

1.0

Spe

(that is, for a certain state N it is the sum of the weights

1.0
I

'
I

I

I

1.0

%'ith the L =1 and 0 cases, we have only one series,
the 3dnd series. The perturber situation is quite difFerent
in the four different cases though. For the sP' we again
have a somewhat similar situation as for the 'D'.

The lowest perturber is 4p and we first find no trace of
a 4psp perturber. To further investigate the possibility of
a bound 4psp P' perturber, we perform a somewhat
larger calculation, with r =5000 and h,„=500. The
results from this are shown in Fig. 4. The quantum de-
fect is rapidly increasing close to the limit, which indi-
cates a perturber close to it.

To deduce whether the 4p5p P' is below or above the
3d D limit, we investigate the total weight of the 4pnp
CSF (that is, 4p, 4p5p, and 4pnp, ). In Fig. 5 we give the
accumulative value of this weight

N

Cn (4pnp) = g c; (4pnp)

0 I I I

1.6 1.8 2.0 2.2 2.4 2.6 2.8
n (4p)

3.0
0

3.2

of 4pnp for all states below the Nth level). We can see
that even though the weight c; is decreasing for higher
Rydberg members, and no state above the third has a
weight of 4pnp larger than 0.005, the accumulative

FIG. 4. The quantum defect with respect to the 3d limit, as a
function of the effective quantum number with respect to the 4p
limit, for the P' symmetry above the 4s S limit of neutral calci-
um. The results are from the nonrelativistic calculations with

r,„=5000 a.u. (see text). The vertical dashed and solid lines

represent the position of the 4s S and 3d D limits, respectively.
The numbers represents the percentage of 4pnp (including 4p,
4p5p, and 4pnp & ) character for different perturbed states.
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FICr. 3. The quantum defect with respect to the 3d limit, as a
function of the effective quantum number with respect to the 4p
limit, for the 'D' symmetry above the 4s S limit of neutral cal-
cium. The results are from the nonrelativistic calculations with
r „=1000a.u. (see text). The vertical dashed and solid lines
represent the position of the 4s S and 3d D limits, respectively.
The numbers represents the percentage of 4pnp (including 4p,
4p 5p, and 4pnp& ) character for different perturbed states.

Q & I & I i I s & I i I i I & I i I s I s I i I i I i I 01.7 1.8 1.9 2.0 2. 1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

n (4p)

FIG. 5. The accumulative weight C~~(4pnp) = g, c(4pnp) of.
4pnp for the P' symmetry above the 4s S limit of neutral calci-
um. The results are from the nonrelativistic calculations with
r „=5000 a.u. (see text). The vertical dashed and solid lines
represent the position of the 4s Sand 3d D limits, respectively.
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weight increases and seems to converge to a point very
close to 1.5. This is the most extreme case of a perturber
spread out over a Rydberg series known to the authors.
The question whether a second 4pnp P' state (4p5p P')
is bound or not is still left open and might be a matter of
definition.

For all the P' calculations the pseudostates included
are 31, 4p, 41, 5p, 4f, 3141, and 4p5p and we use
the five channels 3dnd i, 4pnp i, 4dnd2, 5pnp2, and 4fn f, .

1pe

This symmetry can be predicted to give the lowest
member of the 4psp configuration, which is confirmed by
our calculations. The pseudostates and channels includ-
ed are 3141, 4p5p, 3dndi, 4pnp&, 4dndi, 5pnp2, and

4fnf, . The resulting behavior of the quantum defect is

given in Fig. 6 and the behavior of the accumulative
weight of 4pnp is given in Fig. 7. The perturber in this
case is quite localized to just a few states. It is also clear
that there is no other perturber even close to the limit.

8 9+e

1.0
r
t

. 9

3.5%

6 '-. -

30.0%

.3 'r- 3

0 ~, . I i i i i i I i I i 1

20 21 22 23 24 25 26 27 28
n (4p)

44 4%

I 0
2.9 3.0 3, 1

FIG. 6. The quantum defect with respect to the 3d limit, as a

function of the effective quantum number with respect to the 4p

limit, for the 'I" symmetry above the 4s S limit of neutral calci-
um. The results are from the nonrelativistic calculations with

r,„=5000a.u. (see text). The vertical dashed and solid lines

represent the position of the 4s S and 3d D limits, respectively.
The numbers represent the percentage of 4pnp (including 4p5p
and 4pnp 1 ) character for different perturbed states.

This LS symmetry symmetry has large similarities with
'P', starting with the fact that the sets of CSF's are the
same. The S' could be the third to fifth lowest term in
the 4p 5p configuration (clearly above the 'P' and D', but
below 'S'). From a similar analysis of this state as for
P' we can see that the perturber is clearly above the lim-

it and further away than for the P' case. The accumula-
tive weight of 4pnp S' seems in this case to be converg-
ing to about 0.2—0.3.

3;

0 I"1 22 23 24 2) 26 27
11 (4p )

28 29 30 3!

FIG. 7. The accumulative weight C~~(4ppp) = QIvc,~(4pitp) Of

4pnp for the 'I" symmetry above the 4s 'S limit of neutral calci-

um. The results are from the nonrelativistic calculations with

r,„=5000a.u. {see text}. The vertical solid line represents the

position of the 3d D limit.

10. Summary

By investigating all the different LS series, which can

give levels with J values ranging from 0 to 3, we have

found that the P', 'D', and 'S' states have the expected

4p perturber. The lowest term of the 4p 5p configuration

is without any doubt the 'P'„ followed by O'. Both these

9 1Se

The 'S' presents us with one dificult choice, concern-
ing the treatment of the 4s 'S' CSF. We choose to in-
clude it in our calculation and not treat it as a member of
the deleted 4sns 'S' series. We expect that this will give a
larger uncertainty for this series.

The pseudochannels included are 4s, 3d, 4p, 5s,
41, 5p, 4f, 3141, and 4p5p and the channels are 5sns, ,
3dnd, , 4pnp, , 4dndz, 5pnp2, and 4fnf, . There has been
a discussion of whether the 3d 'S' level or the 4p 'S'
level is the lowest state in this series (see [1,4] and refer-
ences therein). Of course, the answer is somewhat a
matter of taste, but by looking at Fig. 8 we can see that
even though almost 42% of the 4pnp (including 4p ) is
present in the second lowest state and over 70% is spread
out over the third to the eighth states. It is also in the
latter region that the behavior of the quantum defect
most resembles a case with a perturber. 3d, being the
lowest member of the 3dnd series, is in principle not a
perturber. We therefore recommend the naming conven-
tion suggested before [5] where the second state is 31 'S'
and the fifth is 4p 'S'. It is also clear that this symmetry
does not support any second "bound" perturber, below
the 31 limit, since the accumulative weight CN(4pnp) ap-
proaches 1.3.
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FIG. 8. Weight of 4pnp (that is, the total weight of 4p, 4p5p,
and 4pnp1) for the 'S' symmetry above the 4s S limit of neutral
calcium. The results are from the nonrelativistic calculations
with «,„=5000 a.u. (see text). The vertical dashed and solid
lines represent the position of the 4s S and 3d D limits, respec-
tively.

are clear perturbers in the corresponding 3dnl series.
The next candidate to be below the 3d limit seems to be
P', which in our calculation is present to 50% in the

3dnd P' series. The S' and 'S' states are clearly not
supporting any 4p5p perturber, since the accumulative
weight for the 4pnp series approaches 0.3 and 1.3, respec-
tively, in these two cases.

B. Relativistic results

The different LS series obtained from the spline-
Galerkin calculations were used in a Breit-Pauli CI type
of approach for J=0-3. Some of the most interesting
energy levels, for J=O, 1, and 3, are given in Tables
I-III, together with the LS and configuration composi-
tion. It is clear that LS coupling is only good for low n,
and for higher members of the series the coupling ap-
proaches jK coupling.

1. J=O

Our first example is the J=0 states. There are only
two different LS symmetries, which give this J value, P
and 'S. The resulting energies and compositions are
given in Table I. The jK-coupled case corresponds here
to mixing coeScients of 0.6 and 0.4, which is the
behavior we observe for high n.

There are two other results to compare with in this
case: Srst the experimental work by Bolovinos et al. [9]
and second the R-matrix calculations by Aymar and Tel-
mini [5]. The latter do not include relativistic effects in
an ab initio manner. Instead only the energy difference of
the two fine-structure levels of the limit is included, to-
gether with a transformation for LS-coupled results to a

jj-coupling scheme. A more thorough comparison be-
tween our results and these is made in a separate paper,
where also some experimental results are reported [28].
As shown there, the agreement is quite satisfactory both
with the very accurate R-matrix theory and the different
experimental results.

2. J=l

TABLE I. Excitation energies, term compositions, and
configuration compositions (in %) of J=0, even states of calci-
um, above the 4s S limit. The excitation energies are computed
with the assumption that the energy difFerence of the 4s 'S and
the 3d D limit is 62 992.564 cm

Energy
(cm ') Label

Term comp.
's

Config. comp.
4s 3dnd' 4pnp

2 892.86' 4s 2

38 445.47' 4p
41 875.27' 3d
49 532.25 3d
53 673.17 3d4d
54 671.04 3d4d
57 267.41 3d 5d
57 738.99 3d 5d
58 833.83 4p
59 400.78 3d 6d
59 719.76 3d 6d
60 378.35 3d 7d
60 527.26 3d 7d
60 999.75 3d 8d

62 340.81
62409.82
62 427.59
62 479.87

0.00 100.00 91.55 0.46
99.94 0.06 0.00 24.95
0.07 99.93 1.59 55.52

99.98 0.01 0.00 77.45
0.13 99.87 0.48 90.65

99.86 0.14 0.00 93.51
0.23 99.77 0.45 88.50

99.63 0.37 0.00 95.54
0.18 99.82 0.49 71.29

98.14 1.86 0.00 95.86
1.82 98.18 0.11 80.75

89.73 10.27 0.00 96.30
10.29 89.71 0.00 93.97
82.54 17.46 0.00 97.08

35.20 0.00 99.35
48.98 0.00 98.25
52.14 0.00 99.71
37.83 0.00 98.65

3d 14d 64.80
3d 14d 51.02
3d 15d 47.86
3d 15d 62.17

'Sum over all 3d, 3d4d, and 3dnd components.
Sum over all 4p, 4p 5p, and 4pnp components.

'State below the 4s S components.

7.88
74.65
42.16
21.83

8.36
6.29

10.08
4.36

25.98
4.05

17.91
3.62
5.75
2.88

0.64
1.73
0.28
1.34

More interesting than J=0, from a theoretical point of
view, are the J=1 levels. In this case we have four con-
tributing LS series D, P, S, and 'P. We have already
seen that both D and 'P contain a perturber and the P
probably has one not too far from the limit. The result-
ing energies and compositions are given in Table II.

In Fig. 9 we show the "4pnp-composition spectra" as a
function of the number of the eigenvalue. The first few
high values correspond to the 4p P& perturber, while

the first tall narrow peak at eigenvalue number 32 is

4p5p 'P&. Both these are quite concentrated, with one ei-

genvalue containing more than 50% of the 4pnp charac-
ter. The D& state, however, is spread out over a number
of eigenvalues, represented by the cluster of shorter peaks
around eigenvalue 35-45. Not obvious from this figure is
the presence of the 4p5p Pj and, possibly, S& close to
the limit. This is obvious, however, in Fig. 10, where we
show the accumulative weight of 4pnp, Ctt(4pnp), as a
function of n'(4p). The span of the different perturbers
are clearly seen, in an energy scale: first the broad 4p
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TABLE II. Excitation energies, term compositions, and configuration compositions (in %) for J = l,
even levels in neutral calcium, above the 4s S limit. The energies are computed with the assumption of
a 3d D limit energy of 62 992.564 cm

Energy
(cm '} Label 3D

Term comp.
P S 36fns

Config. comp.
3dndb 3dng' 4pnp

61 034.61
61 074.18
61 202.57
61 302.07
61 303.56
61 330.52
61 398.66
61 461.55
61 475.41
61 622.71
61 656.58
61 664.44
61 693.75
61 729.31
61 765.23
61 800.36

3d8d
3d10s
4p5p
3d9d
3d8g
3d9d
3d9d
3d9d
3d 11s
3d 10d
3d 10d
3d 9g
4p5p
3d 10d
3d 10d
3d12s

0.68
99.83
7.09

90.78
98.77
0.43
6.25
2.89

97.08
89.25
12.33
94.21
50.56
45.92

8.07
96.64

97.32
0.00
0.05
1.39
0.18
4.38
0.20

92.41
1.11
0.79
7.19
0.90
3.71
2.56

83.17
1.61

1.83
0.00
1.33
0.77
0.05

85.39
8.52
4.15
0.00
0.40

54.12
4.57

21.51
12.24
7.27
0.02

0.17
0.17

91.53
7.07
1.01
9.79

85.03
0.56
1.80
9.56

26.37
0.32

24.22
39.28

1.49
1.73

0.00
98.66
0.57
0.07
0.00
0.06
1.05
1.18

92.30
3.82
1.95
0.06

15.50
17.30
4.46

68.72

97.08
0.12

47.43
80.67
11.68
93.52
80.50
95.91
2.94

81.11
87.55
7.04

55.72
69.78
93.42
11.88

0.00
0.01
0.01

12.37
87.35
0.02
0.02
0.00
0.03
0.39
4.58

92.61
2.12
0.23
0.00
0.13

2.89
1.17

51.75
6.81
0.83
6.37

18.32
2.87
4.63

14.40
5.77
0.15

26.14
12.45
2.10

18.89

'Sum over all 3d Ss and 3dns components.
Sum over all 3d2, 3d4d, and 3dnd components.

'Sum over all 3dng components.
Sum over all 4p, 4p5p, and 4pnp components.

TABLE III. Excitation energies, term compositions, and configuration compositions (in %) for
J =3, even levels in neutral calcium, above the 4s S limit. The energies are computed with the assump-
tion of a 3d D limit energy of 62 992.564 cm

Energy
(cm ') Label 'G

Term comp.
F D

Config. comp.
3dns' 3 g' '

p p

61 702.12
61 779.96
61 820.74
61 843.26
61 844.01
61 880.10
61 895.37
61 919.89
61 922.32
61 923.47
61 927.06
61 968.54
62 003.38
62034.74
62 035.20
62 063.10
62070.60

3d10d
3d 10d
3d 12s
3d10g
3d10g
3d11d
4p5p
3d11d
3d10g
3d10g
3d 10i
3d11d
3d11d
3d11g
3d11g
3d12d
3d13s

3.73
1.45
0.04

55.03
0.00

70.58
16.57
7.65

44.87
1.65

99.99
1.77
2.07

54.99
0.00

76.92
3.86

0.31
89.11
2.35

19.06
19.17
0.22
4.80

17.61
20.61
32.86
0.00
2.88

81.21
19.07
19.48
0.07
0.68

53.08
4.62

97.40
0.00

66.81
8.64

74.74
30.23
0.09

35.88
0.00

73.25
11.15
0.00

66.30
4.95

95.40

42.88
4.82
0.20

25.90
14.02
20.57
3.89

44.51
34.43
29.61
0.01

22.10
5.57

25.94
14.22
18.07
0.05

0.76
0.81

63.92
0.00
2.28
2.50

25.23
9.02
0.00
2.83
0.00
6.42
1.32
0.00
0.15
2.60

88.00

96.01
97.59
9.80
0.01
0.04

96.54
55.58
58.13
0.02

14.09
0.00

82.18
97.28
0.01
0.06

97.37
8.03

0.05
0.03
2.16

99.94
97.50
0.04
0.70

20.83
99.91
78.69
0.02
0.28
0.06

99.95
99.64
0.01
0.01

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00

99.98
0.00
0.00
0.00
0.00
0.00
0.00

3.12
1.53

23.55
0.00
0.11
0.89

18.12
11.70
0.00
4.31
0.00

10.88
1.30
0.00
0.09
0.01
3.80

'Sum over all 3d 5s and 3dns components.
Sum over all 3d, 3d4d, and 3dnd components.

'Sum over all 3dng components.
Sum over all 4p, 4p Sp, and 4pnp components.
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1.0

8
4p P,

.7—

1.0 There exist experimental and other theoretical values for
this Jvalue, from the same sources as for J=0 [9,5]. The
agreement between our calculations and the older results
is again quite good [28].

4. J=3

.6—
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FIG. 9. Weight of 4pnp (that is, the total weight of 4p2, 4p5p,
and 4pnp& ) for the J=1 levels above the 4s ~S limit of neutral
calcium, as a function of eigenvalue number. The results are
from the CI Breit-Pauli calculations with r,„=5000 a.u. (see
text).

and second the 4p5p over a smaller energy range, but
spanning up to the limit.

3. J=2

For this J value, the possible LS symmetries are E, D,
P, and 'D. The perturbers, as predicted from the nonre-

lativistic calculation, should be 4p P, 'D, and 4p5p D.
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FIG. 10. The accumulative weight C~~(4pnp)= QNc2(4pap)
of 4pnp for the J=1 levels above the 4s S limit of neutral calci-
um. The results are from the CI Breit-Pauli calculations. The
dashed and sohd lines represent the position of the 4s S and
3d D limits, respectively.

For J=3 there is again one perturber present, the
4p5p D3. The resulting energies are given in Table III.

IV. SUMMARY

We have combined the recently introduced spline-
Galerkin method with a Breit-Pauli CI approach, to in-
vestigate the structure of even levels above the 4s S limit
of calcium. The main Rydberg series are based on the 3d
limit and are of the form 3dnl. Perturbers appear
through the lowest members of Rydberg series based on
even higher limits, in this case the 4p P. By first investi-
gating the different series in a nonrelativistic approach,
we could deduce which perturbers could be expected to
appear beneath the 3d D limits and which ones are not
"bound. " Interaction between different LS series is in-
cluded through a final, relativistic, J-dependent calcula-
tion, since the LS approximation breaks down for higher
n values. This is due to the fact that while the electro-
static interaction between the outer nl electron and the
inner 3d decreases, the spin-dependent interactions are
fairly constant since they are induced by the common 3d
electron. The involvement of configurations with the 4p
occupied will induce even stronger mixing. As we can
see from the different tables, the LS coupling breaks
down quite early in the series. The best way of describing
these states would probably be in a jK-coupling scheme.
At the same time, the perturbers 4p and 4p5p consist of
two inner electrons and are quite accurately described by
the LS coupling.

The influence of a certain perturber on a Rydberg
series can appear in many different ways. Sometimes the
interaction between the series and the perturber is quite
weak and there is clearly one particular level that should
be designated to the perturber. At other times the in-
teraction is strong and the influence of the perturber is
spread out over a large number of levels. In the latter
case it is clear that the identification of one certain label
as the perturber is mainly a matter of convenience.

We have seen in our examples how different perturbers
can be detected from quantum defect analyses. We have
also seen that a way to determine whether a certain per-
turber is below the limit or not is to investigate the "ac-
cumulative weight" over the Rydberg series. Every time
it increases by more than one unit we have another com-
plete bound perturber. The three lowest terms of 4p5p il-
lustrate these points perfectly. First the quite weak in-
teraction between the 4p5p 'P& and the 3dnd Rydberg
series gives a localized perturber. One level has more
than 50% 4pnp character, as can be seen from Table II,
and the labeling is unproblematic. When it comes to the
4pSp D levels, the situation is much more complicated.
We have indicated this in Table IV by giving a range of
the influence of certain perturbers. There is no single
state, for any of the three J values, that has snore than
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TABLE IV. The excitation energy (in cm ', above the 4s 'S ground state) of difFerent perturbers of
the even Rydberg series of calcium. The lower and upper limits of the range give the excitation energy
of the lowest and highest energy levels that have more than 10% of the perturber character. The exper-
imental values are from Sugar and Corliss [29] and Bolovinos et al. [9].

Present

Level Experiment
Nonrelativistic Relativistic Range

Lower limit Upper limit

4p 'Po
4p2 3P

4p P,
4p D2
31 'So
31 F2
31 'F3
3123Po

31 P
31 P
31
4p Sp
4pSp 'P&

4p5p D&

4p 5p D2
4p5p 'D3

38 417.543
38 464.808
38 551.558
40 719.847
41 786.276
43 474.827
43 489.119
48 S24.093
48 537.623
48 563.522

58 535

61 919.7

38 593.74
38 593.74
38 593.74
40 996.26
41 924.80
44 344.24
44 344.24
49584.41

49584.41
49 584.41
49 420,20
58 850.11
61 250.49
61 877.81
61 877.81
61 877.81

38 445.47
38 481.49
38 547.97
40 938.64
41 875.27
44 316.56
44 339.12
49 532.25

49 552.18
49 583.07
49 383.91
58 833.83
61 202.57
61 693.75
61 740.79
61 89S.37

57 267.41
61 202.S7
61 622.71
61 740.79
61 820.74

59719.76
61 398.66
61 800.36
61 806.57
61 968.54

30% of the perturber character. The actual naming of
the perturber has here been done by also looking at the
trend along the series for different terms. The ambiguity
in the identification of this perturber has to be remem-
bered when comparing the present results with other
theories and experiment. For the 4p5p P levels, finally,
the position is, if below the 3d limit at all, so high in the
corresponding Rydberg series that its width will span a
large number of Rydberg states. It is therefore complete-
ly diluted in the series and could not be detected by inves-
tigating the composition of a single Rydberg state at a
time. Instead we have to look at the accumulative weight
or the quantum defect trends.

We have listed all the detected perturbers, together
with the 3d levels, in Table IV. For the second
configuration built on the 4p limit, 4p5p, we detect four
perturbers below the limit, 'P, and D& z 3. The PJ lev-
els might, to more than 50%%uo, be below the 3d limit, but
our calculations cannot detect this with a large certainty.
It is quite clear, though, that the 4p5p S, 'D, and 'S lev-
els are all above the limit.

Our results agree quite well with other theories [5] and

experiments [9], especially considering the uncertainties
introduced by two different approximations. First, com-
pared to the R-matrix calculation by Aymar and Telmini,
we use a very simple approximation for the core-
polarization potential, with only one adjustable parame-
ter (compared to their 16 parameter potential). Second,
we do exclude the effect of the 4snl series and continuum.
This makes the results for all states below the 4s limit
quite unreliable and it also excludes the possible energy
shift from interaction with the continuum. On the other
hand, the present work includes the Breit-Pauli interac-
tion explicitly to describe the mixing of terms. A detailed
comparison between our results and others has been done
elsewhere [28].
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