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Limiting analytic form for an Aharonov-Bohm difFraction pattern
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We consider a two-slit diffraction experiment with a magnetic Bux confined to an inaccessible re-
gion between two rectangular slits. We then obtain a leading-order analytic form for the asymmetry
in the resulting diffraction pattern. The corrections to the expression are bounded and disappear
in the limit of long wavelengths and/or infinite source-slit-screen spacing. Using the analytic form
obtained, we obtain a nonzero value for the asymmetry in the number of electrons scattered to the
left and to the right but a zero value for their average displacement.

PACS number(s): 03.65.Bz, 03.65.Nk

I. INTRODUCTION

When a beam of electrons passes through two slits,
the two resultant beams superpose afterwards produc-
ing a well-known diffraction pattern. If additionally a
magnetic Hux is confined to an inaccessible region be-
tween the two slits, then the diff'raction pattern is shifted
by an amount depending on the magnitude of the Hux.
This occurs despite the fact that the Hux is "invisible"
to the electrons. This unexpected result is known as the
Aharonov-Bohm (AB) effect, after Y. Aharonov and D.
Bohm [1].

The shift in the diffraction pattern has been confirmed
experimentally [2]. However, there remain some unsolved
problems related to the moments of the position at the
observation screen. In particular, the first moment, i.e.,
the expectation value of the position of the electrons ar-
riving at the observation screen, has been the subject of
theoretical analyses with contradictory conclusions. The
question is: Is the expected displacement zero or notF
Several authors [3—8] claim that the expected displace-
ment is zero for all values of the Hux. On the other hand,
explicit calculations based on the Feynman path-integral
tec&nique show that that value is not zero, in general
[9,10]. Unfortunately, the answer to the question can-
not be formulated on the basis of general principles only.
Ehrenfest's theorem cannot be invoked to show that the
expectation value vanishes since there is no violation of
this theorem if the expected displacement is nonzero [10].
The no-shift theorem of Semon and Taylor [6—8] cannot
be applied since it is not clear if the theorem is true in
general [11].

In the following we readdress this question. In Sec.
II, we consider a b function to describe the initial wave
function, i.e., the electron source, and apply the Feyn-
man path-integral method [12] to determine the wave
function at the observation screen. The diff'raction pat-

tern is obtained as well as the asymmetry in the distribu-
tion of the arriving electrons scattered by the two slits.
An analytical form for the leading contribution to this

asymmetry is obtained, and a bound to the corrections
is determined. In Sec. III, we evaluate the asynUnetry
parameter (the number of electrons scattered to the right
minus the number of those scattered to the left) and the
expected displacement. We find that the expected dis-
placement is bounded by a bound which approaches zero
in the limit of infinite wavelengths and/or infinite system
size. This suggests but does not prove that it should be
always zero. The bound contradicts the numerical re-
sults obtained in Ref. [10] and subsequent checks have
revealed that, due to the highly oscillatory nature of the
integrand, the numerical results in [10] are incorrect.

It is not possible, however, to analyze directly the
results obtained earlier by Kobe [9] since he employed
Gaussian slits. Admittedly, if one uses overlapping rect-
angular slits, one obtains a nonzero value for the expecta-
tion value. This suggests that the nonzero value obtained
by Kobe et aL [10] could be due to the fact that Gaussian
slits necessarily overlap. However, to completely resolve
this question one would have to repeat the present work
with Gaussian slits. Conclusions are drawn in Sec. IV.

II. DIFFRACTION PATTERNS

The Feynman path-integral approach to quantum me-
chanics [4,5,9,12] has been used to calculate the single-slit
wave function. Then the two-slit wave function is given
as the linear superposition of the wave functions Rom the
two slits. The diffraction pattern is proportional to the
square of the modulus of the wave function.

A. Single-slit diffraction pattern

Permanent address: Instituto de Fisica Teorica, Sao Paulo,
SP, Brazil.

We consider here the model introduced by Kobe [9].
According to this Inode1 the motion perpendicular to the
screens (see Fig. 1) is classical while the motion parallel
to the screens is to be treated quantum mechanicaOy.
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where G+(zb) is the transmission function for a single
rectangular slit of width 26 centered at xo.

&0

0 if ~x, —xp~ &6
+ 1 if ~xg —xp~ ( b. (2.3)

- +bi @bi ~b is the initial time, t~ is the time of arrival at the screen
with the slit, and t, is the time of arrival at the observa-
tion screen. We have taken the initial wave packet to be
a 6' function, as in the calculation of Kobe [9] and Shapiro
and Henneberger [13],

4.(x.) = 6(z ). (2 4)

FIG. 1. The geometry of the single-slit diffraction experi-
ment. The slit at y|, has width 2b and is centered at x& ——xo.
The distances l and L are given by Eqs. (2.6) and (2.7),
respectively.

y —y =v(t —t ) (2.1)

This approximation was also used by Kobe et al. [10]
and implicitly by Shapiro and Henneberger [13].

The classical approximation in the y direction is justi-
fied since the action in that direction, S„,is many orders
of magnitude greater than h. The action is the average ki-
netic energy in the y direction, i.e., S„=mv„/2, where m

is the mass of the electron and v2 8~2
——(y, —y )2/(t, —

t )2 is the average of the square of the velocity in the y
direction in going &om the space-time point (y, t ) to
(y„t,). Therefore S„/h = (m/2h)8„L (L+l)/A, where
L+ l = y, —y and the reduced de Broglie wavelength is
A' = ti/m8„. For realistic experimental setups this ratio
is very large; e.g. , for the parameters of the experiment
by Jonsson [14] with A = 10 pm and with reasonable
distance L+ l = ll m, one has S„/h 10i2.

Thus the path integral in the y direction can be evalu-
ated in the saddle point approximation. In this approxi-
mation the electron only follows the classical path

The &ee propagator giving the quantum behavior in the
z direction is given by [12]

K (x„t,;zs, ts) = exp
ih t„—tg

imx z, —xq 2

h(t. —t&)

(2.5)

where m is the mass of the electron and h is Planck's
constant. A similar formula holds for KP (zs, t~, z, t )
As shown in Fig. 1, let l denote the distance &om the
source to the screen with the slits; then

l—:yp
—y = v(tb —t ), (2.6)

I—:y. —ys ——v(t, —tb). (2.7)

Substituting Eqs. (2.3)—(2.5) and definitions (2.6)—(2.7)
into (2.2) and performing the integrations yields

0+(z.) = Ne ~ ~ —.Ei ~
I

*p+b
i

( ( l+L '))

and let L denote the distance between the screen with
the slits and the observation screen; then

for a &ee particle moving with (constant) velocity v =
v„ in the y direction. We thus have a complete path-
integral formulation starting &om the source and ending
at the screens but because S„» ti one eliminates the
path integral in the y direction and everywhere that y
appears one replaces it by its classical value (2.1). Thus
one does not have a wave function in two dimensions
4(z, y, t) but what one says is that the probability of
finding a particle at (x, y) at time t is given by

P(x, y, t) = /4'(x, t = y/v)[26(y —vt),

-Ei P~zp —b — x,
~'+' '»' '

where the constants are given by

1

2A{l + I,)

Ail
2 (1

(2.9)

(2.10)

4'~(x. ) = f chg dx K (x„t, ; xg, tg) G+ (xb)

xK( g, tx, stx)@ (x), (2 2)

i.e., one speaks of the particle arriving at a given y at
a given time t = y/v. In reality the time of arrival is
uncertain by amount by, where by/L 10 iP [11], so
that this is a good approximation.

For the single-slit geometry shown in Fig. 1, the wave
function at the observation screen is given by

where A is the de Broglie wavelength of the electron,

{2.11)

Ei(2) = j dq e' ~" . (2.12)

and Ei(z) denotes the complex Fresnel integral defined

by
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B. Taro-slit diKraction pattern x„y„t,

The geometry for a two-slit experiment is as illustrated
in Fig. 2 and the total wave function is given by super-
posing the wave functions from the two slits. Note that
the use of the path-integral formalism ensures that the
quantum mechanical treatment starts at the origin of the
particles and not at the slits, which ensures the coherence
of the waves at each of the slits. In the absence of any
magnetic flux the wave function at the observation screen
is given by

0
2$0

&b yb &b

&oi ya, &a

~( .) = ~.(*.)+~-(*.), (2.13)

where 4+(z,) is the wave function from the slit centered
at zp (2.8) and 4 (z,) is the wave function from the slit
centered at —zp. The wave function @ (z,) is obtained
by simply replacing zp by —zp everywhere in (2.8). From
Eq. (2.2) and the relationship G+(zs) = G (—zs) it can
be seen that

FIG. 2. The geometry of the two-slit difFraction experi-
ment. Magnetic Bux 4 is present in a shielded solenoid at
xg ——0. The slits of width 2b are centered at +xo, and are
separated by a distance 2xo. The distances l and L are given
by Eqs. (2.6) and (2.7), respectively.

4 (z.) = 4+(—z.). (2.14)

If a shielded magnetic 6ux is present then the wave func-
tions for the two slits acquire an additional phase factor

is the enclosed magnetic 6ux. The diffraction pattern is
then proportional to the magnitude of the wave function
squared, i.e.,

@~(z,) = exp — A dr 4'p(z, ),
(iq

Cy )
(2.15)

I@'(z.) I' = I@+(z.) I'+ I@-(z.) I'

+2(cosg)Re @+(z.)4 (z.)
+2(sing) Im 4+(z, )4' (z,) (2.18)

where q is the charge of the particle, A is the magnetic
vector potential, and C+ (C ) is the path from z, t to
z„t, via the slit at zp (—zp). The total wave function
at the observation screen is then

C. Asymmetry in two-slit di8raction pattern

~'(*.) = ~'.(*.) + ~'-(*.)

= exp — A dr 4+(z,)+ e ' 4' (z,)
/iq

C+

The asymmetry in the two-slit diffraction pattern de-
fined by

(2.19)

(2 16) can be evaluated as

where P = ~~ is the magnetic Hux parameter and A(z, ) = 4(sing) Im @+(z,) @ (z, ) . (2.20)

4—= B de= A dr
S C

(2.17) Substituting the analytic expressions for @~(z,) (2.8)
and @ (z,) = 4+(—z,) one obtains

X Xp+ + x
l

+ )
— SiP *+b- L+' '. )
X C Xp+ + Z

r l

L, +l '

l y r l

+' . )
z. I-Clp z, b-

—SIP zp —b+ z,l

L+l ')
—SIP zp —b — z,r

L+l ')
—CIP zp —b+ z,r l

L+l (2.21)

where N and P denote the constants given in Eqs. (2.9) and (2.10), respectively, and C(z) and S(z) denote the cosine
and sine Fresnel integrals
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C(z) = cos
~

n—
) dn,

I), 2

S(z) = f sin
(

—zi') dsi.

Defining the following dimensionless constants,

(2.23)

(2.24)

(2.25)

(2.26)

expression (2.21) becomes

Xp —X,+8 Xp+X,+8
A(z, ) = 4(sing) N disci cos

I
ih driz sm —

)Vz
I

Xo —X,—8 E 2 Xo+Xc—8 2 )

f..'.—'. ""..(' :)f,-;. .
We then redefine the variables of integration so that all the integrals run &om B to B—to obtain

A(z, ) = 4(sin re)N [Ii cos(2+X,Xp) + Iz sin(2+X Xp)],

2 COS g2

where
8 8

11 2 dlil dl72 sin(zsizX ) sin(osis Xo) coo(zsisX, ) coo(zzizXo) sin
~

—(zi, —sit))—8 —8 )), 2
8 8

Iz = d'gy dilz(cos(7r)viXz, ) cos(irgiXp) cos(ir'gzXn) cos(7r7/zXp)
—8 —8

—scn(zsizX, ) sin(nzizXo) sin(zsisX, ) scn(zsizXo)) cos
(

—
(siz

—ciz')) .

Splitting Iz into three parts yields

8 B
I2 —— gi dg2cos xgqXc cos 7rq2Xc + I3 —I4,

sin (m BX,) + Iz —I4,m2X2

8 8
Iz —— drh drlz cos(irrhX, ) cos(7rilzX, ) cos(irrhXp) cos(7l'gzXp) cos —(gz —rh)

I

1
—8 —8

14 = dsiz dsiz sin(nsizX ) sin(nsizX )sin(nsizXo)sin(nsizXo) cos (—
(siz

—
ziz)) .

—8 —8 (2

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Finally therefore we obtain the asymmetry (2.19) in the
form

proceed to find bounds on its absolute value by finding
bounds on the integrals Ii, Iz, and I4

Using the inequalities

+E(X,) (2.34)

A(z ) = 4(sin P) N sin (irBX ) sin(2+X, Xp)vr2X2 I
sin(z) I, I cos(z)

I
& 1,

f»n(z)l & fzl
1 2

Icos(z) —ll & —x ,
2

(2.35)

By expanding cos(rji zXp), sin(rh zXp), cos[z (rIz —rIi)],
and sin[z (qzz —)Viz)] as power series in the relevant ar-
guments it can be easily shown that the first term in the
integral is of order &, and the second term is of order
Ps and higher order. By considering P as a small param-
eter we take the first term to be our approximation to
the asymmetry, interpret E(X,) as an error term, and

one can obtain upper bounds to the absolute values of
the integrals Iq and I3 given by

8 8
diaz ~lnilXp —

Inz
—ni I

—8 —8

(2.36)
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B B

-a "' "'2 (»&0)'+(~q,X,)2 0.1

2889

+ (
—(~2 —gl))

—7t xo g + ~2/$6
45

(2.87)

O.O8

O.O6

O.O4

B B
I4 "'1~ ~l»l&o ~lg lx

= ir'g'g4
0 ~ (2.38)

Thus we obtain a bound to the
term given b

modulus for the error

0.02

A(z, ) p

-0.02

-0 04

-0.06

'15*'+ *+ b'—s�(ll

The error can cie~e~ y be seen to vanish when

(2.39)
-0.08

-0.1-

I, , Lm oo,
l—fixed. (2.41)

(2.40)

i.e., in the limit of infinitel ionyog g ~ Io

10
*.(pm)

FIG 3 The as me asymmetry in the two-slit diffr P
ave engt = 5 x 10av t — p,m with slit length

, s spacing 2zo ——2 m so
s

'
o o servation screen

Since the wave f
istance L = 1 m.

ve unction has not been norma
h

' ' b' Th
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Notably this bound (2.39)
'

t' ' t U'
is also si ni

sing t e paramete
y onsson [14 w 'cri tb L' )( ~ ~ y

b=025 pm,

xp = 1 pm
A=sx10 m

and reasonable distances of

l =10m,
L=1m,

the error bound is

(2.42)

(2.43)

0.0108. (2.47)

0.01

0.008

0.006

0.004

0.002

In t s case there is no visible difference

size y a actor of 10, although this is

0.83 x 10 2 (2.44)

compared with the peak value of

0.104. (2.45)

We thus expect the agreement betwee
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act forms are in oo
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b '

I d
'
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A(x, ) o
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I
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z, (pm)

I
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difficult to realize experimentally. )
%e note two important features of the approximate

analytic form. The first is that x2A(x, ) is perfectly pe-
riodic in z, with the period given as the lowest common
multiple of

Ref. [14], (2.42) and (2.43), one obtains

A' I, +t
¹

= Sb = 2.2 pm.

21 21
ALb

'"' AL-. (2.48)
B. Asymmetry parameter

The second is that the dependence on z, only appears in
the combination

2x
l+L '

AL
(2.49)

III. EXPECTATION VALUES

Thus to lowest order in P the whole diffraction pattern
scales linearly with L, the distance between the screen
with the slits and the observation screen.

The asymmetry parameter which counts the number
of electrons scattered to the right minus those scattered
to the left is given by

OO 0

A = — dx. I@'(x.)l' — dx, I@'(x.)l'

] OO

dx. A(z.). (3.6)
0

Evaluating this quantity to leading order in P for fiux
parameter P =

2 yields

A. Normalization of the wave function
1 1

3. = ——
2Pb

OO

dX, sin (m BX,) sin(2+XpX, ),m2X2

Using Eq. (2.5) for the propagator it is straightforward
to show that

dx. K"(x., t.; zb, t,)K'(x„t.; z'„t,)

= 6(xb —z'b). (3.1)

This in turn implies unitarity or conservation of proba-
bility density. However, an important exception occurs
at the screen with the slits. Here part of the probability
fiux is trapped by the screen and only that incident on
the slits passes through. This is evident from the factors
G~(zb) which appear in the expression for 4~(z, ). The
wave function incident on the screen with the slits is

(3.7)

which can be evaluated using a standard integral ( [15]
3.763.3) to give

1
A = —(zp + b) ln(zp + b) + (xp —b) ln(zp —b)

orb

—2zp ln(zp) (3.8)

0.0804, (3.9)

This quantity is clearly nonzero as expected from the
definition and the asymmetry of the diff'raction pattern.
Using the parameters of Ref. [14], (2.42) and (2.43), the
quantity (3.8) becomes

@(xb) =

with probability density

1

fA lmÃzg
exp

ih(tb —t.) h(t, —t.)
(3 2) compared with the value determined numerically using

Eq. (2.28), which contains all contributions, instead of
the leading contribution (3.8) of

0.0772. (3.10)

I~(zb)l' =
h(, , )

(3 3) The numerical details are as discussed in the preceding
section.

The norm of this wave function is then infinite as is the
case for the initial h wave function. However, the norm
of the wave function leaving the screen with the slits is

~p+b —xp+b 46
dzbl@(zb) I'+ dzbl@(zb) I' =

),)
(3.4)

p —b p —b

which is clearly finite. This norm is then conserved and
thus this expression also gives the norm of the wave func-
tion at the observation screen. Using the parameters of

C. Expected displacement

The average displacement {x,) is equal to

OO OO

d . .Iy (z.)l' = — dx. z. A(x.). (3.»)
—OO p

Evaluating this to leading order in P yields

1 . , 1 L+I—4(sing) N — dX, sin (xBX,) sin(2vrXpX, ) = 0
0 C

(3.12)
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provided that the slits are disjoint, i.e., b ( zp. Note
that the standard integral ( [15] 3.763.2) has been used.
One can also find a bound on the contribution to (x,)
from the error term E(x,), defined in Eq. (2.34). First,
one integrates Iz, Iz, and I4 by parts three times, thrice
on gi and once on g2, and splits the integral Is —I4 as

do depend on x, and are given by

C

51Xo28 + 158

(3.14)

Is —I4 ——— sin (xBXp) + I5
C

(3.13)

Then the same inequalities (2.35) are used as previously
to give bounds on the absolute values of Ii and I5 which

Second, the integral that gives the numerator for the av-

erage position is split into two intervals. On the first
interval [0, &] one uses the z, independent inequalities
(2.36) and (2.37) to obtain the following bound:

4

dX, X, E(X,) ( dX,X, IIi cos(2xXpX, ) + (Is + I4) sin(2n'XpX, ) I

0 0

dX X.(IIil+ IIsl+ II41)
0

2—n" XpB + —7r XoB + —& 8('l1 2 s 7 2 ~ ~ 4 2 p) 1 (
(15 45 ) 2 (mB)

2 (88 56 2 32= 8'
I

X,B +——X,'+ 8'
I

. —
(15 3 45

On the second interval [„&,oo] one first divides the integral using the split (3.13)

(3.16)

dX, X, E(X,) = dX, X, [Ii c o(s2nXXp, )'+ (Is + I4) sin(2vrX, Xp)]
wB

dX, X,
~

Ii cos(2s'XpX, ) + —
2

sin (nBXp) + I5 sin(2&X, Xo)
I

4

C

OO 4( dX, X, sin (vrBXo) sin(2n XoX,)
C

+ dX, X, [Ii cos(2n XoX,) + Iz sin(2+X, Xp)]
4

nB

(3.17)

The first term on the right-hand side (rhs) of Eq. (3.17) can be expressed in terms of a standard integral ( [15] 8.230.1)
3S

4—2sin (mBXo) si 8
I

(48 Xo si
I

8
~

(Xone

2 s . (Xol
i )

where si(a) denotes the sine integral,

sin t
si(a) = — dt

(3.18)

(3.19)

The second term on the rhs of Eq. (3.17) can be bounded using the z, dependent inequalities (3.14) and (3.15) to
yield the following upper bound:

dX, X, [Ii cos(2+XoX ) + I5 sin(2m X,Xo)] ( dX. X- (IIil + II51)
eB ~B

dX, X. , (59X,B'+ 51X,'8+ 158')
4 7l

wB C

= 8'-(59XoB+ 51X,'+ 158').
4

(3.20)

Combining Eqs. (3.16), (3.18), and (3.20) yields the following bound for the numerator of the average displacement:
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~

~ ~

~

CK)

dxx, A(x) , (424 sin(P) P b 2062 xsb+ 2142+4 si
~ ~

xs+4 462 b ). (3.21)

4bis P' b' 20.62 xsb+ 61.4'2+ 4 si
~

~

xs+ 4.462 6
)

2L+I 2

(, '). '

bPs —(20.62 xsb+ 21.42+ 4 si
~ ~

xs+ 4.462 b') .

l(~.)l & 8

Combining Eq. (3.21) together with the exact value for the norm of the wave function (3.4) gives the final result for
the upper bound of the average displacement for flux parameter P = 2.

[(x,)[ & 2.03 pm. (3.23)

It is also possible to obtain a bound for the parameters
used by Kobe et al. [10], namely,

A = 1.74 nm,

6= 1nm,
xo ——3 nm.

(3.24)

(3.25)

(3.26)

This bound then vanishes in the limit P -+ 0, i.e., in the
limit of infinitely long wavelength and/or infinite system
size, meaning that the expected displacement in this limit
is exactly zero. Since it seems reasonable to assume that
the average displacement should increase as the distance
between the screen with the slits and the observation
screen increases, this result strongly suggests (although
it in no way proves) that the average displacement will
be zero in all cases. This result agrees with those ob-
tained in Refs. [4,6—8], although the derivation is com-
pletely different. In particular, our result is valid for all
wavelengths and slit geometries but is only proven in the
limit of infinite source-slit and slit-screen spacing.

The value of this bound for the experimental setup of
Jonsson et al. [14] is

in that work and the b source used here. Subsequent
investigations have confirmed that the earlier results are
incorrect. It is not, however, possible to comment conclu-
sively on the earlier calculation of Kobe [9] since in that
calculation Gaussian slits are used which then overlap.
If in fact one calculates the average displacement for the
case of overlapping rectangular slits, i.e., b & xo, then
one obtains a nonzero contribution to the average posi-
tion from the leading-order term. This suggests but does
not prove that the nonzero value for the displacement
obtained by Kobe [9] could be because the slits overlap.

IV. CONCLUSIONS

A leading-order analytic expressions for the Aharonov-
Bohm diffraction pattern has been obtained which is
exact in the limit of long wavelengths andjor infinite
source-slit-screen spacing and good for realistic experi-
mental setups. Using this form one obtains a nonzero
asymmetry for the number of electrons scattered but a
zero value for their average displacement. If a nonzero
value for (z, ) is present, then it must be due to terms of
higher order in P.

This bound is given by

[(z,)[ & 2.2 x 10 "nm, (3.27)

which clearly contradicts the numerical result in that
work, the numerical discrepancy being too great to be
explained by the difFerence between the Gaussian source
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