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The Green’s functions of the recently discovered conditionally exactly solvable potentials are
computed. This is done through the use of a second-order differential realization of the so(2,1) Lie
algebra. So we present the dynamical symmetry underlying the solvability of such potentials and
show that they belong to a general class of solvable and partially solvable potentials.
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I. INTRODUCTION

The so(2,1) Lie algebra [isomorphic to su(1,1) and
sl(2,R)] is known to generate a family of exactly solv-
able (ES) potentials, among them the harmonic oscilla-
tor, the Coulomb and Morse potentials [1]. This was pre-
sented in a unified way using a direct construction of the
50(2,1) generators [2] or with the Milshtein-Strakhovenko
method [3,4]. So it seemed that, at least, the one-
dimensional so(2,1) class of potentials was exhausted. In
fact, the so(2,1) Lie algebra can also be used to describe
two, three, and higher dimensional systems [5].

Recently, however, it was pointed out that there is a
special class of exactly solvable potentials which can be
mapped into a harmonic oscillator although with a re-
striction in some of its parameters. They were called con-
ditionally exactly solvable (CES) potentials. They were
discussed independently by Stillinger [6] and de Souza
Dutra [7]. Probably due to historical reasons, Stillinger
has not perceived that the potentials he was studying
were only the first representatives of a broaden class.
In fact, two-dimensional examples were recently added
to this family [8] and also some other one-dimensional
ones are under investigation [9]. Furthermore, a super-
symmetric origin for these potentials was discussed in
Ref. [10].

What distinguishes the potentials belonging to the
CES class, is that it is only possible to get exact solu-
tions when specific conditions are provided. Namely, the
exact solvability is only possible when some of the poten-
tial parameters hold fixed to a very special value [6-10].

Until 1979, as far as we know, only two classes of
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quantum-mechanical potentials were known, the exact
and the nonexact ones. But in that year, Flessas [11]
presented examples of potentials that could be solved an-
alytically only when some constraints among the poten-
tial parameters were obeyed. Besides only part of their
spectra could be obtained exactly, the remaining should
be obtained by standard numerical calculations. This
new class of potentials were called quasiexact solvable
potentials (QES) or partially algebrized [11-15]. This
last name was due to the observed fact that it was only
possible to generate algebraically the exact part of its
spectrum [13-15].

Now a natural question is that of wondering if there is
a dynamical algebra behind the exact solvability of the
CES class of potentials. In fact, we are going to show
that the algebraic method used before was not quite as
general as one could have thought and we will improve
this method in order to enlarge as wide as possible the
class of dynamically generated so(2,1) potentials. The
result is that the method that we are going to obtain
can generate both ES, CES, and QES potentials. This is
possible through a redefinition of the resolvent operator
with an arbitrary scaling and the consequent relaxing of
a condition related to the fact that the Hamiltonian of a
nonrelativistic system usually does not possess first-order
space derivatives.

Furthermore, we hope it is possible to do a systemati-
zation of the quest for new CES potentials through the
use of dynamical algebras. For this we will improve the
method developed in Ref. 4, and also get the Green’s
functions for these CES potentials.

This work is organized as follows: in the second section
we perform the necessary improvements in the approach
used in Ref. [4], in order to deal with CES potentials. In
the third section we obtain the CES from the so(2,1) Lie
algebra in a systematized way. Section four is devoted
to obtaining the Green’s function of the CES potentials
and in the last section we do our final considerations.
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II. THE ALGEBRAIC METHOD
AND THE so(2,1) GENERATORS

The imposition of a dynamical algebra on a quantum
system, corresponds to saying that its Hamiltonian must
be written as a combination of the corresponding gener-
ators. In the present case we use the so(2,1) Lie algebra,
whose generators satisfy the relations,

[Ty, T5) = —iTy, [T2,T5) = —iTs, [Th,Ts) = —iTs.

(2.1)

Besides we will use a second-order differential operator
realization, in such a way that the Hamiltonian shall be
constructed as a linear combination of the generators.
In general, second-order generators obeying (2.1) can be
written [4] as

o d d
_ 2— 1-
Ty, = agz*™? dxz—i-al:l: J I + apz™?, (2.2a)
i d
T, = — Ecc i 1 B, (2.2b)
Ty = A, (2.2¢)
where § = (&) (2 +j-1) and A = — (205 7).

Naturally the parameters o; and j (# 0), will be chosen
conveniently to construct a desired Hamiltonian. In fact
a usual Hamiltonian does not possess a first-order space
derivative so in practice we will set a; = 0. However, in
the following for generality, we left a; free but at the end
of the calculations the above restriction will be applied.

Performing a point canonical transformation z =
F'(u), the generators (2.2) become [4]

LW &
Tl — 2 F(u)2 duz
L F@) <a1 o (u)F(u)) d
F(u) F(u)? du
+ao F(u)™, (2.3a)
_ _tFw) 4
A PR (2.3b)
T3 = X F(u)?, (2.3¢)

where the dot stands for derivatives in variable u. At this
point, one can see the appearance of a linear derivative
term in the generator T (even when a; = 0). Asin gen-
eral the Hamiltonian for an one-dimensional Schrodinger
equation, does not have such a term, it is necessary to
eliminate it. So we started with a system free of first-
order space derivatives, implement a canonical transfor-
mation which brings up such a term and then we need
a second transformation to end up with a Hamiltonian
again without first-order space derivatives. For this we
begin by remembering that the Green’s function obeys
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the nonhomogeneous equation:

(H - &) Ge(z,2') = §(z — z'); (2.4)

and consequently, due to the form of the generators T3,
it is necessary to introduce the resolvent operator [4],

Ao P57 0 g
F(u)?

=go+g1 Ty + g2T> + g3 T3, (2.5)

where g; (¢ = 0,1,2,3) are arbitrary constants, that will
be fixed in each case. From this resolvent operator we can
apply the algebraic method and find the corresponding
Green’s function [4]

Gg(u,u') — "‘j Z€2wiu(4k/\)u+l
<[F(u)F ()] F(u)F ()]
> n! LY[4kAF(u)?] LY [4kAF (u'))
x Z F(n+v+1)[go+ k(v +1+ 2n))

x exp{—zk,\{F(u)J’ + F(u')7]}, (2.6)

where LY (z) are the Laguerre’s polynomials [16] and

2
4
k= 9193 y:ﬂ:l\/(l—ﬂ) _ o
2 7 _ Qaz az

Note that the poles of the Green’s function determine
the energy spectrum through

(2.7)

go+k(v+1+4+2n)=0 (n=0,1,2,...), (2.8)
once the energy £ is related to these parameters.

Here, the idea is to redefine the Green’s function, and
also the resolvent operator, in such a way as to elimi-
nate the first-order derivative term in the generator T;
which appears in Eq. (2.5). From this point we change
the approach presented in Ref. [4]. The easiest way of
discarding the linear derivative term in (2.3a) is to choose

F(u)F (u)
a = o,
F(u)?

but this will restrict undesirably the class of potentials
that could be generated by the algebraic method. A sim-
ple way to circumvent this restriction is to introduce an
arbitrary scaling in the Green’s function,

Ge(z,z') = eP@) +RE) S (2 o), (2.9)
so that we can choose h(z) in order that S¢(z,z’) obeys
an equation where only second-order derivatives appear.
Consequently we have that

A=(go+aTi+ g2To + gsTs) e +AE)
=@ HRED) (g0 4 o TY + g Ty + g3 Ts). (2.10)

Under this change the generators become
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7 & i d
1 % 53 + [2 a2 h(u) + a4] 7u + Ao, (2.11a)
iR d () 1F@
Ta = J F(u) du (6 + J F(u) h( )) ’
(2.11b)
Tz = X F(u), (2.11c)
where we defined
_  Fu*?
= e
(2.12a)
o F (o FaF
YT Fw T P )

and
Ag = ay [h(u) + h(’u)z] + a; h(u) + ap F(u)J
(2.12b)

Finally, we can choose h(u) in order to get a vanishing
first-order derivative term in the generator T, so we get

%}Lﬁ (al — Qs M), (2.13)

h(u) = — -
(u) F(u)?
whose solution is given by

1 F(u)
h(u) = 3 In (F(u)%) . (2.14)
Substituting this h(u) in Eq. (2.12b) we get
_a[Flw) 1 (P | 3e P
2 |F(u) 2 \F(u oz F(u)
a o F(u) ’
v (o) (F(u)) ]
a—zl- (igzg - g—i %) + agp F(u)j_ (2.15)

From now on we will make some particularizations on
the generator (2.11a) and the resolvent operator A, Eq.
(2.10). Without any loss of generality we take oy =
g2 = 0and g = 1. The first choice reflects the fact
that an usual nonrelativistic Hamiltonian of a general
form does not possess first-order space derivatives and
the second is a normalization constant. In this case we
obtain

A = h(w) + A (M"_’) o - &),

P (2.16)

where

2917
R2 d?
Hob=—p gm + AV
. 2
+ (%‘j—;) lao + goF (u)? — gsAF (u)%],
(2.17)
with
. 2
_# [ 1Fw 8 (Fw
AV(w) = = [ 1Fw * s (F@)) } (2.18)

Now we are prepared to generate the one-dimensional
family of so(2,1) potentials including the CES class. This
is going to be done in the next section.

III. CES POTENTIALS
FROM so(2,1) LIE ALGEBRA

In this section we will obtain a family of one-
dimensional so(2,1) potentials, with the method devel-
oped above. This family includes the classes of ES, QES,
and CES potentials. The first two were extensively stud-
ied in the literature [1-4,11-15] and we will concentrate
on the CES potentials [6,7] which is our main interest
here. So we are going to see how the so(2,1) Lie algebra
can generate this new class of potentials. With this in
mind, we redefine the arbitrary function F(u) through a
translation

F(u) = f(u) + q, (3.1)
where a is an arbitrary constant. It is easy to see that
apart from the kinetic term, the Hamiltonian in Eq.
(2.17) has a potential of the form

V(w) = £ + AV(u)

———-f(u) 2(1 u aj

+g3 A [f(w) + a]¥}, (3-2)

with AV (u) remaining unchanged in its form, because
F(u) = f(u). The above expression for the poten-
tial V(u) can accommodate a large family of potentials
including ES, QES, and CES. In fact, its form is quite
general and for practical purposes we will make some
restrictions on it, in order to elucidate its analysis. Re-
membering that the potentials discussed in Ref. [7] were
mapped into a harmonic oscillator, and also that for the
harmonic oscillator, the constant j is taken to be equal
to 2 [4], we make this choice in Eq. (3.2), obtaining

V(u) =€+ AV () + f(u)’ [a + 20 f(u)

+gaAf(u)® + (3.3)

[Fa) + a}z]
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where we defined « = go + Agza?and o = Aa gs.
Note that with the choice ; = 2 we can only describe
potentials which could be mapped into a harmonic os-
cillator. This can easily be seen taking f(u) = u — a
which turns V(u) into a simple harmonic oscillator plus
a centrifugal barrier. Other choices for j would lead
to different potentials. For example, taking j = 1 and
f(u) =u —ain Eq. (3.2) we get the Coulomb potential
plus a centrifugal barrier [4].

As we are looking for exact potentials, the potential
V(u) in (3.3) cannot be energy dependent, contrary to
what happens with the quasiexactly solvable potentials
[11-15]. So, at least one of the terms in (3.3) must be a
constant. This is necessary to cancel the explicit depen-
dence of V(u) in the energy.

This condition is expressed through the following non-
linear differential equations

o f(u)? f(u) = 12 (3.4a)
~Ags f(u)? f(u)® = 722, (3.4b)
oEr s (3.4
382 ()
B (m) = 74 (3.4d)
-
% ;Eu; = 7", (3.4e)
. 2
h? 1 f(u) 3 [ f(w) _
R ) + 3 (m) = ~62. (3.4f)

The solution of each one of the above equations will
give us a transformation linking the harmonic oscillator
with a particular potential. In some cases it will be an
exactly solvable, in other ones it will be a CES and may
also be a QES one.

The first three equations have the solutions:

flu) = u?/3, (3.5a)
flu) = ul/? (3.5b)
flu) = €% — a, (3.5¢)

where we choose the constants conveniently, without any
loss of generality. The third transformation (3.5¢c), leads
us to the Morse potential, as described in Ref. [4]. The
other two lead us, respectively, to the two CES studied
formerly [6,7]. The first transformation gives the follow-
ing potential,

5% 1 4 2 x
V@B ()= -2 4 £ 4= |20 + Agsud + —
(W)= —opnz T € +g|2o T Agus +
(0% N
. (3.6)
u?s (ug + a)

So, we must take £ = —80/9, in order to keep V(2/3) ()
energy independent. This general potential is, in fact,
not exactly solvable since the presence of the term with
coefficient ay depends on the energy £. In order to get
a complete solution we must take oy = 0 rendering this
QES potential a CES one, since the strength of the cen-
trifugal barrier has a very special value of —5A%/72u [7].
Substituting these choices in Eq. (2.8) we find the energy
spectrum (v = +1/2)

1
£ = ig\/a+ 1/9—23 (n+ 5) (n=0,1,2,..), (3.7)

in accordance with previous results [6,7]. The second
transformation, Eq. (3.5b), gives the potential

20 «@
ul/2  y

(3.8)

with the same choices as before. Again the term with
agp brings this potential a QES one. Taking ap = 0 it
becomes a CES one with the strength of the centrifugal
barrier fixed to —3A2/32u [7]. The energy spectrum is
given by Eq. (2.8):

e 1/2
a+4€a+(-§£> (n%—}):o (n=0,1,2,...) .

A 2
(3.9)
which is easily shown to be
283 119 , ad?€ ot
= = £  =0(n=0,1,2,..),
3 (n+ 2) tafi+ ——+ o (n )
(3.10)

as was expected [6,7].
The remaining three conditions (3.4d)—(3.4f) lead to
the following transformations:

f(u) = ke™ (3.11a)
for both (3.4d) and (3.4e), and
£(w) = tgh(yu) (3.11b)

corresponding to (3.4f). The transformation (3.11a)
leads to the following potential (ap = 0):

ﬁz,yz
8u
+k%y2gae® (k22T 4 2kae™™ + a?],

Vg(u) =&+

(3.12)
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which is a QES potential since £ = —A%y%/8u and the
constant v appears in all the potential terms leaving
Ve(u) energy dependent. Notice that no choice for the
other parameters in (3.12) can remedy this situation.
The last transformation (3.11b) leads also to a QES
potential because the same relation between energy and
parameters is present here, as can easily be verified with
its substitution in the general potential, Eq. (3.2). Many
other QES potentials can also be generated by taking for
example j # 2 in (3.2), but we will concentrate on the
CES ones since for this class we can find the analytical
|

Ge(u,u') = =5 Y ¥ (4kA)" P {[f(u) + a][f(v) + a]}
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solution for the entire spectrum. Let us now discuss the
Green’s function for the CES found above.

IV. GREEN’S FUNCTION
FOR THE CES POTENTIALS

Now, once we have established the one-dimensional
so(2,1) CES potentials we are going to present their
Green’s function. Applying the rescaling (2.9) and the
shift (3.1) into Eq. (2.6) we have the Green’s function
for an arbitrary so(2,1) potential (a; = 0):

jv+1

»|

9 i n! LY{4kA[f(u) + a)’} LL{4kA[f(v') + a}’}
L(n+v+1)[go+ k(v +1+2n))

n=0

exp (= 2kM[f(u) + a + [f (') +a}'}). (4.1)

This general form can be restricted to the cases discussed in the preceding section. For V(2/3)(u), Eq. (3.6), with

f(u) given by (3.5a) we find (g =0; j=2; k=/g3/2)

+1/2

)=-2 )

v=—1/2

ng/s) (u,u

ezm‘u(4k/\)u+1[(u2/3+a)(ul2/3+a)]

+ a)?] LX[4kA(w'*® + a)?]

2v+1
2

Z n! L:[4kA 2/3

F(n+v+1)[a—aoc+k(v+1+2n))

exp{—2kA[(u*/3 +a)2 + (W +a)2]}. (4.2

From this Green’s function it is easy to obtain the wave functions (up to a phase) which satisfy the Schrédinger

equation for that potential:

2n!

LW =\t

(4k2) "5 (u?/?

Note that n (= 0,1, 2, ..

™ LY [4kA(u?/® + a)?] exp{—2kA(u?/3 + a)?}.

.) is the usual principal quantum number and v (=

(4.3)

+1/2) defines the parity of the solution.

Owing to the relation between Laguerre and Hermite polynomials [16], one can see that this solution coincides with
the previous results for this potential appearing in the literature [6,7].
An analogous situation occurs for the potential V(1/2)(u), Eq. (3.8). With the transformation (3.5b) we find its

Green’s function (ap =0, j =2,k = 4/g3/2)

+1/2

G ()= -2 3 AR @2 4 ) + a)) ™

v=—1/2

> n! LY[4kA(u/? + a)?] L[4kA(w'"/?

+1

E T {22 + a)? + (@2 + 0)?]),

n=0

and the corresponding wave functions

2n!
T e K A

x L¥[4kA(u/? + a)?]
x exp{—2kA(u'/? + a)?},

(4.5)

in accordance, as before, with the literature [6,7]. We
limit ourselves in discussing the Green’s function for the
CES potentials since it is well known that it is meaning-
less to construct such a function for a QES potential once

P(n+v+1)[a—aoc+k(v+1+2n)]

(4.4)

only part of its spectrum is exactly solvable. The other
exactly solvable potentials were discussed before [4].

V. CONCLUSIONS

In this paper, we have shown that the class of poten-
tials which can be described by the so(2,1) Lie algebra
can be enlarged, adding to it the CES potentials to the
previously known ES and QES ones. The approach used
here led to obtaining the Green’s function for these po-
tentials, from which we have found their spectra and wave
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functions in accordance with the literature [6,7].

So far, we have only considered one-dimensional sys-
tems but the technique employed here can be extended
to systems in two, three, or arbitrary dimensions with
symmetries described by direct sums of the so(2,1) Lie
algebra, as is well known for the ES and QES potentials
[4,5,15]. This is presently under investigation, and we
hope to report on it in the near future.

As a final comment let us mention that the discussion
presented here about the so(2,1) potentials is restricted
to the ones for which the Hamiltonian can be written in
terms of the second-order generators of so(2,1) Lie alge-
bra. This essentialy takes care of the potentials which can
be mapped into a harmonic oscillator. However, another
approach based on first-order generators is also known
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and in this case the Hamiltonian is related to the Casimir
operator of the so(2,1) Lie algebra. This second approach
leads to another family of so(2,1) potentials which are de-
formable into Posch-Teller potentials [17]. At present it is
not clear how the discussion of this paper can be applied
to this second family of so(2,1) potentials.
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