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Early-time properties of tiuantum evolution
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Approximate formulas are given for the effective Hamiltonian Hll(t} governing the time evolution in a
subspace JVil of the state space %. It is proved that this approximation is correct for any Hamiltonian H
of the system under consideration at the early-time period. The approximate form of the survival ampli-

tude for a given state improving Fleming s estimation in the short-time region is found and the proper-
ties of a decay rate for small, intermediate, and long times are discussed.

PACS number(s): 03.65.Bz, 42.50.—p, 98.80.8p

I. INTRODUC&rON

If we are searching for some specific properties of a
physical system, it is not always convenient to study the
time evolution in the total Hilbert space % of states
I g; t &, I g & G% described by solutions of the Schrodinger
equation

I@;t =to —0&ll= I@&ll I@;t=to:0&i= l@&i

I@;t&,=QI1(;t & c%,—=Q&, Q =I P, —

and

K(t)=8(t)PHQe "& &QHP,

Iy;t & =PHQe "tlH-~I y&, ,

(2b)

(3)

(4)

for the initial conditions

Iy;t =t, =o&=Iy&,

(la)

(lb)

and 8(t) is a step function: 8(t)=1 for t )0 and 0 for
t &0.

If states in the subspace %i are not occupied at the ini-
tial instant to =0, i.e., if

where H is the total self-adjoint Hamiltonian of the sys-
tem considered, i.e., to search for the properties of a total
unitary evolution operator U ( t }=exp( i tH } act—ing in

Ig;t &=—U(t)IQ&. Instead it may be more convenient
to study the time evolution in some closed subspace All of
% [1-10]and the properties of the effective Hainiltonian

Hll(t) governing this tiine evolution. In particular, such
an approach seems to be efFective in the most general
description of the early-time behavior of a given nonsta-
tionary state I f; t &, a problem which has recently been
more and more frequently studied [1—18]. Moreover the
meaning of such investigations has recently taken on a
new significance with the progress of experimental possi-
bilities [18].

In this case the total state space % splits into two or-
thogonal subspaces All and %i:ffe&ll and thus the-
Schrodinger equation (1) can be replaced by two coupled
equations for subspaces All and &i. Using a solution of
the evolution equation for subspace %hi, one can obtain
the evolution equation in the subspace &ll of vectors

defined by a projector P =P+ =P:
Ri=P&H. Ip;t &li

=—PIp;t &, which has the following form
[1—3] for t )0:

t——PHP Iy. t&
. a
at ll

= IX;t &
—t I "K(t—.) Iy;.&lid. , (2a)

0

t )0 Ull(t =0}—=P, (7)

where Ull(t) is the (usually nonunitary) evolution opera-
tor for the subspace All.

By studying and applying equations of the form (2) and
(7), Krolikowski and Rzewuski have found that some-
times it is convenient to replace these equations by the
equivalent, only difFerential, Schrodinger-like equation,
which is the case of initial conditions (6), i.e., for Eq. (7),
is written

a
i —Hll(t) Ull(t)=0, t —0, Ull(t =0)=P .

at
(8)

The equivalence of Krolikowski-Rzewuski Eqs. (8) and
(7) follows, e.g., from the identity

t}Ull(t)
Hll(t)

—= t Ull 1(t)
at

««ll(t) fulfiihng (7). The efFective Hamiltonian Hi (t}l
has the form [1—3]

Ie t.=o& = Ie& —=QIC& =0

then Iy;t&—=0 in (2} and It)&=PIp&:—g—&ll. Therefore
Iy't &ll—
:PI1/I't & =PU(t}Iy& =PU(t)P P q& = Ull(t)I/&ll ~

Therefore Eq. (2) transforms into [1—3]

where the initial condition (lb) is replaced by Hll(t): PHP + Vll(t) . — (10}
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The concrete formulas for Vi(t) can be found in Ref. [3].
The result of the action of the "quasipotential" Vi(t) on
Ui(t) depends on the properties of the kernel K (t):

(t)U~(t)= —I "K(t —r)U~(r)dr, t ~O.

Generally, early-time properties of Vi(t) follow direct-
ly from (9) and (11). We have [3,7—9)

ables us to describe processes generated not only by rela-
tively weak interactions.

So, if for every t ~ 0

(20)

then, to the lowest order of L (t), one finds, for V~~(t),

V~~(t) = V~~(t)= —i I K(t 7')e—" ' P dw, t 0 .
0

vl, (t =o)=o (12)

V~~(t) = itPH—QHP = it [P—H'P (PH—P)'), t ~0
it(—5Ht )

quite independently of the properties of H.

(13)

i P—HP G—(t)=P5(t), t ~0, (14)

i.e., the retarded Green's operator

6—:G(t)= iB(t)e—" P

enables us to replace the integro-differential equation (7)
by the equivalent, purely integral one, and then following
the ideas of Ref. [2] and applying the iteration procedure
to solve this integral equation for U~~(t), we find that [9]

II. AN APPROXIMATE FORMULA FOR VII(t)

The use of a retarded solution 6 of the nonhomogene-
ous equation

This approximate V~~(t), especially in the case of
dim&i= 1, is close to the Weisskopf-Wigner approxima-
tion in the long-time region, where one can replace Vi(t)
by V~~(t)=v~~(t~ao). The advantage of formula (21) is
that it can be applied for the study of time evolution both
in the very-short-time period t ~0, where the
Weisskopf-Wigner formula does not work, and in the
long-time period t~00. However, the most important
and useful property of approximation (21) is that at the
early-time period it can sufficiently accurately describe
not only weak but even very strong processes. This last
conclusion follows from the properties of xae operator
L (t). Indeed, the integral defining L (t) is not taken be-
tween the limits ~=0 and ~ but, in fact, it is taken be-
tween r=o and t This fo. llows from the definitions G (t)
and K (t) and it is due to the presence of the step function
B(t) in G (t}and K (t). Hence from the definition of L (t)
(18), we have

L(t) ~0
and therefore one can conclude that for any P and H such
that [P,H]%0, Tt )0 always exists such that

U~~ t) = U~ t)+ g ( i)"LoLo —o Lo U~~ (t),
n=1

(16)
~IL(t)ll «1 if 0&t & T, .

where U~~ (t) is the solution of the "free" equation

(t) =o, Uii( )
. a

(17)

symbol 0 denotes the convolution fo g ( t)
= f "f(t —r)g (r)dr, L is convoluted n times, and

L =L(t)=GoK(t)—:—I G(t ~)K(r)dr . —
0

From (16) and (11)one obtains

V~~(t)U~~(t)= —iKo U~~(t)

(18)

i g ( i)—"KoLoL . oL—o U (t) . (19)
II

n=1

Of course, the formal series (16) and (19) are convergent
if [[L (t}~~ &1 [the existence of ~~L (t)~I is assumed]. These
series are not the standard perturbation series, i.e., if one
considers the Hamiltonian of the general form
H =H~o~+Ht, then in order that ~~L(t)(~ & 1, it is not
necessary for the perturbation HI to be small with
respect to the free part H[0~. Therefore the approach
leading to Eqs. (2), (7), or (8) has some advantage in rela-
tion to the standard perturbation methods because it en-

From this it follows that for every H, the e8'ective Hamil-
tonian H}(t)=PHP+ V~~(t), where V~~(t) is given by for-
mula (21), can describe the dynamics in the subspace
&}=P& at the e—arly-time period 0&t & TI to a very
good approximation. Therefore the approach based on
Eq. (8}seems to be especially effective in searching for the
early-time behavior of physical systems. The maximal
value T~ of times t for which the approximation (21) is
still valid generally depends on a given H and P.

III. TIME EUOLUTION
IN THE ONE-DIMENSIONAL SUBSPACE IVII

Let us consider the projector P defined by a normalized
vector

~
a ) Egf. Then

(24)

and, if ((a~H~a) ( & ~, Eqs. (7) and (8) transforin into,
respectively,

t ~0, u (0)=1 (25}
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i —E— —v (t) u (t)=0, t &0, (26)
v (t) —=—I v (r)dr,

leads to

(40)

P.HP. —=E.P., E.=&alHla&,

K(t):(a—lK(t)la&P =k—(t)P
k (t)=e(t)(alHQe "~ ~QHla&,

V~~(t}=v (t}P

H~((t)—= [E +uH(t)]P~ .

From (21) we immediately find

—it (QHQ —E )

v, (t}=vt(tl Ia, H=Q QH a)QHQ EH—
l—= —& (t)——y (t)a 2 a

(28)

(30)

(31)

(32)

with 6'(t) and y'(t) real, and, if E belongs to the con-
tinuous part o, (QHQ) of the spectrum o(QHQ) of the
operator QHQ, i.e., if E &eM, where eM denotes the
lower bound for the o, (QHQ), we have

(im v', (t):——X,(E,)=—a HQ QH a)
1

t~ oo H E iO——

where u (t), E, k (t), and v (t) replace U~~(t), PHP,
K (t), and V~~ ( t) in (7) and (8):

U~~(t)=& al U~~(t}la& P —= &al U(t)la&P —=u (t)P

(27)

I'= —2Imv (t)=y (t) . (41)

The decay rate y (t) possesses the following properties at
the early time region [10]:

y (0)=0,

y (t)=2(5H }'t, t~O,

(42)

(43)

where (5H ) =(alH Ia& —(alHla& . These properties
follow from (12) and (13) and do not depend on a con-
crete form of H.

In the long time region t ~ 00, if E ~ cM, the approxi-
mate expression for the decay rate y'(t} has the nonzero
limit (35): y'(t = 00 ):—2 ImX (E, ) & 0, and states
Ia & F%f, for which this property takes place, correspond
exactly to the standard quasistationary (unstable} states
of the system under consideration. If E (cM,
y'(t = oo ) —=0 (36) [though. in this case, y'(t) &0 for
t~0], and therefore those states Ia & Eff, for which this
result (36}occurs, cannot be identified with the quasista-
tionary states.

The properties of the exact y (t}=—2Imu (t) in the
long-time region can be deduced from Khalfin's theorem
[19], which is due to Paley and Wienier's theorem, and
states that if the spectrum of the total Hamiltonian H of
the system is bounded from below, then [19]

p (t)—:Iu (t)l — exp( bte), b &—0, q (1 .
t~+ oo

where X (s ) is the self-energy for the state I a & and

E,'=—(a HQ P QH a),

(33)

(34)

Therefore the following conclusion should hold: If for
the nondecay probability p (t), the asymptotic represen-
tation (44) is valid, then the decay rate y (t) [i.e., the
imaginary part of the quasipotential v (t),
Imu (t) —= —

—,'y (t)] behaves in the long-time region
t —+00 as

y'=2n&aIHQ5(QHQ —E )QHIa»0 if E &eM,

which coincide with the Weisskopf-Wigner results, and

y (t)= —2Imv (t) ——bq t, A, —= 1 q&0—
t —+ oo

and thus in the exact theory

(45)

(46)

Ta=0 if Ea (36)

p(t;Ia&)—= Iu (t)l' (37)

In Eq. (34), P denotes principal value.
The imaginary part y (t) of the quasipotential v (t)

corresponds to the decay rate of a given state
I a &: having

the nondecay probability

This conclusion agrees with the intuitive solution of
the problem of which is the decay rate of the completely
decayed state (at the moment t = 0(», by definition, every
unstable state la & E% is not occupied, i.e., it is complete-
ly decayed). The relations (45) and (46) can be derived
from (38) and (41) using the property (44).

1

p(t;la&)
which, together with the solution

—it[E +tt (t)]
u t)=e

of Eq. (26), where

for this state, the decay rate I can be defined as [10]

Bp(t; Ia&)
Bt

(38}

(39)

IV. EARLY-TIME BEHAVIOR OF SOLU IIONS
OF THE EQUATION FOR THE PRO JE~lON

OF A STATE VECl'OR
ONTO ONE-DIMENSIONAL SUBSPACE

A. Two-level system

Let us consider, to begin with, the case of a two-state
system. Such a system can be solved exactly and thus, in
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some sense, is trivial, but has a pedagogical meaning and
allows one to draw some general conclusions from the
form of the solution of Eqs. (25) and (26) on the early-
time behavior of more complicated systems. Thus let the
vectors [5]

—(i /2)tE
u (t) =e cosG 2

E
l sm

2

Replacing k (t) in Eq. (25) by k (t ~0) (55) leads to the
solution [see (B4)—(B6)]

1 0I»= (), (47)

form the basis in a state space & of such a system and let
the subspace %~~ be defined by a projector

p. =—p, =li&& il . (48)

—(i /2)tH+
u, (t) =e + cos i s—in

2 9 2. '

where H+~ ~=H»+( —)H2z and

q=(H' +4IH»l')'"

Let us note that the following relation takes place:

(49)

(50)

IHip I'= & I IHQHI I & = & ll(H' —H f, ) I
1 &

—= (&H, )',
(51)

which can be useful in discussing properties of u, (t).
The "nondecay" (survival) probability for the state

I
1 &

equals

p(t; Il &) = lui(t)l'=1 —4
IHizl' . , gt

2
(52)

and, in the small time region, determined by the condi-
tion

—,'qt «1,
it quadratically decreases with the growth of time t

(53)

p (t; I »)= I., (t) I'=1 —IH» I't', (54)

Expressions (49) and (52) are exact and will be helpful in
discussing early-time properties of a physical system with
infinite degrees of freedom.

In this case, the self-adjoint Hamiltonian H is 2 X 2 ma-
trix with the matrix elements H t, (j,k = 1,2) and the
solution of Eq. (25), where u (t)—+u, (t) with the initial
condition u&(0)=1, is [5]

q.——[Z'. +4(SH. )']'"
This solution is valid for time t limited by relation (AS).

One should stress that this solution is quite indepen-
dent of the properties of the Hamiltonian H of the system
under consideration. Strictly speaking, there is one (only)
restriction on the state la&: the appropriate solution
u (t ~0) (56) of Eq. (25) exists provided that (5H ) (55)
exists.

In the case of small times considered, from (56) one
finds, for the survival probability,

, g t E'
p(t la&)=—lu (t)l = cos + sin

0 2 q 2

4(5H )'
sin

9a
(58)

The above estimations of small-time behavior for the am-
plitude u (t), and thus for the survival probability

I
u (t)l, are consistent with the Fleming estimation [13],

known as "Fleming's rule" or "Fleming's unitary limit, "
and correct and improve his result.

The comparison of amplitude u, (t) (49) and the proba-
bility p (t; I

1 &) (52), obtained for the case of a two-state
system, with the approximate u (t~O) (56) and corre-
sponding to it the probability p (t; la & ) (58), respectively,
leads to a conclusion concerning the general early-time
properties raised by quantum dynamics. Namely, com-
paring these results mentioned one finds that if to prepare
a physical system at the initial instant to=0 in such a
way that the initial state I g; to =0 & of this system belongs
to the subspace %~~, i.e., if Ig;to=0&:IP&~~&~[~
If;to=0&i=—Ig&i=0 (6), then, at the early-time period
t ~0, a system with an infinite degree of freedom
(dinuY= ~) behaves like a system with two degrees of
freedom described by state space % of diaut'= 2.

In other words, at the early-time period t ~0, the tran-
sition probability from a subspace %~, of dim&~~=1 into
subspace of states &i

B. Infinite-level system

Now let us consider the case of the infinite-dimensional
state space & and one-dimensional subspace %~~. In this
case the projector P deSning &i has the form (24). The
early-time, model-independent, solution of Eq. (25) for
the amplitude u (t) can be relatively easily found (see
Appendix 8). Namely, for very small times t~O, the
quantity k (t) (29) can be approximated by [see (A6) and
(A7)]

k (t 0)=e(t) & alHQHla & =e(t)(oH )

IIQU«)la&ll'=1 IIU~~«)la&ll'=I p« la&)

behaves like

4(5H ) stot
IIQU(t)la&ll =— sin, t 0

[where rIo may denote g (50) or rt (57) depending on the
problem considered] quite independently of dim. &i (i.e.,

of whether dim&i = 1 or dim&i & 1, e.g., dimgfi = ~ ).
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V. FINAL REMARKS

From (58) one sees that if, analogously to the case of
dim&=2 [see (54)],

—,'q t ((1,
then

p(t;Ia))=lu (t)l'=1 —t'(5H )'.

(61)

(62)

The properties (54) and (62) and, especially, the condi-
tions (53}and (61) under which they take place seem to be
important because some authors [20] believe that the
smallness of (5H ) [2], i.e., the condition t (5H ) «1,
guarantees that the survival probability has the form (54)
and (62) and thus defines the so-called "Zeno time re-
gion" in the case of many successive, so-called ideal mea-
surements of a given state. In other words, one interpre-
tation of this is that if t (5H ) « 1, then the joint prob-
ability P(b,„,. . . , b,z, b, ),'Ia) ) of finding the system in a
given state Ia), in any of n measurements separated by
time interval b,„,. . . , hz, 5) (see, e.g., Refs.
[5,6, 18,20—22])

(63)

for 5„= . =6 =6,—=5 & t, takes the form

P(h„, . . . , E„h„la&)l „=, „—:P(n, b,;Ia))
=—[1 b, (5H ) ]—",

(64)

which, for b:tin and s—uitable, very large n, transforms
into

P(~„, . . . , ~„&;la&)= g p (&k,'Ia&)—= ff Itt(~k)l',

P n, —;la) -=1——(5H )
t -=t' 2'n' n

and, as a consequence, leads to the Zeno paradox [6,21].
From (53) and (61), and (54) and (62), it follows that such
an interpretation is wrong; it may happen that
t (5H } «1, but t E [or, in the case of dime/=2,
t H; see (50)] is so large that condition (53) or (61),
which are necessary and suScient for probability
p(t; Ia) ) to be of the form (54) or (62) required, cannot
be fulfilled. Only the smallness of both t (5H ) and
t2E2 (or, if dim&=2, t2H } together results in the ap-
proximate expressions (54) and (62) for p(t;Ia)) and
thus, in formula (64) for the probability P(n, b„' Ia) ) ap-
pearing in the case of many successive, quasicontinuous
measurements, i.e., leads to the Zeno paradox. Taking
into account these properties of short-time evolution
seems to be useful in designing experiments for
confirming and searching for such occurrences as the
Zeno paradox, especially if one considers the case of tran-
sitions from a single, isolated state into a continuum.

In the case of a two-level system, the expressions for
the joint probability P of finding the system in the state
Ia) —= Il) in each of the n intermediate measurements
(63) and for the probability p (t; I 1) ) (52) suggest not only
an experiment for searching for the quantum Zeno effect
[23,18], but also another one for 5's much longer than
those proper by defining the so-called Zeno time region
[24], i.e., much longer than those determined by relation
(53). Namely, one can choose, for instance,
6„,. . . , b,2, b, ) so as to bep(T, —:g) ) b, &, ll))=1 (here

Ti =2m j/ri, j=1,2, . . . ) and hk —=5—:To for kAl
(where To is defined by the property sin[(rt/2)To]
—:1—see (52)—i.e., To=[(2r+I)lrt]m. , r =1,2, . . . ),
To«T, , and 6) =—T, (n —1)TO. Then —it should be

[24]

(65)

etc., which can be verified experimentally, and thus the
reduction postulate leading to formula (63) for the proba-
bility P can be verified.

The general properties of the decay rate y (t) (41) and,
strictly speaking, of its approximate form y'(t) (32) and
(A5) are determined by the properties of the imaginary
part of the self-energy X (e), i.e., density [6,10,15] p (E)
(A4}; see (A5). The spectral density p (E}must obey the
following basic requirements [25]: positively, threshold
behavior [p (e)-(e—eM) as a~EM for two-particle
decays], and vanishing for E—+0D. Its concrete form is
determined by the spectrum of the decay channel space
%i and the transition operator QHP. The simplest model
satisfying these minimal physical requirements has been
studied in Refs. [6] and [10]: the calculations have been
performed there for

(66)

with two parameters characterizing the behavior p (e) at
c—+~: the cutoff A, and the power k, and assuming
EM=0. The coefficient ak(A, ) is related to the rate y'
(35), which has been assumed to be very small, by the re-
lation p (E )—=—,'y' (33) and (A4):

(E +A, )"
ak(A, )=

2yi (E ))/2

The results obtained in Ref. [10] are presented in Fig. l.
All curves in this figure start from a straight line, accord-
ing to the result (43), and then, later, y'(t) begin to oscil-
late. The amplitude of these oscillations decreases rela-
tively quickly with the growth of time coming up to the
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APPENDIX Aasymptotic value y' from t)(50—100)E ' practically,
and the oscillations amplitude increases strongly for in-
creasing k and decreasing A, .

Also the behavior of y'(t) at the earliest and at the
subsequent stages of time evolution seems to have some
meaning for an understanding and a proper description
of the earliest instants of the existence of the Universe.
Namely, it seems that this behavior can be considered as
a candidate for a possible mechanism producing the mass
density Auctuations at the initial instant of the time evo-
lution of the Universe [26]. k (r):— e—(t)f e "p (F)dF,

f— (F)dF, r)0,it F—E)——1u'(t)=— Pa

(A2)

Using the complete set of eigenvectors !F & of the
operator QHQ for FEa, (QHQ): QHQ!F & =F!F&,

F)EM, normalized as usual &F!F'&=5lF F—'), with the
completeness relation

f !F&&F!dF=Q
~ ~

nd u' r):leads to the following representation for k~(t) and u~

(A3)

where

p (F)=n!&F!H!a&!—= ImX (F) .

One finds

sin[i (F E]—
J

(A4)

(A5)

0 RCt

It is easy to see that for E ) EM this y (t) tends to
')0 iven by formula (35) as taco, and, if E (ettr,

by Riemann's lemma, according to (36), to the zero va lue
as i-~ ~.

From (A2) one obtains

t t t t t I I t t
J

t t I 1 t I I t 1
1

1 t I t I I I t ~
k.(t)=- —'e(r) y ", f "Fi.(F)dF

n=0

e(t) f—"p.(F)dF+
t---~0 VT M

(A6a)

~00 —— The density p (F) can be related to the dispersion 5H~ as
follows:

300 -~

i(

p FdI'—:aH Ha
IT :—

& a!H !a &
—

& a!H!a &
= ( 5H )

The approximation (A6b) for k (r) and thus the solution
u (r) (56) of Eq. (25) are valid provided that times t fulfill

the following inequality;

r f Fp (F)dF « f p (F)dF= vr(5H )~. —(As)
C~ M

APPENDIX 8

-- t.C)0 ——
("} t")o

t t t T t t t t ! 1 t t

"t 0.00
I I I j t ! t t 1 I t i t I

2C}.00 30 ~Q

In terms of Laplace transforms, defined as

f(z)= f f(r)e "dr,

the solution u (t) of Eq. (25) for t )0 is written

FIG. 1. De endent:e of y'(t)/y' on t for different ~ and k-

(a) k= 1 and (lj X=O 2Ea& (2) ~= 1,0Erz, and (3) ~ ~ ai
k=4 and (~) A, =0,2E, (2) X=0,5E, and (3) &=3,0E~. Time

—lis measured in units of E

ztu+im e
dz, o. &0 .

2mi ~ —
~ z+iE +4 (z)

Inserting into is ormth' f rmula the Laplace transform of the
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4 (z)= —(a~HQH~a)—: (5—H )
1 1

Z Z

yields

(B3)

approximate expression for k (t) (A6), valid in the
short-time region t —+0, i.e.,

the form

cr+i ~ ze Zf

u (t)= dz, t~O,
2mi ~—i~ (z —z, )(z —z2}

where

(B5)

u (t)= dz, t~O. (B4)
z +izE +(5H )

The integration in (B4}, after rewriting the integrand in

l
z, 2= — (E—+g ), (B6)

can easily be performed and, as a result, leads to the ap-
proximate formula (56) for u (t ~0).
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