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Inadequacy of Ehrenfest's theorem to characterize the classical regime
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The classical limit of quantum mechanics is usually discussed in terms of Ehrenfest*s theorem, which

states that, -for a sufficiently narrow wave packet, the mean position in the quantum state will follow a
classical trajectory. We show, however, that that criterion is neither necessary nor sufficient to identify
the classical regime. Generally speaking, the classical limit of a quantum state is not a single classical or-
bit, but an ensemble of orbits. The failure of the mean position in the quantum state to follow a classical
orbit often merely reflects the fact that the centroid of a classical ensemble need not follow a classical or-
bit. A quantum state may behave essentially classically, even when Ehrenfest's theorem does not apply,
if it yields agreement with the results calculated from the Liouville equation for a classical ensemble. We
illustrate this fact with examples that include both regular and chaotic classical motions.

PACS number(s): 03.65.Bz, 03.6S.Sq, 05.45.+b

I. KHRENFEST'S THEOREM

It is generally agreed that classical mechanics should
emerge from quantum mechanics in some limit. That
limit is often loosely described as fi~O, but since the
quantum state function depends on A the limit involves a
sequence of states that must be defined. This may be
done by fixing the values (or distributions) of sufficiently

many observables. In many cases, the appropriate limit
can be expressed as A'~0, n ~ ao, with An constant (n is a
typical quantum number}. That is to say, the quantum A'

must become small compared to the macroscopic action
An. It is not satisfactory to restrict attention to a con-
trived sequence of wave functions, such as minimum un-
certainty packets whose width in both position and
momentum varies as ~A. The classical limit seldom
leads to such wave functions. Anticipating the results of
this paper, we point out that the classical limit of a quan
turn state is an ensemble of classical orbits, not a single
classical orbit. A suitable practical criterion for classical
behavior is, therefore, that the quantum averages and
probability distributions should agree, approximately,
with classical averages and probabilities.

Discussions [I—8] of the classical limit have often been
based on Ehrenfest's theorem, which states that, under
certain conditions, the centroid of a wave-packet state
will follow a classical trajectory.

The essential points of the theorem can be demonstrat-
ed with the example of a one-dimensional particle moving
in a scalar potential V(x), which generates the force
F(x}=—VV(x). Its Hamiltonian operator (we use the
circumfiex to distinguish operators) is

8=P /2m+ V(Q),

and the Heisenberg equations of motion are
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dq/dt =p/m,

dP/dt =F(g) .

Taking the average in soine state yields

d & q ) /dt =
&p ) /m,

d&P)/dt=&F(q)) .

Now if we can approximate the average of the function of
position with the function of the average position,

&F(q)) =F(&q) },
then (5) may be replaced by (Sa):

d &P &/dt=F(&tl}) .

Equations (4) and (5a) then state that the average position
and the average momentum in this quantum state will
follow a classical trajectory; this is Ehrenfest's theorem.
It holds, in particular, if the state function in
configuration space is a wave packet whose width is small
compared to the scale over which the force F(x) varies
appreciably.

In most books the discussion ends at this point, and the
impression is given that the above condition defines the
classical regime. [Some books [4—8] fail to mention the
essential role of the approximation (6), and state, in-
correctly, that Eqs. (4) and (5) ensure that the centroid of
a wave packet will follow a classical trajectory. ] Howev-
er, we show in this paper that the conditions for the ap-
plicability of Ehrenfest's theorem are neither necessary
nor sufficient to define the classical regime.

Lack of sufficiency is proved by the example of the har-
monic oscillator. In that case the force F(x) is a linear
function, and so (6) holds as an identity for all states. Yet
we know that a quantuxn harmonic oscillator is not
equivalent to a classical harmonic oscillator. In particu-
lar, the thermal equilibrium energy, and hence the
specific heat, is di8'erent for classical and quanturo oscil-
lators, and it was this di8'erence that first led Max Planck
to introduce the notion of the quantuxn.
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To demonstrate the lack of necessity, i.e., that a system
may violate Ehrenfest's theorem and yet behave essential-
ly classically, is more subtle. We shall illustrate it with
several examples.

&p &, =F(&q &, )+-,'&(5q)'&, , F(&q &, )+

(16}

II. DEVIATIONS
FROM EHRENFEST'S THEOREM

Let us introduce operators for the deviations from the
mean values:

5&=q —
&y &, (7)

dgldt =Plm, (9)

2"'=F(g)+-, &(5q}'& F(g)+, (10)
dt ' 5gz

where P=&p& and Q=&q &. If &(5$) & and the higher-
order terms are negligible, we recover Ehrenfest's
theorem, and Q and P obey the classical equations. It is
therefore tempting to interpret the terms involving (5$)
as quantum corrections, whose smallness provides the
criterion for the classical regime. That interpretation is
made in [1-3];however, it is not correct.

That the terms beyond F(Q) in (10) are not purely
quantum mechanical in origin is indicated by the fact
that & (5$ ) & does not vanish in the limit of R~O, n ~ oo,
with the total action An held constant. (Here n is a typi-
cal quantum number. ) This is easily verified for
harmonic-oscillator and hydrogenic eigenstates. In fact,
& (5$) & is just a measure of the width of the probability
distribution in configuration space, which need not van-
ish in the classical limit. We should, therefore, compare
(10) with the statistical form of classical dynamics.

Let p(q, p, t) be the probability distribution in phase
space for a classical ensemble. It satisfies the Liouville
equation

—p(q, p, t) = — p{q,p, t) F(q) p(q, p, t—) .5
dt m Bq Bp

From it, we can calculate the classical averages

&q &, = f fqp(q, p, t)dq dp,

&p&, =I fpp(q, p, t)dqdp.

(12)

(13)

Differentiating these expressions with respect to t, using
(11},and integrating by parts as needed, we obtain

d&q &, ldt=&p &, lm,

d &p &, /dt =IfF(q)p(q, p, t)dq dp,

(14}

(15)

which are the classical analogs of (4} and (5}. Expanding
(15}in powers of 5q =q —

& q &, then yields

5p=p &p &—

and expand (2) and (3) in powers of these operators. Tak-
ing the average in some chosen state then yields, in place
of (4) and (5),

where & (5q) &, =f I (5q) p(q, p, t)dq dp is a measure of
the width of the classical probability distribution. The
significance of the terms involving 5q is now clear: the
centroid of a classical ensemble need not follow a classi-
cal trajectory if the width of the probability distribution
is not negligible. Since the quantal equation (10) has ex-
actly the same form as (16), it is apparent that the terms
in (10) involving 5O' are not to be interpreted as quantum
corrections to classical behavior; they merely express the
fact that the centroid of the quantum probability distri-
bution does not follow a classical trajectory. Thus the
violations of Ehrenfest's theorem, expressed by the
higher-order terms of (10), are not necessarily of
quantum-mechanical origin; a classical ensemble behaves
similarly.

Although (10) and (16) are identical in form to all or-
ders, it does not follow that quantal and classical proba-
bility distributions wi11 evolve identically if they are iden-
tical at t =0. Even their means need not evolve identical-
ly. This is so because the time dependence of the mean
& q & depends, through (9) and (10), on the moments of the
distribution, &(5q)" &, for all positive values of n. The
time dependence of the higher moments of the quantum
probability distribution can be calculated; the result for
n =21s

dt
&(5$)'& = &(5p)(5q)+(5q)(5p) & lm . (17)

The similarities and differences between the classical
and quantum dynamics can be illustrated by means of a
simple example. Consider a particle confined to move be-
tween two impenetrable walls, at x =0 and L. A general
time-dependent state function can be expanded in terms
of the energy eigenfunctions

g(x, t)= g c„sin(k„x)exp( iE„t/fi), —
n=1

The classical expression is similar, except that the order
of 5q and 5p becomes irrelevant. Whereas the quantal
(10) agrees with its classical analog (16}provided the clas-
sical ensemble is chosen to have the same distributions
for q and for p as does the quantum state, the agreement
of (17) with its classical analog demands the additional
requirement that the classical correlation function
& (5p)(5q) &, should agree with the symmetrized quantum
correlation function in (17). As we proceed to higher-
order time derivatives, we encounter higher-order corre-
lations involving more and more inequivalent orders of
the factors 5p and 5$, and it becomes impossible to fit all
of them with a single classical phase-space distribution.
Thus it is ultimately the noncommutativity of operators
5p and 5q that is responsible for the different evolutions
of the classical and quantal probability distributions.

III. PARTICLE
BET%'EKN REFLECTING %STALLS
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where k„=nrt/L, and E„=(A m. /2mL )n .Because all
the frequencies in (18) are integer multiples of the lowest
frequency, it follows that P(x, t) is periodic, but is period

T~M —4mI. /vrA
0, 6

g T t
~~~ 1

g(x, O) = A (x)exp(ikx), (20)

where A (x) is a real amplitude function. The mean ve-

locity of this state is v =fik/m. The motion of this quan-
turn state will be compared to that of a classical ensemble
whose initial position and momentum distributions are
equal to those of the quantum state (2), the initial phase-
space distribution being the product of the position and
momentum distributions.

As a first example„we take a Gaussian amplitude

bears no relation to the classical period of a particle with
speed v, T„=2L/v. The failure of (18) to oscillate with

the classical period would be a problem if, in the classical
limit, the wave function were supposed to describe the or-
bit of a single particle. But there is no difticulty if it is
compared to an ensemble of classical orbits, since the
motion of the ensemble need not be periodic. The quan-
tum recurrence period T&M diverges to infinity as A'~0,
and so becomes irrelevant in the classical limit.

Let us consider an initial wave function of the form

{X&

0.2 0.8

approaches the limit bx +L (2&—3) '=0.2887L, which
is the value for a uniform distribution.

The close correspondence between classical and quan-
tum theories is not restricted to minimum uncertainty
(Gaussian) states. Figure 3 shows results for an (un-

normalized) amplitude function of the form

FIG. 1. Average position for a particle confined to the unit
interval, according to quantum theory (solid line) and classical
ensemble theory (dotted line). The initial state is Gaussian with
half-width a =0. 1 and mean velocity u =20.

A (x)=CexpI —[(x —xo)/2a] ] . (21)

This initial state has rms half-width Ax =a, and its mean
position is taken to be xo =L /2. Results for
a =0.1,v =20 (units: 4= m =L = 1) are shown in Fig. 1.
The average position of the quantum state, (x )
=(P(x, t)~x ~P(x, t)), exhibits a complex pattern of de-

caying and recurring oscillations that repeat with period
T&M. The average position of the classical ensemble
closely follows the first quantum. oscillations, but it de-
cays to a constant value (x ) =L/2, where it remains.
The decay of the classical oscillation is due to the distri-
bution of velocities in the ensemble, which causes it to
spread and eventually cover the range (O, L) uniformly.
The spreading of the quantum wave function is essential-
ly equivalent to the spreading of the classical ensemble.
The later periodic recurrences of the quantum state are
due to the interference of rejected waves and to the
discreteness of the quantum spectrum, and are essentially
nonclassical.

The time interval during which the classical and quan-
tum theories agree well is shown in more detail in Fig. 2.
Ehrenfest's theorem, which predicts ( x ) to follow a clas-
sical trajectory, is very inaccurate, even before the first
reAeetion. But the failure of Ehrenfest's theorem does
not indicate nonclassical behavior; the quantum state and
the classical ensemble are in close agreement, even
though Ehrenfest*s theorem is not applicable. The lower
half of Fig. 2 shows that hx = ( (x ) —( x ) )

' is also
correctly given by the classical theory for t ~0. 14. The
nonmonotonic behavior of hx is caused by the folding of
the ensemble upon itself when it is rejected from a wall.
Indeed, for t =0.025 the value of Ax is smaller than it
was for the original minimum-uncertainty wave function.
For large t, the rms half-width of the classical ensemble
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FIG. 2. Upper half: average position according to quantum

and classical theories compared with Ehrenfest's theorem

(sawtooth curve). Lower half: rms half-width of the position

probability distribution, according to quantum (solid line) and

classical theories {dotted line).
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A (x)=(4x) (0~x ~ —,
' }

=2—[4(x —
—,')] ( —,

' x —,')
=[4(l—x)] ( —,

' ~x ~1) . (22)

the classical density modulated by an interference pattern,
but the interference pattern is averaged out in calculating
&x ) and &x ). The classical limit is characterized, not
by the absence of interference, but by the interference
pattern being too fine to be resolved.

This function and its derivative are continuous, but its
quartic behavior near the maximum makes it qualitative-
ly different from a Gaussian. The degree of agreement
between the classical and quantum theories is similar to
that in Fig. 2.

In this model the large quantum-number limit (n ~ 00 )
is equivalent to the limit of large mean velocity. The
damping rate of the oscillations in &x ) is governed by
the width of the velocity distribution in the initial state,
and so is unaffected by the limit n ~ 00. Thus the time
during which the classical oscillations are apparent does
not increase with n. But the frequency of the oscillations,
and hence the number of oscillations during the damping
time, is proportional to n. Thus the classical periodicity
becomes better and better defined as n ~~, even though
the wave function (18}never exhibits a true periodicity
with the classical period T„.

In the regime where the quantum and classical results
agree, the quantum and classical position probability den-
sities are not necessarily the same in detail. In fact, the
quantum probability density is approximately equal to

IV. DRIVEN QUARTIC OSCILLATOR

Whereas the previous model was simple and integrable,
this model is not integrable. It consists of a quartic
anharmonic potential and an external driving force. The
Hamiltonian is

H=p /2rn+bx fx co—s(cot) . (23)

P = —ilia/Bx, (24)

with Pi=0.02. This magnitude of fi is made more mean-
ingful by comparing it to the area of the regular island in
phase space, which is 2.25, and is capable of supporting
2.25/2m%=17. 9 quantum states.

The parameter values used are m =1, b =0.25, f =0.5,
and ~=1. For these parameters, the phase space of the
system contains a large island of regular orbits surround-
ed by a larger zone of chaotic orbits (see Fig. 1 of Ref.
[9]). The quantum-mechanical Hamiltonian is obtained
from (23) by introducing the momentum operator
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FIG. 3. Average and rms half-width of the position probabil-

ity distribution for a non-Gaussian state with mean velocity

u =150, according to quantum (solid line) and classical theories

(dotted line).

FIG. 4. Driven quartic oscillator in a classically chaotic
state. Upper half: average position according to quantum (cir-

cles) and classical theories (solid line), compared with

Ehrenfest's theorem (dotted line). Lower half: rms half-width

of the position probability distribution, according to quantum

(circles) and classical theories (solid line).
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As expected, the half-width Ax of the state grows
much more rapidly in the chaotic case than in the regular
case, snd, as s result, Ehrenfest's theorem breaks dowr][

much sooner. But it would be incorrect to conclude from
this fact that the classical theory must break down sooner
in the chaotic case. In fact, the quantum state snd the
classical ensemble agree well up to about t =140, long
after Ehrenfest*s theorem has ceased to apply in the
chaotic case. The agreement between classical and qusn-
turn theories seems to persist somewhat longer in the reg-
ular case, but this is probably due to the fact that the reg-
ular motions are confined within the regular island,
whereas the chaotic motions can explore s much larger
region of phase space. Hence the maximum possible
difference is greater for the chaotic case.

V. CONCLUSION

0.15

0.05

50 100 150 200

FIG. 5. Driven quartic oscillator in a classically regular
state. (Details as in Fig. 4.}

The computations for the classical theory were done by
integrating Hamilton's equations for each of the 50000
particles in the ensemble, using a variable-order variable-
time-step Adams method. For the quantum theory, we
used s spatial finite-di5'erence discretization of the time-
dependent Schrodinger equation, with 3000 grid points in
the range —2. 5 ~x ~2.5. This yields a large set of cou-
pled ordinary di6'erential equations, which was integrated
with a Runge-Kutta-Merson routine.

The initial (quantum and classical) states were chosen
to be Gaussians, as described in Sec. III, with
hx=bp=0. 1. The results of Fig. 4 were obtained by
placing the centroid of the initial state in the chaotic
zone, at (x ) =0.2, (p ) =0; those of Fig. 5 were obtained
by placing the centroid in the regular island, at
(x)=1.0, (p)=1.0. In Figs. 4 and 5, the data points
are plotted at times t =2m n /to for integer n, and so the
results shown correspond to a stroboscopic plot (Poincare
section). The detailed oscillations of (x ) and b,x within
one period of the driving force are not shown because
that amount of detail would make the figures confusingly
complex.

We have shown that Ehrenfest's theorem is neither
necessary nor sufhcient to characterize the classical re-

gime in quantum theory. Ehrenfest's theorem asserts
that, for a suSciently narrow probability distribution, the
mean position in the quantum state will follow s classical
trajectory. However, generally speaking, the classical
limit of a quantum state is not s single classical trajecto-
ry, but an ensemble of trajectories [10]. The averages and
higher moments of the quantum and classical probability
distributions often agree in situations where Ehrenfest's
theorem is not applicable. Therefore Ehrenfest's theorem
does not define the conditions for classical behavior.

Our conclusion is of more than merely pedagogical
significance. The definition of the classical regime is of
considerable importance in the study of quantum chaos.
In that context, Goggin, Sundaram, and M. Ionni [11]
have derived sn expansion that expresses a quantum
commutator in terms of s classical Poisson bracket plus
corrections analogous to those in our (10). They interpret
those correction terms as quantum corrections, snd assert
that the classical limit is obtained only if those terms all

vanish. But we have shown that some of those correc-
tions have a classical interpretation, and do not vanish in
the limit Pi~0. In a similar context, Lan and Fox [12]
assert that in the classical limit the mean values should
follow Hamilton's equations snd the rms deviations
should be negligible. We have shown that to be an inap-
propriate criterion to identify the classical limit, snd it
can be expected to yield inaccurate estimates of the clas-
sical regime. In particular, we have shown by an example
that, although Ehrenfest's theorem does indeed break
down much sooner for chaotic motions than for regular
motions, the degree of agreement between the classical
ensemble and the quantum state is comparable for both
chaotic and regular domains.
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