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Approximate treatment of the Dirac equation with scalar and vector potentials of rectangular shapes
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The Dirac equation with a scalar potential U&(r) and the fourth component of a vector potential

U&(r) is considered in the case of rectangular shapes of these potentials with the same radius R; approxi-

mate analytic expressions are derived for the single-particle energy of bound states in certain cases. The

results obtained with these expressions are compared with the corresponding "exact" results obtained by

solving the eigenvalue equation numerically. It is found that very good results are obtained for the

ground state and for quite a wide range of values of R with one of the proposed expressions. Even the

corresponding nonrelativistic version of this expression has not been derived before, to our knowledge.

PACS number(s): 03.65.6e, 21.60.Cs, 21.80.+a, 21.10.Pc

The Dirac equation with a scalar potential Us(r} and

the fourth component of a vector potential Uv(r) [1,2],

2

V„„„,i
= U+ (r)+ [ U+ (r) —s][U (r)+s]

2ls A' c

[ca p+fjlsc'+f3Us(r)+ Uv(r)]

has attracted much interest in the past (see Refs. [2,3],
and references therein}. In this equation a and P are the
usual Dirac matrices, 4 the Dirac spinor, and E the total
energy E =a+pc .

By expressing the Dirac spinors in terms of large (6)
and small (F) component:

iGNlj(r}

Vso(r, s)

D'( r)—D'( r) r

—[2D (r)] 'D "(r}

+ D(r)[—D'(r)], (6)
4

1 1 dU (r) l.ts .
2p [2lsc +e+U (r)] r

where

P

Nljm P (r)tr. r 'Pljm

The potentials U+ (r) are defined as
(2)

U+(r) = Us(r)+Uv(r) .

We consider the case in which U+(r) and U (r) are
square wells with the same radius R [5] and depths D+
and D, respectively, i.e.,

mr m

tpl, m ( l X—igi)im (3) Ug(r) =—D~[1—8(r —R)],
and g, &2 are the Pauli spinors, one may derive from (1)
the following Schrodinger-type equation (for central po-
tentials) [4]:

g "(r) +—( V „t g+ Vso —s} g(r)=0,l (l +1) 2p,

r

(4)

where

g(r)=D ' (r)6(r),

D(r)= [2jsc +a+ U (r)] .1

6 is the large component of the Dirac wave function and

where 8 is the unit step function.
Square-well potentials, in particular of infinite depth

have been used in applications of nonrelativistic quantum
mechanics in spite of their crudeness because of the ana-
lytic expressions to which they lead. As it was also point-
ed out recently [6], the eigen values of the one-
dimensional Schrodinger equation with a potential which
is a sum of even powers of x may be calculated, by using
the eigenfunctions and eigenvalues of the infinite square
well.

The generalized Dirac equation with the. square-well
potentials we are discussing may be solved (semi}analyti-
cally, for every bound state [7]. The expressions for 6
and F are given in terms of spherical Bessel functions jI
and spherical Hankel functions of the Srst kind hI'" and
are

j,(nR)
6(r)=Nnr [1 B(r —R)]jl(nr)+8—(r R)

&il
hl"'(i—nor)

h,& "(tn,R )

(10)
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F(r) =N ncfi [1 —e(r —R)] [nrji, (nr)+(k l—)jl(nr)]
E, +2Pc —D

j&(nR)+e(r —R ) „[inorhi'"&(inor)+(k —l)h&' '(inor)]
E+2pc h&"'(inoR )

while the energy eigenvalue equation is [7) where X = 1,2, 3, . . . , l =0, 1,2, . . . , and

D1—
2Pc +6

EnoRhi i (inoR )

h( "(inoR )

(k 1}D— nRj &,(nR }
+ . . (12}

2pc'+ e j,(nR)

C —1 D (2pc)

+ (n—oR )
1

(2p, /l )D+R

In these expressions the quantities n and no are defined as
follows:

1/2

n = (D++e)[1 (D ——e)(2pc2) '], (13)

D
+ noR 1—

2Pc +E

no= 2p
[
—e[1+e(2pc ) ']]

1/2

(14)

(k 1)D-
2pc +e

2

(18}

and k =+(j+—,') for j=(1+—,'). The quantum numbers

in G, F, e, and N have been suppressed.
The disadvantage with eigenvalue equation (12) is that,

in general, it cannot be solved for e and thus it is not pos-
sible to have an explicit expression for the energy in
terms of the potential parameters. We show in this pa-

per, however, that in certain cases this can be achieved
approximately in a rather satisfactory way. Thus one is
led to fairly simple approximate analytic expressions for

Before proceeding we recall that usually in practice
D is adequately smaller than 2pc and D+ much small-

er than D
Let us consider the case in which nR and noR are

sufficiently larger than (1/2)(1+1) (see also Refs. [8,9])
so that we may use the following asymptotic form for
j~(nR) and hi "(inoR):

(2N+1} n.
nR

4(1+As )

where

(19}

A,s =A,0[1+CR ]

D R
2

0 ~2 +

' —1/2

(20a)

(20b)

We are interested in the case of a well of suSciently
large depth D+ and radius R. Thus if we write Eq. (17) in

terms of the arcsin of the small quantity

x =nR [(2p/fi )D+ R ( 1+C„)]
we may keep only the leading term in the expansion of
arcsin x and obtain the eigenvalue equation in the ap-
proximate form

1 . l~
j~(nR)= sin nR—

nR 2

h'"(in R)= e
noR

Thus Eq. (12) may be written in the form

(15)

It is interesting to note that if we neglect completely
the terms of order (2pc )

' the eigenvalue equation (12)
goes over to the corresponding nonrelativistic one. In
this case Eq. (19) may be written in the form

fi (2N+1)n.
(21)

8p (I+A, ) R

noR +nR cot nR — = [noR —(k —1)] .
2JMc +c This is an approximate expression of the nonrelativistic

energy for a particle of mass p in a square-well potential
of depth D+ and radius R. In the case of the s states the
above expression is reduced to a known approximate ex-
pression [10]derived from the corresponding Schrodinger
eigenvalue equation.

An approximate relativistic expression for the energy
may be derived from expression (19) if the unknown ener-

gy which appears in terms which are expected to be small
is estimated by means of (21). In this way we obtain the
following approximate expression for the relativistic en-

ergy which we shall denote by ez&.

(16)

It is seen immediately that for the ground state 1s, /2

(1 =0, k = —1) this equation coincides with the exact ei-

genvalue equation for this state (see Appendix of Ref.
[5]). For the excited states, however, it is approximate.

Equation (16) may be written in the following form,
which is suitable for our treatment:

n R = D R (1+C }sin (2N+1) nR, (17)——
+ R 2
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fi {2N+l}n

8p', (1+A. ) R

where p', is a type of "efFective mass" given by

pst=p[1+(sNR, —D )(2pc ) ']

(22)

(23)

and A,„, is given by (20a) in which the energy in the ex-
pression of Ca has been substituted by sNtt, [expression
(21}]. The above procedure may be iterated. Thus we
may use as expressions for the energy in ps& and A,a&

which appear in (22) the ones obtained in the previously
described way and so on.

An improved expression for c may be obtained if in-
stead of retaining only the leading term x in the expan-
sion of arcsin x:

x l(3)
M

2(3) 2(4)5

=x [1+F(x)], (24)

that is, instead of setting F(x)=0 we write, as in a simi-
lar expansion [11],F(x)=F(x'~) where x'~ is the expres-
sion resulting from the eigenvalue equation solved ap-
proximately with arcsinx=x. This procedure leads in
the nonrelativistic case to the following expression for the
energy which we shall denote by eNaz, i.e.,

CR3=2D+ —1+Xo(2N +l —1)— (30)

' 1/2

X,=g
JMg3

and p,~3 is calculated from the expression of

p =@[1+(e D)(2—pc2) ']

(31)

(32}

by using for the energy the corresponding nonrelativistic
expression [9]

NR3 +
—1+A, (2N+l —1)—0 2

(33)

pression of Ca has now been estimated with sNR [expres-
2

sion (25)].
We discuss also the case of states for which in addition

~s~ &&D+. This condition is satisfied for loosely bound
states in a sufBciently deep well. In this case it may be
seen from Eq. {16), in analogy with the corresponding
nonrelativistic treatment [9],that the cotangent should be
close to zero. Thus we arrive at the following approxi-
mate expression:

where

+
A' (2N+l) tr

8p (1+F,)'R'

arcsin [Q(2N +1)n /[2( 1+A o }] jFo=
(2N + l)n /[2(1+ Ao) ]

In the relativistic case the corresponding expression is

(2N+l) H
8p 2 (1+Fa ) R

(25)

(26)

Expressions (30) and (33) gave usually poor results in the
cases we studied. However, an alternative expression
which gives considerably improved results in a variety of
cases (see below) may be derived by using expression (17)
and the following expansion for the arcsin(1 —z) (see ex-
pression 4.4.42 of Ref. [12]):

arcsin(1 —z) =—
2

(2 )
1/2

where

arcsin[A, Rz(2N +l)n /[2(1+A, Rz)] j
(2N+ l )n /[2(1+Aaz)]

(28)

1(3)5 (2k —1)
2 "(2k+1)k!

(34)

psz=p[1+(sNRz —D )(2pc ) '] (29) lzl &2 .

and A,Rz is given by (20a) in which the energy in the ex- We write, on the basis of Eqs. (17}and (34},

TABLE I. Energy eigenvalues of various states obtained with D+ =30, 55 MeV, D =300 MeV and various values of R
(R = 1.01A ' „fm). The values (in MeV) obtained with the numerical solution of the eigenvalue equation (12) are denoted by c,„while
those obtained with the approximate expressions by s„, and e„~ {see text for these expressions and also for the expressions of Q, nR,
and n&R).

A core

12
15
39
50
88

137
207

R
2.31 0.35
2.49 0.31
3.45 0.22
3.72 0.21
4.49 0.17
5.21 0.15
5.98 0.13

1$]/2

nR noR

2.14 1.76
2.21 2.07
2.47 3.61
2.50 4.03
2.60 5.16
2.68 6.18
2.72 7.27

&ex &R&

11.2 9.2
13.1 11.6
19.8 19.4
21.1 20.8
23.6 23.5
25.1 25.1

26.3 26.2

&R2

11.8
13.4
19.8
21.1
23.6
25.1

26.3

nR noR

3.4 2.5
3.5 3.0
3.7 4.3
3.8 5.5
3.9 6.6

&13/2

9.5 5.5
11.9 8.8
16.7 14.8
19.7 18.3
21.9 21.0

9.0
10.9 4.1 1.1
15.6 4.7 3.1
18.7 4.8 4.5
21.1 4.9 5.8

—
CR1

—
CR2 nR noR

1d g/2

1.6
8.4

13.0
16.5

8.8
13.5

10.5
14.3

~R1 ~R2
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TABLE II. Energy eigenvalues of various states obtained with D+ =30.55 MeV, D =300 MeV, and various values of R
(R =1.013,'„, fm). The values (in MeV) obtained with the numerical solution of the eigenvalue equation (12) are denoted by c,,„
while those obtained with the approximate expression by cR4 (see text).

~ core

12
15
19
27
31
39
50
88

137
207

~R4

11.3
13.2
15.1
17.6
18.5
19.8
21.1
23.6
25.2
26.3

S 1/2

&ex

11.2
13.1
15.0
17.5
18.4
19.8
21.1

23.6
25.1

26.3

&R4

1.4
4.4
5.8
8.1

10.6
15.5
18.7
21.1

P3/2
&ex

1.8
5.6
7.12
9.5

11.9
16.7
19.7
21.9

~R4

0.3
3.2
4.7
7.3
9.9

15.2
18.5
21.0

P i/2

~ex

0.5
45
6.1

8.7
11.3
16.3
19.4
21.8

5.5
10.3
14.2

5/2

&ex

8.4
13.0
16.5

4.5
9.6

13.8

d 3/2

&ex

7.5
12.4
16.2

(2N + I)— nR—=arcsin(is nR )

=——(2z)'i 1+
2 12

(35)

where AttnR ,=1—z. This equation may be easily solved
to a good approximation with respect to 1 —z for z

sufficiently small. Such a procedure has not been fol-
lowed, to our knowledge, even in the nonrelativistic case.
The final result for the energy eigenvalue is

R4= —D++
2@* R

where

(36)

(A,s —3)(7—3attt )
X 1+ 1—

(4~it —
3&ivi )' (37)

with aNt =(2N +l —1)(n./2).
The energies entering p' and A,z may be evaluated by

using for s the sN„4 which is of the same structure as (36)
but with ls instead of p and with A,o instead of A,x in the
expression of eiv, .

In order to test the accuracy of the approximate ex-
pressions cR& and c.R2, numerical calculations have been
performed and the results were compared with those ob-
tained by solving numerically the eigenvalue equation
(12). The following values of the parameters were used
(see Ref. [5]): D+ =30.55 MeV, D =300 MeV, and
R =re A,'~„(re =1.01 fm), A„„being the mass number
of the core nucleus. These are rather reasonable values
for the potential parameters of a A particle in its ground
state in hypernuclei. It should be noted that there is not
much difference if the values D+ =30.77 MeV, D =443
MeV, and ro= 1.022 fm are used instead.

The results obtained for the 1s»2, 1p3/2 and 1d,&2

states and for various values of R (and therefore of A.o) are
displayed in Table I. The results for the states lp, &2 and

1d3rz are usually rather similar. The smallest value of
A„„used corresponds to z C while the largest to ~ Pb.
In each case the values of the "exact" relativistic energy

s,„for the rectangular potentials that is the one obtained

by solving numerically the eigenvalue equation (12) and
the approximate ones cR& and cR2 are shown. In addition
the quantities nR and noR calculated with e,„are also
displayed. It is seen from the results of this table that for
the 1s and 1p states and mainly for the larger values of R
which correspond also to larger values of nR and noR the
approximate expressions c.R, and c„2 are good approxi-
mations to c.,„. From the same table it is also seen that
the results with cR2 are better compared to those ob-
tained with cR&. In some cases the improvement is con-
siderable.

In Table II the results obtained with c,R4 are displayed
for various states and values of R and are compared with
those obtained with the numerical solution of the eigen-
value equation. It is seen that for the ground state the ac-
curacy of s„4 is very good both for the smaller and for
the larger values of R. We further observe from both
tables that for the higher states the accuracy of the vari-
ous approximate expressions is deteriorating quite rapid-
ly. It should be noted, however, that the accuracy de-
pends on the values of D+ and R. If in a physical prob-
lem the values of these quantities were larger, the accura-
cy for each state should have been improved.

%e may conclude that the analytic expressions c,R, and

ER2 give, in a number of cases, single-particle energy
values which are fairly close to those obtained from the
numerical solution of the eigenvalue equation, derived by
means of the Dirac equation with potentials Uz and Uz
of rectangular shape and of the same radius. Expression
ER4 gives in general better results than s„, (or than sR2,
for the ground state).
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