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Approximate formulas are given for the effective Hamiltonian H (¢) governing the time evolution in a
subspace 7f| of the state space #£. It is proved that this approximation is correct for any Hamiltonian H
of the system under consideration at the early-time period. The approximate form of the survival ampli-
tude for a given state improving Fleming’s estimation in the short-time region is found and the proper-
ties of a decay rate for small, intermediate, and long times are discussed.
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I. INTRODUCTION

If we are searching for some specific properties of a
physical system, it is not always convenient to study the
time evolution in the total Hilbert space # of states
|4;t ), |4) EF described by solutions of the Schrodinger
equation

il =Hlge) (1a)

for the initial conditions
W’;t =to=0> = W’) s

where H is the total self-adjoint Hamiltonian of the sys-
tem considered, i.e., to search for the properties of a total
unitary evolution operator U(t)=exp(—itH) acting in
Ft: |t )=U(t)|¢). Instead it may be more convenient
to study the time evolution in some closed subspace ¢, of
F# [1-10] and the properties of the effective Hamiltonian
H (t) governing this time evolution. In particular, such
an approach seems to be effective in the most general
description of the early-time behavior of a given nonsta-
tionary state |1;t), a problem which has recently been
more and more frequently studied [1-18]. Moreover the
meaning of such investigations has recently taken on a
new significance with the progress of experimental possi-
bilities [18].

In this case the total state space # splits into two or-
thogonal subspaces 7, and #,=#OFf, and thus the
Schrodinger equation (1) can be replaced by two coupled
equations for subspaces 7 and #,. Using a solution of
the evolution equation for subspace 7, one can obtain
the evolution equation in the subspace 7| of vectors
|;t), defined by a projector P=P*=P%
Ff,=PFH S|¢;t ) =P|¢;t ), which has the following form
[1-3]for ¢ =0:

(1b)

Wf;t)”

. 0
[1 Y, PHP

=lse) =i [ Kt —nlpr)dr,  Qa)

where the initial condition (1b) is replaced by
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|1/;;t=t0—=‘:0)“5|¢)", [t =1,=0)=[¢),, (2b)
lg;t) =Qlst ) EH =QH, Q=1—P, 3)
and
K (t)=©(t)PHQe ~"CHCOHP , @)
lx;t ) =PHQe ~"CHC|y) | )

and O(¢) is a step function: ©(¢)=1 for t >0 and O for
t<0.

If states in the subspace 7, are not occupied at the ini-
tial instant ¢,=0, i.e., if

[¢;20=0),=[¢),=Ql¢)=0, (6)

then |x;¢)=0 in (2) and |¢)=Pl¢)=|¢). Therefore
lg;¢), =Pl ) =PU)|9)=PU(DP PlY)=U,(1)l¢),
Therefore Eq. (2) transforms into [1-3]

-
Iat PHP

U||(t)|1/1)||=—if0mK(t—T)U"(T)W’)”dr,

where U (1) is the (usually nonunitary) evolution opera-
tor for the subspace #.

By studying and applying equations of the form (2) and
(7), Krolikowski and Rzewuski have found that some-
times it is convenient to replace these equations by the
equivalent, only differential, Schrodinger-like equation,
which is the case of initial conditions (6), i.e., for Eq. (7),
is written

l'—a_—H”(t)

at U"(t)=0, tZO, U"(t=0)=P . (8)

The equivalence of Krolikowski-Rzewuski Egs. (8) and
(7) follows, e.g., from the identity

U(1)
at

for U,(¢) fulfilling (7). The effective Hamiltonian H ()
has the form [1-3]

H\(t)=PHP +V (1) . (10)
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The concrete formulas for ¥(z) can be found in Ref. [3].
The result of the action of the “‘quasipotential” V,(¢) on
U,(t) depends on the properties of the kernel K (1):

ViU n=—i [ “K(t—n)U(r)dr, 120. (1)
0

Generally, early-time properties of V(¢) follow direct-
ly from (9) and (11). We have [3,7-9]

V(t=0)=0 (12)

and

V\(t)~—itPHQHP = —it[PH’P —(PHP)*], t—0
=—it(8Hp)*, (13)

quite independently of the properties of H.

II. AN APPROXIMATE FORMULA FOR V(1)

The use of a retarded solution G of the nonhomogene-
ous equation

i—a—-—PHP

o G (1)=Pd(1),

t20, (14)

i.e., the retarded Green’s operator
G=G(t)=—iO(t)e "PHPp (15)

enables us to replace the integro-differential equation (7)
by the equivalent, purely integral one, and then following
the ideas of Ref. [2] and applying the iteration procedure
to solve this integral equation for U,(t), we find that [9]

Uy)=U}(+ 3 (—=i)"LoLo ---oLoUfj(t),  (16)
n=1
where U ﬁ(t) is the solution of the “free” equation

i—a——PHP

Uj(1)=0, UJ(0)=P, (17)
at

the symbol o denotes the convolution fog(t)
= [2f(t —7)g(1)dr, L is convoluted n times, and

L=L(0=GeK(n)= ["Gut—nK(ndr.  (18)

From (16) and (11) one obtains

V() Uy(1)=—iKo Uj(z)

—i 3 (—i)"KeLoL ---oLoUf(z). (19)

n=1

Of course, the formal series (16) and (19) are convergent
if ||L (2)|| <1 [the existence of ||L (¢)|| is assumed]. These
series are not the standard perturbation series, i.e., if one
considers the Hamiltonian of the general form
H =H 4, +H,;, then in order that ||L(t)||<1, it is not
necessary for the perturbation H; to be small with
respect to the free part H,. Therefore the approach
leading to Egs. (2), (7), or (8) has some advantage in rela-
tion to the standard perturbation methods because it en-
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ables us to describe processes generated not only by rela-
tively weak interactions.
So, if for every t >0

IL ()| <1, (20)

then, to the lowest order of L (¢), one finds, for v, (2),
Vin=vim=—i [ “Kt—ne“""PHPdr >0
0

(21)

This approximate V| (), especially in the case of
dim#,=1, is close to the Weisskopf-Wigner approxima-
tion in the long-time region, where one can replace V()
by V,(1)=V|(t— ). The advantage of formula (21) is
that it can be applied for the study of time evolution both
in the very-short-time period ¢—0, where the
Weisskopf-Wigner formula does not work, and in the
long-time period t— o«. However, the most important
and useful property of approximation (21) is that at the
early-time period it can sufficiently accurately describe
not only weak but even very strong processes. This last
conclusion follows from the properties of ihe operator
L (z). Indeed, the integral defining L (¢) is not taken be-
tween the limits 7=0 and <« but, in fact, it is taken be-
tween 7=0 and ¢. This follows from the definitions G (¢)
and K (¢) and it is due to the presence of the step function
O(t) in G (¢) and K (¢). Hence from the definition of L (¢)
(18), we have

L(t)—0 (22)

10

and therefore one can conclude that for any P and H such
that [P, H]##0, T >0 always exists such that

IL(D))|<<1 if 0=t <T;. (23)

From this it follows that for every H, the effective Hamil-
tonian H (t)~PHP +V (1), where V(1) is given by for-
mula (21), can describe the dynamics in the subspace
Ff,=PF at the early-time period 0=t <T, to a very
good approximation. Therefore the approach based on
Eq. (8) seems to be especially effective in searching for the
early-time behavior of physical systems. The maximal
value T; of times ¢ for which the approximation (21) is
still valid generally depends on a given H and P.

III. TIME EVOLUTION
IN THE ONE-DIMENSIONAL SUBSPACE %

Let us consider the projector P defined by a normalized
vector |a) €E#. Then

P=P,=|a){c|, (24)

and, if |{a|H|a)|< «, Egs. (7) and (8) transform into,
respectively,
d

j——E
’az @

ua(t)=-—ifowka(t—T)ua(T)dT ,

t20, u (0)=1 (25

and
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9 g =0, ¢>
[lat E,—v,(t) |u,()=0, t=0, (26)

where u,(1), E,, k,(t), and v,(¢) replace U,(z), PHP,
K (1), and V“(t) in (7) and (8):

U ()=(a|lU(D]a)P,=(alU(|a)P,=u,t)P, ,

27)

P,HP,=E.,P,, E,=(al|H|a), (28)

K =(alK(t)la)P,=k ()P, , 29)
k,(t)=0(t){a|HQe ""CHCQH|a) ,

Vi()=v,(t)P, , (30)

H()=[E,+v,(0]P, . 31)

From (21) we immediately find
—it(QHQ —E )
va(t)zv,‘,(t)=<a HQS QHQ_Ea_l OH a>
E-A;(t)—%yb(t) (32)

with AL(#) and y(?) real, and, if E,, belongs to the con-
tinuous part o, (QHQ) of the spectrum oc(QHQ) of the
operator QHQ, i.e., if E,>¢;, where €;, denotes the
lower bound for the o .(QHQ), we have

1

) —E_—i0

lim vl(n)= —Ea(Ea)=—<a
t— 0

_ l
= hA}z*;‘yclr ’

where 2 (€) is the self-energy for the state |a) and
1 a)

QHQ —E, ’

yl=27(a|HQS8(QHQ —E_)QH|a)>0 if E,>¢,, ,

(35)
which coincide with the Weisskopf-Wigner results, and

(36)

A},s<a HQ P OH (34)

yl=0 if E,<¢gy .

In Eq. (34), P denotes principal value.
The imaginary part y,(¢) of the quasipotential v ()

corresponds to the decay rate of a given state |a ): having

the nondecay probability

pt;la))=lu,(0)]? 37
for this state, the decay rate I' can be defined as [10]
1 dp(t;|a))
=— > , 38
p(t;la)) ot (38)
which, together with the solution
ua(t)=e_it[E“+m] , (39)

of Eq. (26), where
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N
o ::Tfova(‘r)d‘r, 40)
leads to
F=—2Imv, (t)=y, (1) . (41)

The decay rate y ,(t) possesses the following properties at
the early time region [10]:

7.(0)=0, (42)

v t)=2(8H ), t—0, (43)

where (8H,)*=(a|H?|a) —{a|H|a)?. These properties
follow from (12) and (13) and do not depend on a con-
crete form of H.

In the long time region t — 0, if E , = €,,, the approxi-
mate expression for the decay rate y () has the nonzero
limit (35): yl(t=o)=2ImZ(E,)>0, and states
|a ) EFH, for which this property takes place, correspond
exactly to the standard quasistationary (unstable) states
of the system under consideration. If E,<g,,
y,‘,(t = )=0 (36) [though, in this case, y‘lz(t) >0 for
t—0], and therefore those states |a ) € 7, for which this
result (36) occurs, cannot be identified with the quasista-
tionary states.

The properties of the exact y,(t)=—2Imv,(?) in the
long-time region can be deduced from Khalfin’s theorem
[19], which is due to Paley and Wienier’s theorem, and
states that if the spectrum of the total Hamiltonian H of
the system is bounded from below, then [19]

pa(t)EIua(t)lzl = exp(—bt?), b>0,qg<1. (44)

Therefore the following conclusion should hold: If for
the nondecay probability p,(t), the asymptotic represen-
tation (44) is valid, then the decay rate y,(¢) [i.e., the

imaginary part of the quasipotential v,(¢),
Imv,(t)=—17,(t)] behaves in the long-time region
t— o as
Y{)=—2Imu, (1) ~ bgt™* A=1—¢g>0 (45)
t—
and thus in the exact theory
lim y,(¢t)=0. (46)
t— 0

This conclusion agrees with the intuitive solution of
the problem of which is the decay rate of the completely
decayed state (at the moment ¢ = «, by definition, every
unstable state |a ) EF is not occupied, i.e., it is complete-
ly decayed). The relations (45) and (46) can be derived
from (38) and (41) using the property (44).

IV. EARLY-TIME BEHAVIOR OF SOLUTIONS
OF THE EQUATION FOR THE PROJECTION
OF A STATE VECTOR
ONTO ONE-DIMENSIONAL SUBSPACE

A. Two-level system

Let us consider, to begin with, the case of a two-state
system. Such a system can be solved exactly and thus, in
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some sense, is trivial, but has a pedagogical meaning and
allows one to draw some general conclusions from the
form of the solution of Egs. (25) and (26) on the early-
time behavior of more complicated systems. Thus let the
vectors [5]

0

[1)= ol |2)= 47)

form the basis in a state space # of such a system and let
the subspace 7 be defined by a projector

P,=P,=[1){1]. (48)

In this case, the self-adjoint Hamiltonian H is 2X2 ma-
trix with the matrix elements H;; (j,k=1,2) and the
solution of Eq. (25), where u,(¢)—u () with the initial
condition u (0)=1, is [5]

ul(t)=e_(i/2)tH+ oslg—i%sin%i , (49)
where H ,(_,=H +(—)H,, and
n=(H% +4|H,|)'"*. (50)
Let us note that the following relation takes place:
|H,1*=(11HQH|1) =(1|(H*—H?}))|1) =(8H,)* ,
(51)

which can be useful in discussing properties of u (¢).
The “nondecay” (survival) probability for the state |1)
equals
|H |

p (D= uy (0P =1—4—2—gin2 TE | (52)
n 2

and, in the small time region, determined by the condi-

tion

gt <1, (53)

it quadratically decreases with the growth of time ¢

p (51U =luy ()P~ 1—|H 5|3, 12L‘ «<1.  (54)
Expressions (49) and (52) are exact and will be helpful in
discussing early-time properties of a physical system with

infinite degrees of freedom.

B. Infinite-level system

Now let us consider the case of the infinite-dimensional
state space # and one-dimensional subspace /. In this
case the projector P defining 7, has the form (24). The
early-time, model-independent, solution of Eq. (25) for
the amplitude u,(¢) can be relatively easily found (see
Appendix B). Namely, for very small times ¢—0, the
quantity k,(¢) (29) can be approximated by [see (A6) and
(AT)]

k,(t—0)~O(t){a|HQH|a)=O(t)(8H ,)* . (55)
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Replacing k,(t) in Eq. (25) by k,(t—0) (55) leads to the
solution [see (B4)—(B6)]

—/E, | Mol Ey . M4t

uylt)=e o—2——i751 > ,
t—0 (56)
where
N, =[E%+4(8H,)*'* . (57)

This solution is valid for time ¢ limited by relation (A8).

One should stress that this solution is quite indepen-
dent of the properties of the Hamiltonian H of the system
under consideration. Strictly speaking, there is one (only)
restriction on the state |a): the appropriate solution
u,(t—0) (56) of Eq. (25) exists provided that (8H,)? (55)
exists.

In the case of small times considered, from (56) one
finds, for the survival probability,

21’(1 EZ .znat

. = 2 %
p(t;la))=lu,l)l =, c08" + 2 sin—
ASH,)? 1,
El——z————smzn— . (58)
N 2
a

The above estimations of small-time behavior for the am-
plitude u,(¢), and thus for the survival probability
lua(t)|2, are consistent with the Fleming estimation [13],
known as “Fleming’s rule” or “Fleming’s unitary limit,”
and correct and improve his result.

The comparison of amplitude «,(z) (49) and the proba-
bility p(¢;|1)) (52), obtained for the case of a two-state
system, with the approximate u,(t—0) (56) and corre-
sponding to it the probability p (z;|a)) (58), respectively,
leads to a conclusion concerning the general early-time
properties raised by quantum dynamics. Namely, com-
paring these results mentioned one finds that if to prepare
a physical system at the initial instant ¢,=0 in such a
way that the initial state |;7,=0) of this system belongs
to the subspace 7, 1e ., if |4;t,=0) _|1[/)“Eﬂu and
l;t,=0) ,=|¥),=0 (6), then, at the early-time period

t—0, a system with an infinite degree of freedom
(dim#f = ) behaves like a system with two degrees of
freedom described by state space # of dim# =2.

In other words, at the early-time period ¢ —0, the tran-
sition probability from a subspace # of dim# =1 into
subspace of states #,

QU (D) |P=1—|Uy)le) |P=1—p(s;]a)) (59)

behaves like

4(8H ,)? t
||QU(t)la>Hz%—2asin2nTo, t—0 (60)
7o

[where 7y may denote 7 (50) or 7, (57) depending on the
problem considered] quite independently of dim%, (i.e.,
of whether dim# =1 or dim#, > 1, e.g., dim%#, = ).
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V. FINAL REMARKS

From (58) one sees that if, analogously to the case of

dim# =2 [see (54)],

M.t <1, (61)

then

p(t;la))=lu ()>~1—1%8H,) . (62)

The properties (54) and (62) and, especially, the condi-
tions (53) and (61) under which they take place seem to be
important because some authors [20] believe that the
smallness of (8H,) [2], i.e., the condition t%(8H ,)? <<1,
guarantees that the survival probability has the form (54)
and (62) and thus defines the so-called “Zeno time re-
gion” in the case of many successive, so-called ideal mea-
surements of a given state. In other words, one interpre-
tation of this is that if t*(8H,)*> << 1, then the joint prob-
ability P(A,, ...,A,,A;la)) of finding the system in a
given state |a), in any of n measurements separated by
time interval A,,...,A,A; (see, e.g, Refs.
[5,6,18,20-22])

PA,, ..., 0Apla))= T po(BAi;lad)= [T lu(ap)*,

k=1 k=1
(63)
for A, = --- =A,=A, =A<t takes the form
PA,, . A Ailad)y =4, k=1,...,n =P(n,A5]@))

=[1—A%8H,)*1",
(64)

which, for A=t/n and suitable, very large n, transforms
into

P(A,, ... ’A27A1;|a>)|Ak=AETO;AI=T1—(n—l)A;k=1 .....

etc., which can be verified experimentally, and thus the
reduction postulate leading to formula (63) for the proba-
bility 7 can be verified.

The general properties of the decay rate y,(t) (41) and,
strictly speaking, of its approximate form y(¢) (32) and
(AS) are determined by the properties of the imaginary
part of the self-energy = (€), i.e., density [6,10,15] p,(€)
(A4); see (A5). The spectral density p,(€) must obey the
following basic requirements [25]: positively, threshold
behavior [p,(e)~(e—¢gy)'/? as e—>g,, for two-particle
decays], and vanishing for e— . Its concrete form is
determined by the spectrum of the decay channel space
F£, and the transition operator QHP. The simplest model
satisfying these minimal physical requirements has been
studied in Refs. [6] and [10]: the calculations have been
performed there for
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t t2 2
P |n,—;la) |=1——(8H,)
n n

and, as a consequence, leads to the Zeno paradox [6,21].
From (53) and (61), and (54) and (62), it follows that such
an interpretation is wrong; it may happen that
t%8H ,)*<<1, but t’E2 [or, in the case of dim#=2,
t2H?% ; see (50)] is so large that condition (53) or (61),
which are necessary and sufficient for probability
p(t;la)) to be of the form (54) or (62) required, cannot
be fulfilled. Only the smallness of both t%8H,)* and
t?E2 (or, if dim# =2, t2H? ) together results in the ap-
proximate expressions (54) and (62) for p(¢;|la)) and
thus, in formula (64) for the probability ?(n,A;|a)) ap-
pearing in the case of many successive, quasicontinuous
measurements, i.e., leads to the Zeno paradox. Taking
into account these properties of short-time evolution
seems to be wuseful in designing experiments for
confirming and searching for such occurrences as the
Zeno paradox, especially if one considers the case of tran-
sitions from a single, isolated state into a continuum.

In the case of a two-level system, the expressions for
the joint probability 7 of finding the system in the state
la)=|1) in each of the n intermediate measurements
(63) and for the probability p (¢;|1)) (52) suggest not only
an experiment for searching for the quantum Zeno effect
[23,18], but also another one for A’s much longer than
those proper by defining the so-called Zeno time region
[24], i.e., much longer than those determined by relation
(53). Namely, one can choose, for instance,
A,,...,A,A; s0oastobep(T;=37_;A;]1))=1 (here
T,=2mj/n, j=12,...) and A, =A=T, for k+#I
(where T, is defined by the property sin[(7/2)T,]
=1—see (52)—ie., To=[(2r+1)/n]m, r=12,...),
To<<T;, and A;=T,—(n—1)T,. Then it should be
[24]

I=1,+1),..., 2 <<p T\ =344511) | =1, (65)
[
(&) =p(e:k) = (A)—E— (66)
£)=py(e;k)=a : 6
Pa P k (8+}\,)k

with two parameters characterizing the behavior p,(€) at
ge—o0: the cutoff A and the power k, and assuming
€y =0. The coefficient a;(A) is related to the rate v,
(35), which has been assumed to be very small, by the re-
lation p,(E,) =1y, (33) and (A4):

(E,+A)

MN=E——0> .
ak( ) 2‘)/(11(Ea)1/2

The results obtained in Ref. [10] are presented in Fig. 1.
All curves in this figure start from a straight line, accord-
ing to the result (43), and then, later, y.(¢) begin to oscil-
late. The amplitude of these oscillations decreases rela-
tively quickly with the growth of time coming up to the
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asymptotic value y) from ¢>(50-100)E ! practically,
and the oscillations amplitude increases strongly for in-
creasing k and decreasing A.

Also the behavior of yL(t) at the earliest and at the
subsequent stages of time evolution seems to have some
meaning for an understanding and a proper description
of the earliest instants of the existence of the Universe.
Namely, it seems that this behavior can be considered as
a candidate for a possible mechanism producing the mass
density fluctuations at the initial instant of the time evo-
lution of the Universe [26].

150
(a)
1.00 \Wg
050 -
O.CO!,[IIYlllw|]'YIIIITIIV]IV\]|II‘!"'T—,
0.00 10.00 2000 ¢ 30.00
50(J J ey
!
|
i ®)
| 1
{
3.00 -
j |
1.00
- 1.00 LA S B B S Bt R S B e R S S S e M S B S B B B S St B B
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FIG. 1. Dependence of y.(t)/y) on t for different A and k:
(a) k=1 and (1) A=0,2E,, (2) A=1,0E,, and (3) A=10E; (b)
k=4 and (1) A=0,2E,, (2) A=0,5E,, and (3) A=3,0E,. Time ¢
is measured in units of E .
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APPENDIX A
Using the complete set of eigenvectors |[F) of the
operator QHQ for Fe&€o . (QHQ): QHQ|F)=F|F),
F > ¢,,, normalized as usual { F|F’)=8(F —F"’), with the
completeness relation

JIF)(FlaF=0 , A1)

leads to the following representation for k() and v} (2):

ka(t)zie(t)fwe““Fpa(F)dF , (A2)

Em

N wexpl —it(F—E_ )]—1 S
(o) 7TfEM 3 poF)dF, t>0,
(A3)

where

pF)=m|{FIH|a)|?=ImZ (F) . (A4)
One finds

« Sin[t(F —E,)

yé(t)=£f [———]pa(F)dF, 120 . (A5)

m Y ey F_Ea

It is easy to see that for E,>€, this y,(t) tends to
y1 >0, given by formula (35) as t — w0, and, if E, <g,,,
by Riemann’s lemma, according to (36), to the zero value
ast— cc.

From (A2) one obtains

1 il (—‘l[)n 0
k ()=—6 "ol F A
D=2 (z)zo - fEMF Do F)dF (A6a)
~ Lo [ “puFIdF + - (A6b)
(0 T EMp“ ‘

The density p,(F) can be related to the dispersion 8H , as
follows:

%fﬁ:pa(F)dFE<a|HQHla)

=(a|H?|a)—(a|H|la)*=(8H,) .
(A7)

The approximation (A6b) for k,(¢) and thus the solution
u,(t) (56) of Eq. (25) are valid provided that times ¢ fulfill
the following inequality;

]t f mea(F)dF‘ < [ " puFIAF=m(8H,)* . (A8)
EMm Em
APPENDIX B
In terms of Laplace transforms, defined as
= [T f(te #dt (B1)
fla= [ e
the solution u () of Eq. (25) for ¢t 20 is written
1 o+tioo eﬂ
=— —————dz, 0>0. B2
vl = THE A P B2

Inserting into this formula the Laplace transform of the
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approximate expression for k,(¢) (A6), valid in the
short-time region ¢t —0, i.e.,

éa(z)z—:—(aIHQth)E%(SHa 2, (B3)
yields
o+iow zt
u (t)~—— [F ze t—0. (B

dz,
2mi Y o—iw z24izE,+(8H,)

The integration in (B4), after rewriting the integrand in

the form
1 o+ioc ze®
t)~—— ——  dz, t—0,
ualt) 2mi Yo—iw (2 —2z; )z —2;,) R B3)
where
z1,2=—é(Ea+—-na) , (B6)

can easily be performed and, as a result, leads to the ap-
proximate formula (56) for u,(z —0).
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