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Spectral inheritance of potentials with fiat bottoms
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A particle moves in one spatial dimension in an attractive symmetric potential uf(x) and obeys nonre-

lativistic quantum mechanics. It is supposed that the trajectory function E(v), which tells us how the
ground-state energy depends on the coupling parameter u, is known. We determine the minimum f(0) of
the potential and the mean kinetic energy s(u) from F(u}, and we prove that the potential shape f (x)
has the constant value f (0) on an interval [ —a, a] if and only if s is bounded for all u & 0. Moreover, if
s(X, then a &(m/2}[A'/(2mK}]'~2. These are partial results towards geometric spectral inuersion, the
determination of the potential shape f from the corresponding ground-state energy trajectory F.

PACS number(s): 03.65.Ge, 02.40.Hw

I. INTRODUCTION

In this paper we present some speci6c constructive re-
sults concerning an interesting inversion problem in

quantum mechanics: if we know how the lowest eigen-
value of a Schrodinger Hamiltonian depends on the po-
tential coupling parameter, are these data suScient to
reconstruct the shape of the potential'7 We shall call this
problem "geometric spectral inversion" to distinguish it
from standard inverse scattering theory. In a nutshell
our main result is the following: from the ground-state
energy against the coupling curve F(u), we can determine
whether or not the potential has a fiat (horizontal) patch
at its center and if it does we can provide a lower bound
to the size of this patch.

%'e consider a single particle of mass m which moves
in one spatial dimension in a potential V(x) and obeys
nonrelativistic quantum mechanics. We suppose that the
potential is attractive and symmetric and has the form
V(x)=Vof(x/b), where Vo and b are coupling and
range parameters, and f is the shape of the potential. By
an elementary scaling argument in which x/b=x'~x
Schrodinger's equation

Schrodinger's equation (1.2) for the ground-state energy
for each value of u &0. For attractive potentials in one
dimension, a simple variational argument shows that a
discrete eigenvalue F(u) exists for every positive value of
U.

For example, in the case of the sech-squared potential
[1],we have

f(x ) = sech—(x )~F„(u)

= —[(v + —')' —(n + —,
' )] (1.4)

where n =0, 1,2, . . . . In Fig. 1 we exhibit graphs of some
of these energy trajectories. Inverse scattering theory
[2—6] allows us to reconstruct the potential vf (x) from
various subsets of the spectral and scattering data. The
inverse problem in the coupling constant (fixed energy) is
we11 understood and is discussed in detail by Chadan and
Sabatier [2]. The spectral data in this problem corre-
spond to the intersection of a horizontal line E =c with

qt+ Vof(x/b)4=64
2m

may be written as

—g„„(x,v)+vf(x)g(x, u)=F(v)g(x, u), u &0, (1.2)

where the dimensionless coupling and energy parameter
are given by

2m Vob 2mb 6
and F(v)= (1.3)

J S{!

In this form the Hamiltonian H = b+uf (x) has only-
one parameter, the coupling v. The function F(v) which
tells us how the energy depends on the coupling is called
the "energy trajectory'* corresponding to the potential
shape f. We usually find F(u) from f(x) by solving

FIG. 1. Energy trajectories (1.4) for the sech-squared poten-
tial. Inverse scattering theory uses spectral data in the form of
either (i) the energies on a vertical line u =c or (ii) the couplings
on a horizontal line E =c. Geometric spectral inversion claims
that knowledge of the lowest trajectory F(u) alone is suScient
to reconstruct an attractive symmetric potential shape f (x }.
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all the trajectories. This must be distinguished from
"geometric spectral inversion" which would claim to
reconstruct a symmetric potential shape f (x) from the
ground-state energy trajectory F(v) alone. For sym-
metric potentials, much less data are required by inverse
scattering theory than in the more general case. In fact,
if a symmetric potential increases to infinity (with x), then
the energies alone are sufficient. An analysis of this
phenomenon for Sturm-Liouville problems on a finite
domain may be found in Ref. [7] and a discussion of the
corresponding problem in quantum mechanics is given,
for example, in Ref. [4].

However, in the present paper we do not solve the
geometric spectral inversion problem completely. We
offer instead some partial results. First of all, we shall
show in Sec. II that the limit of the ratio F(u)/u as
u ~ oo yields the minimum value off (x}. Meanwhile, we
find that the mean kinetic energy s is given in terms of
the (ground-state) trajectory function F(v) by the expres-
sion

( —&}=s=F(u)—vF'(u) . (1.5)

Our most interesting results, which are established in Sec.
III, may then be stated quite simply as follows: the po-
tential has a flat bottom if and only if the kinetic energy s
is bounded for all v &0. Moreover, in the case that the
potential has a flat bottom, we can estimate the size of
the flat part of the potential by the following inequality
(A'=2m =1):

s ~ K =-f(x)=f(0), ~x ~
(a, and a & E—

2

(1.6}

Intuitively we may understand this in terms of the
Rayleigh-Ritz (min-max) variational characterization
[8-10] of the energy spectrum. If the potential strictly
increases for x &0 near x =0, then, as the coupling v is
increased, the variational principle forces the wave func-
tion to be progressively more concentrated near the ori-
gin; this, in turn, increases the average curvature; hence
the kinetic energy increases without limit. If, on the oth-
er hand, the potential is fiat on an interval [—a, a], then,
as v is increased, the wave function is concentrated on the
whole of this interval and, in the limit v-+ ~, the situa-
tion is asymptotically like that of a square well of width
2a. The main purpose of the present paper is to put this
heuristic argument on a sound footing so that (1.6} be-
comes a step in the constructive theory of geometric
spectral inversion.

The following subjective remark may be of some in-
terest. We initially noticed the boundedness property of
the kinetic energy for square wells and we supposed that
it has to do with the fact that square wells are "cut off,"
that they vanish when ~x~ & a. Only after looking in this
wrong direction for some considerable time did we
manage to establish generally that flatness of the poten-
tial is the correct feature which is characterized unambi-
guously by bounded kinetic energies.

II. ENERGY TIMJECTORIES
AND KINETIC PO.ra;NTIALS

F(u) =(f,HP) =(P, &Q)+u(—f,ff) .

Hence

F'(v) =2(Q„,HQ)+(g, fg) =2F(u)(g„,g)+(P,ff) .

(2.1)

The normalization of f implies that (g„,lt }=0. Conse-
quently

F'(v)=(g, fP) . (2.2)

This result may also be obtained by an application of the
Hellmann-Feynman theorem [14-17]. If we change the
coupling to u in the Hamiltonian but not in the wave
function, we have by the variational characterization

f (u) ~ [g, ( b, +uf )Q—]=F(u}+(u —u)(g, fg) . (2.3)

Hence, by using (2.2) we find

F(u)&F(u)+(u —u)F'(u) . (2.4)

That is to say, the trajectory function F(u} lies beneath
its tangents and is concave. We are now in a position to
define the kinetic potential f associated with Fby the fol-
lowing parametric relations in terms of v:

s = iig„ii =F(u) —uF'(u),

f(s)=(g,fg)=F'(v) .
(2.5)

We may regard the correspondence f~F as a transfor
mation provided we can invert f. This is always possible
because f is monotone decreasing From (2..5) we can-
clude

ds „—,1= —uF"(u)&0=-f '(s)= ——&0 .
dv v

Furthermore, we can show that f(s) is convex for

(2.6)

In the abstract theory [9,10] of Schrodinger operators,
the potential uf (x) in our problem would be regarded as
a perturbation of the positive-definite Laplacian operator

The idea behind "kinetic potentials" is an analyti-
cal realization of this abstract notion; it was introduced
in Ref. [11] and was extended to excited states in Ref.
[12] and has been used recently to analyze power-law po-
tentials [13]. For the bottom of the spectrum, the case
that concerns us principally in this paper, one sets
( —h}=s. Then the kinetic potential (minimum mean
isokinetic potential) f(s} is that function of s satisfying

(f}=f(s). The advantage of this is that kinetic poten-
tials allow us to represent conveniently the way in which
parametric dependencies of the operator flow via the
variational characterization through to the correspond-
ing spectrum: this is the main concern of what we call
"spectral geometry. "

We now present a short self-contained introduction to
kinetic potentials. We suppose that H= —b, +vf is
bounded below and self-adjoint, and throughout this sec-
tion g represents the exact normalized ground state for
coupling v, as shown in (1.2). We have, therefore,
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f"(s)F"(u)=— &0 .1

3
(2.8)

Because of the convexity of f we can express the eigen-
value F(u) in the form

F(v) =minI s+uf (s)],
s&0

(2.9}

that is to say, the inverse transformation f~F is given
by

f '(s), —

F(v)=[s+vf(s)] .
(2.10)

The idea is that we perform the variationa1 procedure in
two stages: for each value of ( —b, ) =s we find the
minimum mean potential shape (f ) =f(s), and then we
recover the energy eigenvalue, for each value of U, by
minimizing over the kinetic energy s.

We now assume that the potential is bounded below
and symmetric about its minimum point x and nonde-
creasing for x & x. Since the energy spectrum is invariant
under shifts along the x axis, we assume henceforth,
without any loss of generality, that the minimum value of
f (x) occurs at x =x =0. The first general result which
we shall need is

f (0)= lim
F(v)

(2.11)

We establish this limit in the following way. If in (1.2) we

suppose that II/II =1, then, after an integration by parts,
we have

(g, &f)=F(u)
(2.12)

If we now employ, for example, the normalized trial
function

f"(s)= = — &0 .1 dU 1

u ds u F"(u)

We note that monotonicity of the potential f itself is not
required for these results. Apart from the sign, the rela-
tion between f and F is that of a Legendre transformation
[18] for we have

which makes more precise the intuitive notion mentioned
in the Introduction that the wave function becomes more
concentrated near the origin as U increases. We prove
this lemma by the following argument. Since f (x) has
minimum value f (0), we know from (2.2) that

F'(u)= f(s)=(P,f0')) f(0) (2.16)

Because of the limit (2.11) and 1'Hopital's rule we deduce
that the lower bound f (0) is achieved in the large u limit.
Meanwhile, we know that F'(u) decreases monotonically
to f (0) because we showed above that F"(u) &0. Thus,
for each v &0, there exists a number a(u) &0 such that
f(a)=F'(u) and f(a)&F'(u), for all u &u. We now
define q(U) to be the probability mass in the interval

[
—a, a], thus

q(u}=f f (x, u)dx . (2.17}
—a

From (2.2), we have

F'(u)=(P, fg}=f $2fdx+ j g f dx . (2.18)

We obtain a lower estimate to the right-hand side of
(2.18) if only the smallest value off (x) is used in each of
the two regions . That is to say, we obtain the inequality

F'(v ) «qf (0)+ (1 q)f(a) . —

Hence, for each a such that f (a) &f (0) and for all u

sufficiently large, we conclude the concentration lemma

(2.15).

III. THE SPECTRAL CHARACTERIZATION
OF POTENTIALS WITH FLAT BOTTOMS

We first show that the kinetic energy is bounded if the
potential has a Hat bottom. Suppose that the Qat region
is of length 2a, that is to say, for a & 0

An important additional tool which we shall need is
the following.

Concentration lemma.

f (a) F—'(v)
q(u)= 11~ (x, u)dx & ~1, u —+~,

f(a) —f (0)

P(x)=(v/m. )' exp( —u' x /2), (2.13) f(x)=f(0), IxI &a .

then the variational upper estimate (P,HP) leads to the
inequality

(2.14)

In the limit u~~, (P,fg)~f(0). Hence from (2.12)
and (2.14) we have

)f(0) and lim &f(0) .

From these two relations we conclude (2.11). Thus we
are able to deduce from F(u) the minimum value f (0) of
the potential. This is our first constructive step towards
the inverse F~f.

Then it is clear that f (x) lies below an infinite square
well. More specifically, we have

,f (o), Ixl &a
f(x)&tv(x)= '

I i) (3,2)ac, IX( ~a .

The bottom of the spectrum of —b, +uw(x) is

uf (0)+(m./2a); meanwhile, f (0) &(g,fg)=f(s} Con-.
sequently, in terms of the kinetic-potential formalism, we
deduce the inequalities

s+ uf (0) & F(u) =s+ uf (s) & uf (0)+
2a

where s stands for the critical value in (2.9), after minimi-
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zation. Hence we conclude that the kinetic energy is
bounded above by

s ( fT

2Q
(3.4)

We now use the concentration lemma and calculus of
variations to establish a lower bound to the kinetic ener-

gy s. We choose a & 0 sufficiently large that f (a) &f (0)
and keep a fixed. We then consider v suSciently large
that f (a) & F'(v); this allows us to employ the concentra-
tion lemma. With these assumptions we write

S= x XV X x X~V
Ixl a

=q(v) f (b„(x,v)dx, (3.5)
IxI &a

where P is the normalized restriction of P to [—a, a]
given by

g(x, v)q
' (v), ~x~ & a

&(""}=0 (3.6)

in which we have temporarily dropped the dependence of
(b on v. Except for the boundary conditions, this is exact-
ly the elementary quantum-mechanical problem of a par-
ticle in a box. Indeed, if we could assume
(b(

—a) =(b(a) =0, then the lower bound for this integral
would be precisely the lowest energy of a particle in a box
(with %=2m = 1), that is to say (n. /2a) . We have proved
earlier [19] that for symmetric potentials which are non-
decreasing for x &0 the ground-state wave function
monotonically decreases for x &0. This fact together
with the concentration lemma implies that g(a, v), and
therefore also P(a, v), tends to zero as v ~ ca. Hence, the
vanishing boundary condition is met in the large-v limit.
Meanwhile q(v)~1. Hence, from (3.5) we see that, for
each a such that f (a) &f (0) we have established the lim-
it

2

For each fixed v, finding the minimum possible value of
the integral on the right-hand side of (3.5) is a problem in
the calculus of variations. Namely, we have to solve

' x x ~minimum subject to x x =1
—a a

(3.7)

however small; hence, as v increases, we deduce that the
kinetic energy increases without bound. If, on the other
hand, we find from F(v} that s ~IC, then (3.8) puts a
lower limit to the size of a. That is to say, we have
proved the claim made in the Introduction

s ~I(. = f(x)=f(0), ~x~ (a, and a & E—
2

(3.9)

IV. CONCLUSION

By looking at the ground-state energy trajectory F
alone we can determine some basic features of the sym-
metric attractive potential f which generates the trajecto-
ry. The specific results we report concern the shape of f
near x =0 and we have shown how these features may be
deduced unambiguously from the properties of F(v) for
large values of v. Since some of the essential monotone
properties which we have used are also present in the first
excited state [19], our partial inverse results can be ex-
tended to problems in three dimensions, provided the
coupling is large enough to support a bound state.

Two areas of application immediately come to mind.
In atomic physics screened Coulomb potentials [20—22]
are used to model the spectrum generated by an outer
electron. If the ground-state energies for a sequence of
atoms are known, this is equivalent to knowing F(v) for a
sequence of values of V. However, as we have shown in
Sec. II, the trajectory is concave so that isolated values of
F(v} could be joined by a smooth curve and from this
curve an approximate picture of the potential f could in

principle be reconstructed from the partial trajectory
data. Similarly, for the many-body problem, the nonindi-
viduality of identical particles induces a relationship [23]
between the N-body energy and the energy of a specially
constructed two-body problem having an overall factor of
N —1 and a coupling enhanced by N/2. Here the
ground-state energies for a sequence of values of N would
again provide partial information concerning the energy
trajectory of the reduced "two-body" problem. But first
we must find out how to reconstruct all of the potential f
from knowledge of the corresponding energy trajectory
F.

lim(s) &
uf cc 2Q
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