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We cast the quantum mechanics of multichannel systems in the broader mathematical framework
of Hamiltonian phase-space Sow. This Bow results &om symplectic transformations that preserve an-
tisymmetric products, namely, metric relations among alternative solutions with the same dynamics.
This viewpoint affords new insight into recent successful phase-amplitude methods.

PACS number(s): 03.65.Ca

I. INTRODUCTION

The fragmentation of atoms and molecules proceeds
through "channels" characterized by alternative distribu-
tions of constituents, of energy, and of angular momen-
t»r» among the fragments. Chemical reactions proceed
generally by combining reactants into a complex which
then fragments. An initial framework, encompassing all
fi'agmentation processes, was outlined by one of us in
1981 for atoms and molecules [1] on the following basis:

(a) Each configuration of a system with N constituents
(electrons and nuclei) can be represented by a single
point of a 3(N —1)-dimensional space, whose axes consist
of the constituents' coordinates in their center-of-mass
frame. Polar coordinates in this space, with origin at
the system's center of mass, consist of a "hyperradius"—
the system's radius of inertia R = gP,. m;r2/M, where
M = P,. m;—and of (3N —4) hyperangles (O} repre-
senting the 2(N —1) directions r"; of the constituents and
the (N —2) independent ratios cr; = tan (r;/r;+i).

(b) The Schrodinger equation for atoms or molecules,
governed by Coulomb forces, takes in hyperspherical co-
ordinates the general form

1 o)

2M BR2

A2

R2 )@(s,0) = Eo(RQ),

where A represents a "grand angular momentum" oper-
ator [2] and C(O) an effective "squared electric charge"
operator. The system's dynamics centers on the nonzero
cor»i»utator of A and C(O). [Differences among the par-
ticle masses are incorporated in C(O).]

(c) A complete set of eigenfunctions of (1) is identified
by a set of quantiim numbers P (one for each angle in
the set O) appropriate to the R ~ 0 limit where the cen-
trifugal potential in (1) dwarfii the Coulomb interaction.
The set P includes the index A labeling the eigenvalues
of A2 and specifying radial boundary conditions,

4p ocR" as B —+0. (2)

Further elements of (P}distinguish eigenfunctions of A2
degenerate in A. All but a finite subset of this infinite set
has negligible amplitude at any finite value of R; as R in-

creases, the gradual expansion of the significant subset of
()9}affords an opportunity for visualizing and organizing
the full set.

(d) At the opposite "fragmentation" limit, R ~ oo,
each eigenfunction 4'p resolves into a superposition of
components fragmenting through alternative channels i,

@p -+ ) P; (O) exp(ik;R)R~' J~+p

+exp( —ik;R)R ~'J,.
p .

Here, the angular functions P; (O) exhibit narrow lo-
calizations on the hypersphere, focused on fragmenta-
tjon "directions" (actually configurations of the system)
which embody the result of shorter-range correlations
among the constituents. Further propagation into the
true fragmentation channels involves a transformation to
difFerent coordinates incorporating the distance between
the (weakly interacting) fragments and the internal coor-
dinates of each fragment. The significant particle corre-
lations manifest themselves in the smooth evolution from
short-range channels P to the "prefragmentation" chan-
nels i via the Jost matrices J~+& and J~&. The study of
Eq. (1) aims at constructing these matrices.

(e) At any given total energy E, some of the (i}chan-
nels are "closed," meaning that E does not prove s»s-
cient to carry the system to complete fragmentation in
that channel. The k, values of this subset are imaginary,
whereby one of the exponentials in (3) diverges; the di-
vergence is then removed by considering only superpo-
sitions g&Ap%'p whose coefficients of divergent terms
vanish [3].

On this basis, Ref. [1] contemplated a partial separa-
tion of hyperradial and hyperangular motions through
approximate "adiabatic" functions

@„(R,O) = F„(R)4„(R;O). (4)

Each angular function @„represents a mode of corre-
lation in the hyperangular degrees of freedom (depend-
ing parametrically on R) that arises by disregarding the
radial kinetic energy in (1). Each 4„thus describes
an eigenchannel of the balance between centrifugal and
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Coulomb potentials, satisfying the (3N —4)-dimensional
equation

each eigenvalue U„{R)serves as a potential for the com-
plementary radial equation

(5b)

This approximation, patterned after the familiar Born-
Oppenheimer approach to molecular physics, implies (in-
correctly in this case) that the motions in 0 governed
by (5a) are much faster than the motion in R governed
by (5b); it also disregards all correlations between these
motions altogether. These correlations are instead ac-
counted for in separate steps that mix different adiabatic
channels; for example, the recent "diabatic by sector"
method has proven successful in reproducing the spectra
of moderate excitations [4].

The adiabatic procedure (5) has nevertheless yielded
valuable results, long before as well as after its formula-
tion in Ref. [1], particularly by classifying multiply ex-
cited states [5]. On the other hand, it has failed al-
together to encompass the simultaneous escape of two
electrons &om an atom, near its energy threshold, out-
lined semi-classically by Wannier in 1953 [6]. Recently
a transparent semianalytic procedure has been devel-
oped in our group displaying a progressive superposition
of base channels —whether adiabatic or not —of the full
Hamiltonian of (1) and steering its solution toward &ag-
mentation channels of type (3) [7,8].

At this point, a seminal remark has been introduced by
V. Aquilanti et aL [9] which places all treatments of mul-
tichannel processes within the &amework of the Hamil-
tonian mechanics of phase-space trajectories. Hamil-
ton's canonical transformations are "symplectic" [10,11],
meaning that they conserve antisynUnetric products of
the form qipq —q2pi. This product establishes a re-
lationship between pairs of states (1,2) governed by
the same dynamics but differing in their initial distri-
butions of potential and kinetic energies. Analogous
symplectic transformations occur in the evolution of
pairs of Schrodinger wave functions (gi(x), @2(z)), an
evolution that preserves their antisynnnetric Wronskian
/id/2/dx $2d@i/dz, w—hich vanishes when gi ——@2 but
peaks when their phase difference reaches 90'. Section II
will detail how this relationship emerges &om replacing
Schrodinger's second order equation by a pair of first or-
der equations, much as Lagrange's equations are replaced
by Hamilton's [12].

The connection between wave-mechanical multichan-
nel treatments and Hamiltonian phase-space trajectories
emerging &om Ref. [9] will be developed here in greater
detail. We view the oscillations of single-channel wave
functions, propagating radially from an origin toward in-
Gnity, as the counterparts of a variable-&equency oscilla-
tor's behavior in the course of time. This correspondence.
to be developed in Sec. II, wiH lead naturally to wave-

mechanical phase-amplitude formalisms. By the same
token. Sec. III will show the radial propagation of niul-

tichannel wave functions as corresponding to the long-
time evolution of coupled-oscillator systems. The long-
term behavior of genic coupled oscillators may appear
more complicated than the corresponding &agmentations
of molecules into constituent species. Yet critical aL~G

highly specific structures are known to emerge, e.g. , &om
the collective vibrations of large biochemical entities. a
correspondence that might be worth pursuing.

We are thus outlining a correspondence between the
Poiv of trajectories in a classical phase space and the
evolution of a multichannel quantum system as it de-
velops outward &om its center of mass or inward Pron&

its &agmentation axes. The transition from short- to
long-range behavior, i.e., &om (P) to {i)channels, there-
fore proceeds smoothly, as envisioned in Refs. [7,8j.
These developments are not basically new; they have
been collected here to cast multichannel quantum physics
in a fuller light.

II. SINGLE-CHANNEL FORMULATION

The most familiar connection between classical and
quantum mechanics arises in the semiclassical limit,
where the WKB approximation applies. In this case, for
potentials varying slowly over a wavelength, the quan-
tum mechanical phase corresponds to Hamilton's princi-
pal function S for classical motion in the same potential
[13]. This is the best-known example of an (approximate)
phase-amplitude (PA) method.

We focus here instead on alternative classical-quantum
correspondences, also connected to Hamilton-Jacobi the-
ory, leading to exact PA methods. Our classical system
will always consist of an oscillator, or set of oscillators, for
any quantum Hamiltonian. For simplicity, we begin with
a single space dimension x. The stationary-state wave
function Q(x) for a particle in a potential V(z) satisfies
the time-independent Schrodinger equation

(6)

where k (x) = 2[E —V(z)] denotes twice the kinetic en-

ergy of the particle in units with 5 = m = 1. The minus
sign in (6) stems &om the imaginary unit i in the momen-
tum operator p = i(d/dx), whose si—gn indicates the di-
rection of motion. Specializing 6rst to a plane wave, i.e.,
to a constant V(x), (6) yields two linearly independent
solutions @+ = exp(kikz), whose fiow is represented by
the Qux operator

namely,

Alternatively, we may write solutions to (6) in terms
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dq
pt

dp—= —k q.
dx

Identifying the coordinate x with time, Eqs. (9) represent
Hamilton's equations of motion for a harmonic oscillator
with the Hamiitonian

of real-valued functions f = sin kx and g = cos kx repre-
senting standing waves and leading directly to an analogy
with a classical Hami&tonian phase fiow. Standard pro-
cedures [14,15] reduce second-order equations like (6) to
pairs of first-order equations, treating the wave function
and its derivative as a pair of independent functions to
be determined. In this context, we denote the wave func-
tion f and its derivative df/dx by the suggestive labels q
and p, reducing (6) to the system

2E .
q = sink(x+ xp). (14)

The Hami&ton-Jacobi procedure thus diverts the focus
of the problem from ordinary position and moment»m
coordinates to coordinates that emphasize the overall
phase shift b = kxp and size (identified by the total en-

ergy) of the oscillator's displacement. This change of em-
phasis foreshadows the Hamiltonian generation of phase-
amplitude methods.

Both E and zp become functions of x in the presence
of a potential V(x), with motion generated by adding
hH = —V(x)qz to the oscillator's Hamiltonian. The
Hamilton-Jacobi theory then determines equations of
motion for xp and E (Chap. 11 of [16])

12 122H= —p + —kqz.
2 2

(10)
M,H = —2k V(x) sin k(x+ xp),

The propagation in x of the wave function f thus cor-
responds to the fiow in time of the oscillating q. At
each phase-space point (q, p), the right-hand sides of (9)
determi»e an infinitesimal symplectic transformation—
depending on q, p, and on the tim- which tells the so-
lution where to fiow next. Distinct fiows (qz, pz), (q2, p2)
remain independent. In the language of symplectic ge-
ometry, this independence conserves the antisymmetric
bilinear form

dE BEH = 2k 'EV(x) sin 2k(x+ xp).
dx Bxp

(15b)

Equations (15) establish xp and E as evolving accord-
ing to their own Hamiltonian flow, which expresses the
progressive deviation of the wave function from the plane
wave (14) as it encounters more and more of the poten-
tial. Translating (15) in terms of the phase shift via the
scale transformation b = k@0 yields

q&p2 —q2py = const. —= —2k 'V(x) sin2(kx+ b), (16a)

Recalling that p represents here the derivative of q, Eq.
(11) expresses the well-known conservation of the Wron-
skian of two independent solutions qz and q2 of Eq. (6).
Still treating kz as a constant, we write the plane wave
solutions @+ in terms of the independent real functions

f and g: @+ = f +ig. The fiux (7) then becomes

&(4")= ~(f g)

Conservation of the flux, of the Wronskian, and of the
symplectic form (ll) are thus equivalent.

Classical mechanics capitalizes on conserved quanti-
ties through the Hamilton-Jacobi theory, i.e., by a time-
dependent symplectic transformation —with a generating
function S(q, P, t) from the orig—inal phase-space coordi-
nates (q, p) to a new pair (Q, P) that are constants of the
motion (Chap. 10 of [16]). When k(x) is constant, the
conserved moment»m P is identified with the total en-

ergy E of the oscillator,

dE = 2k 'EV(x) sin2(kx+ b),z (16b)

reminiscent of Calogero's variable phase approach to the
radial equations of scattering theory [17,18],wherein b(x)
represents the scattering phase shift due to a potential
that vanishes beyond x. The fiow of b(x) steers 8 toward
the correct value of the phase shift in the limit R —+ oo.

An alternative and very useful single-channel PA
method results Rom a deeper examination of the classical
oscillator. Lewis [19] observed that the time-dependent
oscillator exhibits a constant of the motion, to which
Eliezer and Gray [20] gave a geometrical interpretation
by embedding the one-dimensional oscillator in a plane.
Consider in addition to the oscillator's motion along one
direction q an independent motion along an orthogonal
space axis q'. The oscillator then orbits in the (q, q')
plane, with Hamiltonian

E = —p + —k q = (k coskx) +——k (sinkx) = —k,1q 1 22 1 2 12 . 2=12
2 2 2 2 2

1 ('dry, (d8)H„=—
~

—
~

+rz
~

—
[

+ k'(t)r'

i.e., with half the squared flux. The conjugate position
coordinate Q, also conserved, turns out to be a shift xp
in the x coordinate. In terms of these constants, the
position coordinate q (i.e., the real wave function f) reads
[cf. Eqs. (10)—(21) of [16]]

in the polar coordinates r = gq2+ q', tan8 = q'/q.
Because H„does not depend explicitly on 8, the angular
moment»m 1 = r2(d8/dt) is conserved; this is Lewis' in-
variant. Lewis and Leach [21] exploit this invariant by a
canonical transformation to the phase-space coordinates
(Q, P) = (8, l), subject to a Hamiltonian fiow



2896 JOHN I,. BOHN AND U. FANG

d8 BK / dl BK
dt 88

The Hami&tonian for this How,

(19)

~=) q) (R)&p(~).

This expansion reduces the partial difFerential equation
(1) to a set of coupled ordinary difFerential equations in
B,

d2r t+ k (t)r ——= 0.
dt2 r3 (20)

where

depends on the solution r to the radial equation of motion
(termed the "auxiliary equation" by Lewis)

d gp ) kppi qpI .
P)2

(25a)

Any solution of (20), together with the angle 8 from
(18), determine the general solution to the original
time-dependent oscillator,

kp'p, (R) = f dAYp(A) 2ME — +2M Yp. (A)
h.2 C(Q)

q(t) = 2.(t) sin[8(t) + Hp]. (21)

Following our classical-quantum correspondence, (21)
leads to the PA form for two independent (indeed, out of
phase) solutions to the wave equation (6):

f (z) = a(z) sin[/(z)], g(z) = a(z) cos[P(z)], (22)

whose amplitude cx and phase P satisfy

(i2 cx + k2(z)a ——= 0, —= —, (23)dz2 dz A

respectively. Here the Hamiltonian fiow of 8 around the
fictitious (q, q') plane has reproduced the PA method of
Milne [22] (also developed independently by Young [23]).
In this case, the conserved quantity t denotes the con-
served Wronskian of f and g (or equivalently the fiux of
f + ig) rather than the angular momentum. The Milne
phase P(z) [with boundary condition P(0) = 0] fiows to-
ward the total phase as R i oo, facilitating the identi-
fication of bound states, and the construction of phase
shifts due to channel xxxvcing, as described in the next
section.

[The form (23) seems to have made the problem need-
lessly difficult, by replacing a linear second-order equa-
tion (6) with a nonlinear second-order equation. How-
ever, Korsch and Laurent [24] emphasized that both the
phase and amplitude are smooth functions of the depen-
dent variable, an idea later refined by Robicheaux et aL

[25]. The Milne formalism thus replaces oscillating wave
functions with smooth monotonic functions better suited
to numerical evaluation. ]

III. MULTICHANNEL TREATMENT

A. Symplectic transformations of basis channels

plays the role of a coupling matrix.
Expansion into the harmonics Yp advances the solution

to (1) in two ways: first, it shifts the focus from contin-
uous variables 0 to discrete variables P, and therefore
from partial to ordinary diff'erential equations; second, it
introduces pairs of harmonics, in the form ~)9)(P'~, form-
ing a basis of operators whose superpositions represent
observables that embody all particle correl(xtionx) [26].

Exploiting the Hamilton- Jacobi theory we reduce (25a)
to Hamiltonian form, just as in the single-channel case,
defining for each channel "position" qp a conjugate "mo-
mentum" pox ——de/dR, yielding the analog of Eqs. (9)
and (10),

dqp BH
dR Bpp

'

with the Hamiltonian

(26)

H(qp, pp, R) = —) pp+ —) qpkpp (R)qp.
2

p 2pp
(27)

Each channel )9 thus maps in the classical analogy to one
degree of freedom in a collection of coupled harmonic
oscillators with time-dependent spring constants.

This analogy may not help us immediately to visual-
ize the quantum dynamics, for coupled oscillator systems
generally exhibit their own complicated behavior. Nev-
ertheless, we stress here that the motion of the oscillator
system unfolds in time, just as the interactions among
channels manifest themselves as R grows, both driven by
the same underlying symplectic structure. Specifically, in
the 2n-dimensional phase space (q, p) of a classical sys-
tem with n degrees of freedom, symplectic transforma-
tions are generated by 6rst-order equations of the form

The xnultichannel PA treatment of Eq. (1) (Chap. 19 of
Calogero [17]) follows the single-channel treatment fairly
closely, with certain re6nements to be described in this
section, begi»ing with the selection of basis channels.
Following remark (c) of the introduction, we select a
complete set of "hyperspherical harmonics" (Yxx). We
expand the full wave function 4 in terms of this complete
set with R-dependent coeKcients denoted by qp, antici-
pating their identi6cation with classical coordinates:

where A, 8, G are n x n matrices, with 8 and G syxnmet-
ric. The 2n x 2n matrix in (28) is termed "Hamx&tonian"
or "infinitesimally symplectic" [11].

Thus far we have not specified the choice of the chan-
nels P. Many such choices exist, corresponding to alter-
native ways of parceling out the total radius of inertia
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R among groups of constituents. These alternatives—
indexed by "Jacobi trees" [27]—yield equivalent results
in the end, but should be chosen for ease of interpreta-
tion in any given application. Transformations between
sets of Jacobi coordinates imply changing the angles (0)
on the hypersphere and therefore the quantum numbers

(P). Nevertheless, expansion into a new set of harmon-
ics (P} yields the same close-coupling equations (26) and
(27). Transformations between Jacobi trees thus also en-
tail symplectic transformations, since they leave the form
of Hami)ton's equations invariant. Indeed, the separation
of (27) into two terms involving qp's and pp's separately
suggests viewing such a transformation as a point trans-
formation, i.e., as a change of coordinates alone. An
example would be any orthogonal (or unitary) transfor-
mation in a space with axes labeled by different sets P.

Transformation to adiabatic channels, mentioned in
the introduction, amounts to a slightly less trivial co-
ordinate transformation. The adiabatic approximation
transforms from P channels to p channels that reduce k~

to its diagonal form ks2 at each R, thereby continually
seeking "normal mode" coordinates. This transforma-
tion is also symplectic, as pointed out in Ref. [9]. A
straightforward calculation shows the residual nonadia-
batic coupling to be taken into account via equations of
the form (26), but with the Hamiltonian

of the motion in the coefficients of fp and gp of an arbi-
trary channel wave function

p = fpap+gpbp, (3o)

1
AH = —) qp (k, )pp, qp,

'pp
(31)

representing formally the coupling between the classical
oscillators. The explicit equations of motion, analogous
to (16), work out to

dap - (ao) (as)
Lpp 'p+Lpp bp)

pl

"bp - i (~), (ss)

R
——) ~Lpp, ap +Lpp,R )

(32b)

corresponding to the two constants of integration of the
second-order Schrodinger equation in channel P.

The multichannel PA results are now almost trivial.
In the presence of (ki2)pp —the remaining ofF-diagonal
portion of k2—the former constants ap and bp become
functions of R, governed by the additional Hamiltonian

= 2).J» —).p»P»»q» + 2):q»(ko)„„q»
PP

Lpp' gp (kl)ppi fp Lpp,
—

gp (ki), gp, (32c)

(29)

representing coupling via elements of the first derivative
operator in the adiabatic basis, P»» ——(y, ~8/M~p, '}, fa-
mi&iar from the Born-Oppenheimer theory. Reference [9]
introduces further a sequence of symplectic transforma-
tions to "post-adiabatic" bases, aimed at mininnzing
channel coupling. We stress here that all these bases
are formally equivalent; their choice is largely a matter
of preference, governed by their ability to display the
coupling meaningfully. Thus spherical harmonics have
proven useful in applying the PA method to the diamag-
netic Kepler problem [7], while an adiabatic basis has
proven more relevant to studying two-electron excitations
in helium [8].

(ba) (bb)
Lpp, —— fp (ki)p—p, fp, Lpp,

—— fp (ki)p—p, gp,

(32d)

identical with the PA equations (14) of Ref. [7]. The
coupling matrix L in (32) has the form of an infinites-
imally symplectic matrix (28). Once the "hard" part,
i.e., construction of the single-channel Milne functions, is
complete, the problem reduces to the linear, first-order
system (32).

A final step, relevant to interpretation and described
in detail in Ref. [7], rearranges various solutions qp into
eigenchannels of constant phase shift. Owing to separa-
bility at R = 0, the wave functions (24) may originate
in any channel PD. Our notation reflects this fact by ap-
pending the index Po to all relevant quantities:

B. Floor tom short- to long-range behavior qpp. = fpapp. + gpbpp'

Turning now to the dynamic evolution of the multi-
channel system (26) and (27) in a basis of hyperspher-
ical harmonics P, we may as a first approximation re-
duce the system to uncoupled channels by ignoring ofF-

diagonal elements of k2. Each channel P, with squared
wave number kp~p, possesses taro linearly independent so-
lutions, regular and irregular at R = 0, denoted by fp
and gp. These are conveniently expressed as the Milne
functions fp = opsin4p and gp = npcosPp, with Pp
vanishing at R = 0. As indicated in Sec. II, each Vkon-
skian W(fp, gp) is conserved, representing the conserved
channel fiux. However, we actually identify two constants

Recognizing app, and bpp, as coefficients of the sinelike
and cosinelike Milne functions, Ref. [7] constructs their
ratio, the "short-range reaction matrix" [3]

K-(R) =) bpp. (. ')-
po

(34)

In a single channel, K would represent the tangent of the
channel's phase shift b, relative to the regular solution.
In the multichannel context we diagonalize Kpp, pro-
ducing R-dependent eigenchannels ~p(R)}. Each of these
channels accumulates a phase shift b~(R), defined as the
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inverse tangent of the pth eigenvalue of Epp .
Preliminary applications of the PA formalism have

shown, in the simple systems of Refs. [7] and [8], that
the eigenchannels [p) do evolve in a physically mean-
ingful way. In the diamagnetic Kepler problem, the
[p)'s display alternative localizations in "Landau" and
"quasi-Landau" regions of configuration space, that is,
along and across the magnetic field axis, respectively
[7]. In the analysis of two-electron excitations in. he-

lium, the evolution of each phase shift has revealed cou-
pling between adiabatic channels beyond the expected
coupling at avoided crossings of the relevant potential
curves [8,28]. These additional interactions reflect the
dressing of the squared wave number (kiz)pp by Milne
functions in Eq. (32). Channel interactions are enhanced
whenever the phases of two channels become nearly de-

generate. EfForts are in progress to identify phenomena
in which these interactions manifest themselves. A fur-
ther step in the PA program, also being developed, seeks
eigenchannels of total phase rather than of phase shifts,
thus eliminating the need for radial basis functions f and
g.

ACKNOWLEDGMENTS

We are indebted to V. Aquilanti for advance communi-
cation of Ref. [9], and to numerous colleagues for critical
comments. Preparation of this paper was supported by
NSF Grant No. PHY92-17874, and by the University of
Chicago.

[1] U. Fano, Phys. Rev. A 24, 2402 (1981).
[2] F. T. Smith, Phys. Rev. 120, 1058 (1960).
[3] M. J. Seaton, Rep. Prog. Phys. 4B, 167 (1983); U. Fano

and A. R. P. Rau, Atomic Collisions and Spectra (Aca-
demic, Orlando, 19S6).

[4] J. M. Lsunay and M. Le Dourneuf, J. Phys. B 15, L455
(1982); B. Lepetit, J. M. Launay, and M. Le Dourneuf,
Chem. Phys. 10B, 103 (1986); J. Z. Tang, S. Watanabe,
and M. Matsuzaws, Phys. Rev. A 4B, 2437 (1992).

[5] C. D. Lin, Adv. At. Mol. Phys. 22, ?7 (1986).
[6] G. Wannier, Phys. Rev. 90, 817 (1953).
[?] U. Fano and E. Y. Sidky, Phys. Rev. A 45, 4776 (1992);

E. Y. Sidky, ibid. 47, 2812 (1993); and (unpublished).

[8] J. L. Bohn, Phys. Rev. A 49, 3761 (1994).
[9] V. Aquilanti, S. Cavalli, snd M. B. Sevryuk, J. Math.

Phys. $4, 3351 (1993); $5, 536 (1S94).
[10] A. Wintner, Ann. Mat. 1$, 105 (1934).
[11] H. Weyl, The Classical Groups, 2nd ed. (Princeton Uni-

versity Press, Princeton, 1946), Chap. 6.
[12] Symplectic transformstions also preserve the invariant

products of pairs of fermionic states, contrasting with the
orthogonal transformations that preserve the invariant
products of bosonic states. For a discussion of the role of
symplectic transformations in the symmetries of atomic
electrons, see B. R. Judd, Operator Methods in Atomic
Spectroscopy (McGrsw-Hill, New York, 1963), Sec. 6-3.

[13] J. J. Sakurai, Modern Quantum Mechanics (Addison-
Wesley, Redwood City, CA, 1985), pp. 101—109.

[14] K. Smith, The Calculation of Atomic Collision Processes
(Wiley, New York, 1971),p. 84.

[15] W. H. Press et aL, Numerical Recipes: The Art of Sci
entiflc Computing (Cambridge University Press, Cam-
bridge, 1986), p. 701.

[16] H. Goldstein, Classical Mechanics, 2nd ed. (Addison-
Wesley, Reading, MA, 1980).

[17] F. Calogero, Variable Phase Approach to Potential Scat-
tering (Academic, New York, 1967).

[1S] C. Zemsch, Nuovo Cimento $$, 939 (1964); A. De-
gasperis, ibid. $4, 1667 (1964).

[19] H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968).
[20] C. J. Eliezer snd A. Gray, SIAM J. Appl. Math. $0, 463

(1976).
[21] H. R. Lewis and P. G. L. Leach, J. Math. Phys. 2$, 165

(1982).
[22] W. E. Milne, Phys. Rev. $5, 863 (1930).
[23] E. Young, Phys. Rev. $8, 1613 (1931);$9, 455 (1932).
[24] H. J. Korsch and H. Laurent, J. Phys. B 14, 4213 (1981).
[25] F. Robichesux, U. Fano, M. Cavagnero, and D. A.

Hsrmin, Phys. Rev. A $5, 3619 (1987).
[26] U. Fano, Rev. Mod. Phys. 29, 74 (1957).
[27] Y. F. Smirnov and K. V. Shitikova, Sov. J. Part. Nucl.

8, 344 (1977).
[28] M. H. Alexander, J. Chem. Phys. 95, 8931 (1S91),pro-

poses an alternative approach to wave function evolution
through channel flushes rather than phase shifts


