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The statistics of quantum optical phase observables are recovered as patterns from both number as
well as phase-space measurement statistics. A model for the measurement of generalized Q functions
studied recently by Leonhardt and Paul [Phys. Rev. A 47, R2460 (1993); 48, 3265 (1993)] is shown to
yield measurements of arbitrary phase-space observables.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

The phase of a single-mode electromagnetic field is an
observable which is covariant under the shifts generated
by the number observable associated with that mode.
Since the advent of quantum mechanics it has been
known that there exists no self-adjoint “phase” operator,
and a lot of effort has gone into finding an appropriate
formal representation of such an observable [1]. At the
same time, the question of operationally defining and
measuring the phase has remained an issue of intense in-
vestigations [2]. The formal part of the “phase problem”
is resolved in a surprisingly simple and satisfactory way
as soon as the proper formulation of observables as (nor-
malized) positive-operator-valued (POV) measures is tak-
en into account [3]; it is then evident that there is a whole
family of phase observables, observables conjugate to the
number [4]. In this paper we present an operational
method of constructing a class of phase space, and thus
phase observables of a single-mode field from some pho-
tocounting statistics obtained under various conditions.
We then analyze a recent measurement model [5] for
determining generalized Q functions to show that it
yields, in fact, measurements of arbitrary phase-space ob-
servables. Our results confirm the view [6] that there is
not just one single phase observable but a class of them
corresponding to different measurement schemes.

II. PHASE OBSERVABLES

We consider a single-mode field, the signal, with the
annihilation and creation operators @ and a* and associ-
ated number observable N=a*a=3n|n){n|. An ob-
servable E: Y—E (Y) is a phase observable of the mode a
if it is covariant under the shifts generated by N:

e E(Y)e N=E(Y+¢), (1)

with Y a (Borel) subset of [0, 27) and ¢ €[0,27).
There is a canonical phase observable M associated with
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the polar decomposition of a, a=VV 7\’—, with the partial
isometry V=3%_o|n ){n+1|. Indeed, since V is a con-
traction, there is a unique POV measure M such that
yr= [2meinéM(dg) and (V*)"= [27e~"M(d¢) [7].
This measure has the form [4]

M= 3 (21r)_1fyd¢e“"_"”¢|n)(m| 2)

m,n =0

and it fulfills the covariance condition (1).

We shall consider here a class of other phase observ-
ables which arise from particular phase-space observables
and which can be viewed as “noisy” versions of M. To
introduce them let |z)=D,|0) be the coherent state gen-
erated from the vacuum state |0) by application of the

displacement operator D,=exp(za*—Za), z€C. It is
well known that the mapping
A: Z+—>A(Z):=if d’z|z){z|
Tz
E i 2 *
— [ d4*2D,10)¢0ID; 3)

defines a (normalized) POV measure on the complex
plane C, the phase space. Using the Cartesian coordi-
nates (q,p), ¢, p ER, or the polar coordinates (r,¢),
r 20, ¢€[0,27) to represent the complex plane leads to
two sets of marginal observables of A4, the first pair being
related to the quadrature components of the fields, the
second to its number and phase. In particular, with the
polar decomposition z=re’® one is dealing with sets of
the form Zz =R X[0,27) and Zy=[0, )XY, which
lead to the number and phase marginal observables

Ay(R):=A(Zy)= [ dr*em ™' [*d¢ D,|0)(0ID;
=3 fRdrzpn(r2)|n><n| ,
n=0
P (r)=e " /nt, (&)
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A (V)= A4(Zy)= [ “dr*om) ™! [ dolz)(z|

=fydr2T,M(Y)T,* ,
T,=F =020 (n] . (5)
r ‘/'n_‘ .

Indeed, Ay is a smeared number observable, whereas
A, satisfying Eq. (1), is a phase observable, being, in
fact, a noisy version of the phase observable M [8].
Instead of the vacuum state |0), one may equally well
take any other state to generate other phase-space observ-
ables. If one takes a number state |n ) then one obtains

A‘“’:ZHA‘"’(Z)zif d’zD,|n){n|D} . (6)
m™YZz

In this case the marginals associated with the polar coor-
dinates are again number and phase observables 4\" and
A ;,',’1) (with the appropriate shift covariance). Such
phase-space observables can be accessed operationally in
at least two ways. First of all, they can be obtained from
an analysis of the count statistics obtained in certain mea-
surements performed on the signal (Sec. III); and, second-
ly, these observables result from a particular measure-
ment scheme (Sec. IV). Consequently, the ensuing phase
observables 4 gﬁ) are operationally justified as well.

To close these introductory considerations, we note
that any phase observable E gives rise to a self-adjoining
“phase operator” ®F=E'V:= [$E(d¢). However, the
higher moments of E do not coincide with the corre-
sponding powers of ®F so that these operators cannot be
used to determine the moments of the probability distri-
butions given by the POV measure and the states. Fur-
thermore, even the first-moment operator carries with it-
self a nonuniqueness in view of the phase-shift group: ap-
plying a shift operation to ®% yields a new operator
which does not even commute with the original one.
Thus the mere choice of the origin of the phase scale can
lead to mutually incommensurable “phase operators.”
Finally, it should also be emphasized that the POV mea-
sure structure of an observable is operationally deter-
mined by the totality of measurement outcome statistics,
that is, the probability distributions of the measurement
results associated with the states of the system [4]. These
remarks demonstrate the priority of the POV measure
point of view over the operator representation of observ-
ables.

III. PHASE DISTRIBUTIONS
FROM NUMBER STATISTICS

We consider an experiment in which the signal mode is
mixed with a local oscillator (LO) (with the mode opera-
tor b and b*) by means of a beam splitter with tran-
sparency € (Fig. 1). The action of a beam splitter is given
by the two-mode mixer [9]

U,=expl@a®b*—aa*®b) , v

where a=|ale’®, cosla|=Ve, 0<|a|<w/2, and
—m/2<9=m/2. If T is the input state of the signal
mode and if the local oscillator is in a coherent state |z ),
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FIG. 1. Photodetection of a signal mixed with a local oscilla-
tor.

then W=U,(T®|z){z|)U% is the state of the two-mode
field after the mixing, and the probability of detecting n
photons in the detector D (of unit quantum efficiency) is
tr[ W|n ){n|®I]. This counting statistics defines an ob-
servable E** of the signal mode (depending on the beam-
splitter parameter € and on the state |z) of the local os-
cillator) such that for each input state T and for all n

tr[ TEZ*|=tr[U(T® |z)(z[)U%|n){n|®I]. (8

The explicit structure of the observable E*® can be ex-
tracted from this equation, and one gets [10]

E**=D _EYD* 9

Xz

where D,, is the signal mode displacement operator, with
x=—(tan|a|)e "%, and E®¢ is the observable resulting
from mixing the signal with an idle mode,

ni—E%¢= § (Me™1—e)™ "Im)(m| . (10

m=n

The measurement outcome statistics of the observable
(10) is the Bernoulli distribution (with parameter €) which
is known to coincide with the counting statistics of a pho-
todetector with quantum efficiency € [11]. Similarly, the
outcome statistics n+—>tr[ TEZ*] of the observable E*® is
just the counting statistics obtained when the input signal
is first mixed with coherent (single-mode) light and then
detected with a counter of quantum efficiency € [11].

The first moment of the observable E*® is found by
straightforward computation:

o
| z,€
N := 3 nE;
n—>0

=eN+(1—¢g)z|2 T+ Ve(l—e)Za+za*). (11

The expectation value of this observable in the signal in-
put state T depends, in particular, on the strength |z|? of
the LO field, and it contains an interference term
Ve(l—eltr[T(Za +za*)] resulting from mixing the sig-
nal with the LO field. This suggests that the interference
pattern could be used to gain information on the phase of
the input signal. To get a high resolution, the strength of
the local field should be strong. However, in the limit
|z| — 0, all the effects E>¢ tend (weakly) to the null
operator, so that one has to consider a more refined limit
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allowed by the apparatus parameter €. Indeed, letting
e—1 together with |z| —» 0 such that xz=u is a fixed
complex number, one has

(1—e)lz|*=elx|*|z|*=¢lul?,
and
E?*—D,|n){n|D}=:E!. (12)

Thus photodetection with an almost ideal photocounter
(e=1) of a single-mode field mixed in the active part of
the detector with a strong local oscillator (|z]2>>1)
defines a signal observable n+—E}, where |u|=|xz| de-
scribes the percentage of energy which the signal gains
from the coherent pulse |z). The first moment of this
limiting observable is

N“:= SnE*=D,ND}=N+|ul I+ (ua +@a*), (13)

showing still a similar interference pattern to Eq. (11).

In order to obtain phase information on the signal, we
consider several such photodetection schemes with the
ensuing number statistics n+str[ TE], labeled by the ap-
paratus parameter u =xz €EC. Now, for any fixed n we
may add up all the measurement outcome probabilities
tr[ TE}!], u €C, with suitable weights so that we obtain a
single probability distribution on the phase space C,

1
Z—>— | tr[TE*1d%u . 14
fz r[TEY]d“u (14)
These probability measures define the POV measure

AMZ s A(Z) =+ [ d%D,In)(nIDF, (5)
Tz

which is just the phase-space observable (6) generated by
the number state [n ). The phase marginal 4} of this
observable is a phase observable of the signal mode.
Therefore we conclude that, by collecting the number
statistics n+—>tr[TE?*] from different photodetection
schemes, with the apparatus parameters ex~1,|z|2>>1,
one gets the phase distribution

Xtr[ T4 (X)) (16)

for each possible number outcome n. This type of
reasoning is widely practiced also in parameter estima-
tion theory which offers an alternative approach to, and
use of, POV measurements [12].

It should be emphasized that the probability measures
(14), as they are constituted here, do not correspond to a
measurement of the observable (15). They should rather
be seen as a pattern that is hidden in the totality of statis-
tics collected in the manifold of E* measurements labeled
with the apparatus parameter u. However, the method
followed here is an operational procedure which leads to
a definition of the phase-space observables 4™ and the
corresponding phase observables A of a single-mode
radiation field. A slightly more direct approach to these
observables is obtained in the unsharp joint measurement
scheme of the quadrature components of the field to be
discussed next.
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IV. JOINT MEASUREMENT OF THE QUADRATURE
COMPONENTS OF A SINGLE-MODE FIELD

We consider again a beam-splitter experiment where
now on the two output ports there are detectors which
are sensitive to the quadrature components
a?=(1/V2)a*+a) and bP=(i/V2)a*—a) of the
modes (Fig. 2). If the incoming field modes are prepared
independently in the states 7" and 7", then the detection
statistics determines, again, a signal observable A,

tr[TAXXY)]:=tr[U (T® T UXEYX)®E"(Y)] ,
(17)

with E4X) and E?(Y) being the spectral projections of a?
and b? associated with the real (Borel) sets X and Y. In
Ref. [5] the corresponding probability distributions were
determined for coherent-state and squeezed-state inputs
for the b mode. We shall not show that for beam splitters
of arbitrary transparency and for any input state of the
second mode the ensuing observable is just the phase-
space observable (3) (modulo a rescaling).

The beam-splitter coupling (7) can be written in terms
of the respective quadrature components

U,=explir(a'®b?—a’®b?)] . (18)

Here we have put a=r €(0,7/2), that is, we consider a
beam splitter with transparency e=cos’r and with no
phase shift. The operator in the exponent of (17) is for-
mally identical to the angular momentum component L ;.
This observation makes it straightforward to evaluate the
probability reproducibility condition (17) for the mea-
sured observable A4 [5]. For simplicity we shall consider
vector state inputs T=|@){@| and T"=|¢){¢| for the
two modes. Using the Schridinger representation one
obtains

(plAXXY)p)=(p@y|UEAX)®EXY)U,p2¢)
2
= (b)
[ 4adp|UPU,o0ta,p)
=2m' [, dadp{plé, ) (Eple)
=@l A(X,XY,)p) . (19)

Er CR

€=cos’r

lo > D

Eq

0>

FIG. 2. Joint measurement scheme for the quadrature com-
ponents.
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Here US? denotes the Fourier-Plancherel operator with
respect to the second degree of freedom. We have intro-
duced the scaled sets X,=X /cosr and Y,=—Y /sinr.
Furthermore, §, =W, §, W, =exp(ipQ —igP), denotes
the phase-space translation of the (normalized) state func-
tion

E(y):=(tanr) "% | — 2 (20)
tanr
The accordingly rescaled observable is thus
_1 2
Z»—»Ag(Z)——;de 2 D,|EYCEID) 21)

which is a phase-space observable. The coupling (18)
with the detection observables a? and b” constitutes,
therefore, a measurement of the phase-space observable
A, and thus, in particular, a joint measurement of its
Cartesian as well as its polar marginal observables.

For the case of a vacuum input in the b mode one ob-
tains the Q distribution associated with the observable

ZA(Z)=2 [ |2)(xld% . @2)
m™YZzZ

Now it is interesting to note that one can choose ¢ so as
to have & be a number state |n). One has thus found
measurement schemes yielding the statistics for all the
phase-space and phase observables 4 and A} de-
scribed in Sec. III.

V. CONCLUSION

In our analysis of the “phase problem” we have indi-
cated two basic approached towards understanding POV
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measures in quantum mechanics. On one hand, a (phase)
POV measure may be inferred in the context of quantum
estimation theory as a pattern emerging from the statis-
tics of several series of measurements. On the other
hand, a more direct way of deriving a phase observable
consists of performing a joint measurement of the quad-
rature observables. The outcome of such a measurement
can be interpreted as a pair of Cartesian coordinates in
phase space which gives rise to a unique set of polar-
coordinate values. That such a scheme amounts to
measuring simultaneously though unsharply number and
phase observables is statistically confirmed by writing
down the corresponding marginal observables. More-
over, on the individual level one may conceive of carrying
out a calibration procedure as follows. Consider a
coherent state with large amplitude, so that the phase is
fairly well defined. For this state it is possible to specify a
circular slice in phase space such that the probability of
finding an outcome within that region, upon measuring
the underlying phase-space observable, is close to unity.
It is thus possible to calibrate this measurement so that
its outcomes give direct information as to the average
number and phase values of the input state. It should be
noted finally that the individual measurement outcomes
carry with themselves an intrinsic inaccuracy compatible
with the Heisenberg uncertainty relation for the quadra-
ture components. In the present model, this unsharpness
is determined by the characteristics of the input state of
the second mode. A more detailed discussion of these
phase-space measurement inaccuracies and their
relevance for the state inference problem has been given
elsewhere in the context of a joint position-momentum
measurement model [13].
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