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Solutions of Schrodinger s equation for systems interacting with long-range power-law potentials,

V;„t(r) ~ r " with n ~ 2, are cast in the form of a power series in V;„,. These perturbations lead to secu-

lar divergences that are eliminated by renormalizing the angular-momentum quantum number. Long-

known perturbation techniques in classical mechanics and quantum-field theory yield modified effective-

range formulas, quantum-defect functions, and solutions of close-coupling equations for wave propaga-

tion in long-range fields. As an example, we extract in first-order perturbation theory a modified

effective-range expansion for the phase shift of an electron interacting with an atomic 1/r polarization

potential. Near thresholds, the method is applicable to all power-law potentials with n & 2, and to their

combinations, as well as to multichannel problems involving anisotropic potentials.

PACS number(s): 03.65.—w

I. INTRODUCTION

Long-range interactions between quantum systems can
drastically affect fragmentation processes, particularly
near thresholds where interaction times are enhanced by
the low velocity of the receding fragments [1]. We refer
here to the multipole interactions, V(r) cc r " with n )2,
which are shown in Ref. [1]to possess an infinite efi'ective
range. ("Short-range" interactions, in contrast, decay at
least exponentially with distance. } Much efi'ort has been
devoted to analytical methods for calculating contribu-
tions to phase shifts from such residual multipole interac-
tions between fragmenting systems [2—4]. Only after suc-
cessfully incorporating these long-range effects can one
focus on the difficult problems that accompany the more
complicated interactions at short distances.

Historically, long-range fields have been dealt with by
rather cumbersome mathematical analyses associated
with the special functions appropriate to each type of in-
teraction. Even those few cases where known special
functions apply [5,6] require extremely tedious manipula-
tions [7] to extract essential information, such as the den-
sity of states and the energy dependent phase accumulat-
ed in the long-range field. Furthermore, analytical treat-
ment of these long-range interactions has dealt essentially
with single-channel problems, leading to success only
where long-range motions are treated by solving a single
(uncoupled) radial equation. The analysis of long-range
interactions thus remains confined to essentially adiabatic
phenomena [8]; the relative motion of the receding frag-
ments is neglected in lowest order.

An alternative to the analytical methods described
above is an expansion of the wave function in the form of
an oscillatory function, e '"', multiplied by a series in in-
verse powers of r [9]. Gailitis [10] improved upon these

solutions by replacing the oscillatory function with a
solution of an "unperturbed" radial equation with a
modified angular momentum barrier. The ad hoc
angular-momentum L of Ref. [10]was selected arbitrarily
and, as a matter of convenience, L was generally integral,
except in cases of long-range dipole (llr ) potentials.
These series diverge rapidly close to threshold, where
they apply only for very large fragment separations. The
use of Pade approximants [11] allows these series to be
evaluated numerically, accelerating their convergence,
and extending their region of applicability to much small-
er distances.

This paper aims at demonstrating how wave functions
of fragments moving in long-range fields can often be cal-
culated accurately and analytically by relatively elemen-
tary and long-established methods of perturbation theory.
The key element of this analysis recognizes that the
divergence of a series expansion in powers of the long-
range potential stems from secular perturbations —that
is, from driving terms that resonate with the unperturbed
system. The standard procedure for eliminating secular
terms renormalizes the "effective frequency" of the sys-
tem, be that a classical oscillator frequency or a self-
energy [12]. In the context of long-range interactions,
angular-momentum quantum numbers must be renormal-
ized to shift the response out of resonance with the driv-
ing term. The energy-dependent "shift" of the angular
momentum is simply related to the phase accumulated in
the long-range field.

This paper provides a simple procedure for calculating
accurate near-threshold wave functions for general long-
range potentials. We focus in Secs. III and V on the ex-
ample of a polarization potential both for clarity and be-
cause this case has received the most attention in the
literature. Generalizations to other long-range fields fol-
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low naturally, and need not be given explicitly here—
though an example is cited in Sec. VI. The relationship
of our analytical solutions with the numerical solutions of
Refs. [10] and [ll] is discussed in Sec. VI. Wave func-
tions resulting from this construction may serve in the
study of ultracold collisions [13],as well as in more tradi-
tional applications of effective-range and quantum-defect
theories.

II. REVIEW OF SECULAR PERTURBATIONS

M(z)= y X"M'"'(z) .
n=0

The resulting zeroth-order solution reduces to the Bessel
function, M' '(z)=J, +,&2(z), representing free motion of
the receding fragments. The first-order equation is then

cfz

Elementary textbooks in classical mechanics cite the
example of an oscillator containing a small anharmonic
component, e [14]:

X +COOX
—EX

Attempting a solution as a series in powers of e,

x (t) =xo(t)+ ex, (t)+

Leads to a first-order inhomogeneous equation with a
component of the driving force proportional to a solution
of the homogeneous or unperturbed equation. This com-
ponent is termed "secular" since it drives the system at
resonance, leading to a divergence of the amplitude with
time. A perturbative approach is still possible by renor-
malizing the frequency,

Its driving term expands into a Bessel series through the
recurrence relation

1 JI —3zz(z) JI + i n(z)
z 4(t +-,')(I —

—,') 2(I —-')(I +-')Jr+in«) — +

Jt +5/2(z)

4(1 + —,
' )( I +—', )

whose second term on the right-hand side solves the
homogeneous equation —thus constituting a secular per-
turbation and resulting in a divergence of the first-order
solution. All higher equations in the series also include
secular terms.

Elimination of the secular terms is readily accom-
plished, following Eq. (3), by adjusting the angular-
momentum quantum number:

coo —co +E'k~+6 A, + ' ' ' (3)

and adjusting the constants A,„ to eliminate secular terms.
Equation (3) is then inverted to determine the renormal-
ized frequency co.

III. THE POLARIZATION POTENTIAL

The analysis of long-range forces between atomic or
molecular fragments proceeds in close analogy with the
above example. Consider a long-range polarization po-
tential that varies inversely with the fourth power of the
distance between the fragments, yielding Schrodinger's
radial equation

(I+ '
) =(y+ ~ )2+ y g"I I "~

n =1

The renormalized angular momentum y will be deter-
mined below. Substituting Eqs. (6} and (9) into Eq. (5),
and equating coeKcients of equal powers of 6, yields for
the lowest three orders of b,

z +z +z —(y+ —,') M' '(z)=0,
82

z' +z +z' —(y+-,')' M"'(z)

1 d 2 d + l(l+1) p
2r « « 2r 2r

I ——M (z),(1) (O]

2'
' (10)

r)ro, (4)

in units with e=k=p=1, where p represents the re-
duced mass of the fragments. This equation can be
transformed into Mathieu's equation [15], which
possesses thoroughly studied, but quite complicated,
solutions [7]. We instead rewrite Eq. (4} (for E )0) in
terms of z =kr, 4'(r) =&k/zM(z), and k =&2E, yield-
ing

z +z +z —(I + —,
'

) M(z) = ——M(z) ., d' d
22 dz 22

(5)

The factor 5 =2Epz will index the order of our perturba-
tion series.

To see how Eq. (5) leads to secular perturbations, con-
sider a series expansion of the solution in the form

z +z +z —(y+ —') M' '(z)'d, d.

=I "'M' '(z)+ I'"——.M"'(z)1

y
'

2 y

The zeroth-order solution of Eq. (10}is again a Bessel
function, Jr+, &2(z), albeit of a shifted order. The first-
order equation is similar to Eq. (7), but includes the pa-
rameter I'", whose value is chosen to eliminate the secu-
lar term in Eq. (8):

1 1I (])
2(y —

—,
' )(y+-', ) 2[(y+-,' )'—1]

This choice of I '" allows one to write a first-order solu-
tion of Eq. (10) by inspection:
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My(z) =My '(z)+EMy" (z)+O(h )

Jy+1/2(z)

16(y+ —,
'

)

Jy —3/2(z} Jy+5/2(

(y —
—,
' )' (y+-,' )'

+O(h ),
with the value of y also set to second order in 5,

(12)

to I in the limit E~0, namely,

4 E +O(b, ') .
(2l + 1)(21+3)(21 —1)

(14)

The asymptotic form of Eq. (12) as z~oo shows the
phase of My(z) to depart from that of a free wave of an-
gular momentum l by the amount

(y+ —') =(I +—') — +O(b, )
2[(y+ -,' )'—1]

(13) 2 (2l+1)(2l+3)(2/ —1)

Note that no homogeneous contribution has been added
to the particular solution, M'„"(z). This would amount
to a 5-dependent renormalization of the amplitude of the
zeroth-order solution —and, therefore, to an amplitude
renormalization of the entire function M (z). The "first-
order" solution Eq. (12) manifestly includes terms in 5 to
all orders through the implicit dependence of y on 5, Eq.
(13). Solving Eq. (13) for y yields a solution that reduces

I

(16)

whereby

which coincides with the well-known threshold phase
shift for polarization potentials [16].

Proceeding to second order, the secular perturbation
on the third line of Eq. (10) is eliminated by setting

5(y+ —,') +7
I (2)—

32[(y+ —,
'

)
—4][(y+—,

' } —1]

1 Jy —3/2(z) Jy+5/2(z)
32(y+ z)(y —I')(y+-,') (y —

—,')'(y —
—,') (y+-,')'(y+-,')

1 Jy 7/2(z) Jy+9/2(z)
»2(y+-'} (y —

—,')'(y —
—,')'(y —

—,') (y+-,')'(y+-,')'(y+-,') (17)

Equation (16) implies that each successive order of this
perturbation theory requires solving an algebraic equa-
tion for y, Eq. (9), in terms of b, and l.

For the polarization potential, this perturbation pro-
cedure is equivalent to a series expansion in 5 of the ex-
act Mathieu function solution, as demonstrated by noting
that the perturbation series, if taken to all orders, has the
form

My(z) = g ay"'Jy+ &/2+2„(z), ay
' =1, (18)

The perturbative approach outlined above results from
an expansion of the continued fractions in powers of h.
In this example, the elimination of secular perturbations
amounts, therefore, to determining the renormalized an-
gular momentum y by enforcing convergence of the
series.

which is equivalent to a Laurent series [17] for the
Mathieu function. (In this context, y is referred to as a
characteristic exponent; it identifies the solution according
to its analytic continuation around the irregular singular-
ity at z = oo [18].) Substitution of Eq. (18) into Eq. (5)
and use of Eq. (8) yields a three-term recurrence relation
for a '"', which can be written in terms of a pair of infinite
continued fractions. The Laurent series converges for all
values of z between the two irregular singular points of
Eq. (5), at z =0 and oo [7], as verified by showing that

a(+iwl)
(19)

IV. CALCULATION OF THE PHASE SHIFTS

The perturbation series described above serves to gen-
erate a pair of linearly independent functions outside the
reaction zone, r )ro, for quantum-defect theory or R-
matrix applications. The perturbative solution M„(z)
was generated from a zeroth-order function Jy+ |/2(z). A
second linearly-independent solution, M y, (z), arises
from the alternative zeroth-order function M' '(z)
=J y, /2(z}. This pair of independent solutions. serves
then as a base pair to be joined to an interior solution,
1t;„,(r), at a matching radius, r =yo. At r (ro,
Schrodinger's equation does not have the simple form of
Eq. (4},but its solution P;„,(r) may be recast at large y ac-
cording to

rf;„,(r) — r A [My(kr)+KM &(kr)] .
P ) Pp

(20)

The wave function in the reaction zone r (ro, generated
independently, is characterized at each r ) ro by its loga-
rithmic derivative,

d = 1
[ln rg,„,(r)]„,=b(E)+-

2ro
(21)

b (E}+ = [in[ &rM (kr)
2ro dr y

+KV rM i(kr)]]„ (22)

an analytic function of the energy. The detailed match-
ing, Eq. (20), reduces to the equation
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b (E)— lnM ( kr )
drMr (kro )

!

b(E) — inM ~, (kr)
dr 1 —l'

0

(23)

whose term in square brackets is an analytic function of
the energy.

The base Pair functions My and M
y 1 oscillate with

a phase difference not equal to 90' as r ~ eo (as verified
from the asymptotic form of the Bessel functions) where-
by arctan (K) does not represent the asymptotic phase
shift of %(r). Expressing the asymptotic form of Eq. (20)
as sin(kr —ln/2+5) yields the correct phase shift in the
form

where

tan[a ( I —y ) /2]+ K'
1 —K'

tan[m ( I —y ) /2]
(24)

E cosa@
1 —EC sinn@

(25)

V. A MODIFIED Ek Fj'CTIVE-RANGE EXPANSION

In order to illustrate the utility of our perturbed wave
functions, we now show that the modified effective-range
expansion can be obtained directly from Eq. (23) and
from the first order results, Eqs. (12} and (14). The con-
cept of an effective range" of fragment interactions
emerged from expanding the phase shift of an escaping
fragment's wave function to lowest order in its escape en-

ergy or velocity [20]. Here we illustrate the Qexibility of
our wave functions M (kr) by extracting an effective-

range parameter K from Eq. (23} and the first order re-
sults Eqs. (12) and (14).

Substituting Eq. (14) into Eqs. (24) and (25), and retain-
ing terms of order E, gives

Equations (24} and (25) hold to any order in b, .
As the energy increases from threshold, the value of y

determined from Eq. (9) can become complex. The ex-
traction of the phase shift proceeds in this case as above,
except for replacing the base pair M and M, with
their real parts; the phase shifts and wave functions ob-
tained in this manner depend on energy smoothly. While
the convergence of our perturbation series far from
threshold is slow, the long-range potentials become less
important as the kinetic energy of the separating frag-
ments increases. Methods of evaluating the exact
Mathieu functions far from threshold are available for
the polarization potential [19].

kr, ~(1+—,
'

)0

! [I (I + —,')]

4 kgo rob(0) —I
X ~1 ——tan(5, ) ln

2 rob (0)+ I

P (I+—,')
X 1+

2ro(I —
—,
' )(I + —,

'
)

2rob(0)+2
X 1+

rob (0)—(I +—')

+—

VI. EXAMPLES AND DISCUSSION

While the modified effective-range expansions hold
only very near threshold (kro«1), our perturbative
wave functions hold over a much larger energy range.
Even the zeroth-order wave function, including the first-
order correction to the angular momentum, often consti-
tutes an effective approximation to asymptotic wave func-
tions. Figure 1 presents the long-range or "polarization"
phase shift

5i(b )—:—(I —y)
2

(28)

for an I = 1 partial wave. The two curves shown were ob-
tained by expanding the renormalization Eq. (9) to first
order (dashed curve) and second order (solid curve) in b.
The second-order equation was solved by expressing Eq.

[Note that the product tan(5, ) ln(kro/2), while nonana-
lytic, vanishes at threshold. ] Equations (26) and (27)
represent a modified effective-range expansi. on, including
nonanalytic terms [16,21]. They parametrize the near-
threshold energy dependence of the phase shift in terms
of the threshold value of the logarithmic derivative of the
inner wave function at a matching radius r0. Similar ex-
pansions for any inverse power-law potential ( ccr "for
n ~ 2), or for any combination of such potentials, result
from straightforward application of the secular perturba-
tion method.

tan(5 ) = tan(5, ) + ( —1 )'K (26) —0.40
0 00

I

0.05 0.10 0.20 0.30

in terms of the threshold phase shift 5, from Eq. (15).
Evaluating the first-order wave functions at r = r0 for
kro « 1 and neglecting terms of order P yields, from Eq.
(23),

FIG. 1. The long-range phase shift for an I = 1 partial wave in
a polarization potential, with polarizability P2. The phase shift
is plotted versus Is=2EP Dashed curve: fi. rst order. Solid
curve: second order. Asterisks: exact results of Ref. [6].
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(9} as x =f (x) with x =(y+ —,
' ) and iterating

x„=f(x„,} from the first-order solution. This pro-
cedure converged in a very few iterations over the energy
range shown. Our results compare favorably with the ex-
act results of Ref. [6], obtained using the Mathieu func-
tions.

Applications of this method to other potentials of in-
terest is illustrated here by comparing our perturbation
expansion with results of a variable-phase calculation [2]
of long-range phase shifts for positron scattering by
atomic helium. In this example, both the dipole
(a =Pi= l.322 a.u. ) and quadrupole (a2=2. 328 a.u. ) po-
larizabilities contribute to the long-range motion:

a) a2V(r)—
i & J'0 2T 2P

(29)

The secular perturbation inethod recasts Eq. (9), to order
a) and a2, as

Ea)(l+—') =(y+ —') +
[(r+-,' }'—1]

E2

[()'+-,' }'—4][()'+-,' )'—l l

3tx2 a/[5(y+ —,
' ) +7]

X +
2 8[(y+,' } —1]

(30)

The long-range phase shifts resulting from Eqs. (28) and
(30) are shown in Table I for an 1 =2 partial wave and are
compared with those of Ref. [2]. Results of Ref. [2] for
other partial waves have been similarly tested with good
agreement.

The above procedure extends to solving close-coupled
radial equations for waves propagating in anisotropic
Selds. In this context, it is closely related to the asymp-
totic expansions developed in Ref. [10] and implemented
by Noble and Nesbet [11]. While a detailed comparison
of our methods is beyond the scope of this manuscript,
we note, as discussed above, that a modified angular
inomentum (denoted by L) is also used in Ref. [10],
though no criteria for the choice of L was specified. In
fact, it is not difficult to show that convergence of the
Gailitis series of arbitrary r values hinges on the proper
choice of this variable, for the recurrence relations relat-
ing coeScients of the power series are equivalent to an
infinite set of homogeneous linear equations whose deter-
minant will vanish only for particular values of L. The
secular perturbation theory described here may simply
correspond to an expansion of that determinant in

TABLE I. Long-range phase shifts for positrons scattering
from helium atoms at low energy. The I =2 phase shifts given
by Eqs. (28) and (30) are compared to those of Table 2 of Ali
and Fraser [2].

k=&2E

0.025
0.050
0.075
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

Ref. [2]

0.000025
0.000099
0.000223
0.000 398
0.001 625
0.003 774
0.007005
0.011 538
0.017658
0.025 710
0.036 103
0.049 303
0.065 831

This work

0.000025
0.000099
0.000223
0.000398
0.001 625
0.003 776
0.007017
0.011 591
0.017 830
0.026 183
0.037 260
0.051 914
0.071 414
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powers of 5, though this connection remains to be inves-
tigated in detail.

Finally, we note that a renormalized angular momen-
tum occurs quite naturally in problems involving long-
range dipole potentials (n =2), since a permanent dipole
moment modifies the eifective centrifugal barrier directly
[22,23]. In this case, the value of / in Eq. (4) need not be
an integer. EfFects of octupole and higher-order moments
on electron scattering from polar systems [24] therefore
fall within the scope of our analysis. Such an application
to electron scattering from polar systems is in progress
and will be reported elsewhere.

In conclusion, we have demonstrated that near-
threshold wave functions for atomic or molecular frag-
ments may be generated using elementary methods of
perturbation theory, provided that secular divergences
are eliminated. This is accomplished by renormalizing
the efFective centrifugal barrier for radial motion.
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