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Generalized coherent state for multimode bosonic realization of the su(2) Lie algebra
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We have constructed the multimode bosonic realization of the su(2) Lie algebra, on the basis of
which the SU(2) generalized coherent state in the multimode Fock space is derived. It is shown that
in the multimode coherent state each bosonic mode has the sub-Poissonian statistics, and that the
unitary displacement operator can be identi6ed as the generalized multimode rotation operator.
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In recent years the Lie algebras su(1, 1) and su(2) have
been used by many researchers in the study of the non-
classical properties of light in quantum-optical systems.
It has been shown that the single- and two-mode bosonic
realizations of the su(1, 1) Lie algebra have iminediate rel-
evance to the nonclassical squeezing properties of light,
and that the associated generalized coherent states are,
in fact, special cases of the so-called single- and two-mode
squeezed states [1]. Recently, Lo and Liu [2] constructed
the multimode bosonic realization of the su(1, 1) Lie alge-
bra, on the basis of which the SU(l, l) generalized coher-
ent state in the multimode Fock space was derived. They
showed that the multimode coherent state was actually
the generalized squeezed vacuum state discussed by Lo
and Sollie [3), and that the unitary displacement operator
could be identified as the generalized multimode squeez-
ing operator. Similar to the single- and two-mode cases,
the multimode bosonic realization of the su(1, 1) Lie al-
gebra has immediate relevance to the squeezing proper-
ties of boson fields. On the other hand, another type
of squeezing, namely, the SU(2) squeezing for the su(2)
generators, associated with the SU(2) generalized coher-
ent states in the so-called (two-mode) Schwinger bosonic
representation of the su(2) Lie algebra has been found in
the study of interferometers [4] and in other applications
in quantuin optics [1]. These SU(2) generalized coherent
states generated as a result of a model interaction in-
volving angular-momentum algebra are called the SU(2)
squeezed states. Furthermore, the bosonic realization of
the su(2) Lie algebra has been receiving extensive atten-
tion in nuclear physics recently [5—8]. In the present work
we are interested in generalizing the two-mode bosonic re-
alization of the su(2) Lie algebra to the multimode case,
on the basis of which the SU(2) generalized coherent state
in the multimode Fock space is derived and its properties
are discussed.

We shall begin by briefly reviewing the main proper-
ties of the su(2) Lie algebra [1,9). The su(2) Lie algebra
consists of three generators Kp, K+, and K satisfying
the commutation relations

[Kp, Kg] = +K~, [K+,K ] = 2Kp

The corresponding Casimir operator C is given by

C = Kp + —(K+K + K K+)
2

(2)

Clm «) =«(«+1)lm «&

Kplm j) = mlm j)
Kylm, j) = g(j p m)(j 6 m+ 1)lm 6 1,j), (3)

where K
I

—«,j) = K+I«, «) = 0. In this case j =
0, 1/2, 1, 3/2, 2, . . . and m = —j, j+1, ...,j— 1,j. Th—e set
of states (lm, j):m = —j, —j + 1, ...,j —1,j;j = const)
forms a complete orthonormal basis:

(4)

Following Perelomov [9], the SU(2) generalized coherent
states I8, $& are defined as

I8, $& = exp(trK+ —n'K )I —j,j), (5)

where n = (8/2) exp( —iP), 0 & 8 & 7r and 0 & P &
2m. The ladder operators K~ select the vacuum state
Ivac) from the states Im, j) in the usual way, namely,
K lvac) = K

I

—j,j) = 0. Using the disentangling the-
orem for the su(2) generators [1], we can rewrite Eq. (5)
in the following form:

l~& = (I+ lr I') ' exp(~ +) I «,«&—
=(1+I-I') ') . ' ' "-Im, «),(j+m)!(j —m)!

(6)

where v = tan(8/2) exp( —iP). Similar to the ordinary
Glauber coherent states, these states lw& are not or-
thonormal:

which satisfies [C, K~] = [C, Kp] = 0. The discrete rep-
resentation of the su(2) Lie algebra is characterized by
[9]
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(1+r,'r2)2'

(1+ lril)'(1+ lr21)'
'

end are overcomplete,

I= d ( )I )( I, d ( )
2j+I d(Rr)d(™)

(1+ Ir'I)'

K+ ——aiaz i K = a2ai, Kp ———(aiai —aqag)-t -t --'t -t
2

(9)

in this case the Casimir operator is C = g(g + 1) where
J' = (aiai+aza2)/2. In this unitary representation of the
Lie algebra the total number JV of bosons in the system
is constant as well as the vacuum state is understood as
the state with no boson in mode 1 and JV = 2j bosons in
mode 2, i.e., Ivac) = llV = 2j)2IO)i. The corresponding
SU(2) generalized coherent state is given by

The usual (two-mode) Schwinger bosonic representation
of the su(2) Lie algebra is given by [10,11]

P= [»P] = -[[»&'] &]

Obviously, one particular type of solution to Eq. (15) is
that the N x N matrix P is just the matrix representation
of the angular momentum operator J+ of angular mo-
mentum 1 = (N —1)/2 (with h = 1) [13]. Then the ma-

trices P" and A correspond to the matrix representations
of the angular momentum operators J and Jo, respec-
tively. For N = 2, we shall recover the usual (two-mode)
Schwinger bosonic representation. In this multimode
case the vacuum state is identified as the state with no
boson in the first N 1 mo—des and N = glAN~I bosons

in mo de N i e lvac) = I& = i I
A~~I ')~ H, =i' o)'

Note that the total number JV of bosons in the system
remains constant. The corresponding SU(2) generalized
coherent state can be obtained by displacing the vacuum
state with the unitary displacement operator, namely,

r
8, $) = exp n) P;~a,.ai —n*) P, a, a~ Ivac)

l )2 ) a7

8 P) = exp(naia& n'a2ai) lvac) (10) or

or

lr) = (1+ lrl') 'exp(«ia2)l~c) .
lr) = (1+ Irl )

~ exp r ) P~i, a~ta~ Ivac)

Furthermore, the unitary displacement operator D(n) =
exp(nK+ —n'K ) transforms the annihilation and cre-
ation operators as follows [12]:

Besides, the unitary displacement operator induces the
following transformation of the creation and annihilation
operators:

D(n)'a, D(n) = a, cos(lnl) + a2»n(lnl)

D(n)tatiD(n) = ati cos(lnl) + at2 sin(lnl),

D(n) a2D(n) = a2 cos(lnl) —ai sin(lnl),

D(n)ta2tD(n) = at2 cos(lnl) —atisin(lnl) (12)

D(n)t ai D(n)= ) [exp(iB)]~i, at,

:- D(n) t a D(n) = exp(iB) a,
D(n)t a D(n)= ) [exp( —iB )]~g at&

:- D(n)t at D(n) = exp( —iB ) at

(»)

K =) A;,.aa, , K+=) Paa,t - t

= K+t = ) P,*,ata, = ) P!,a)a, ,

with A;~ = P&(P;i,P&
—P,&Pi,~)/2 N. ote that the .matrix

A;~ is Hermitian. In order to satisfy the commutation
relations in Eq. (1), we must require

/3;, = ) (A;~A, —/3'iAa,)-(14)

In the following we shall generalize the bosonic realiza-
tion of the su(2) Lie algebra to the case of multimodes.

Let us now introduce the multimode bosonic realiza-
tion of the three su(2) generators as follows:

where a is the column vector consisting of annihilation
operators a; (i = 1, 2, ..., N) and at is the vector of cre-

ation operators. The matrix B = —i(nP —n*P ) is

Hermitian and H is the transpose of H. This trans-
formation is a multimode generalization of the rotation
transformation in the single-mode case:

exp( —iPata) a exp(iPata) = exp(iP) a

with P being real. In fact, the displacement operator
can be identified as a special case of the generalized mul-

timode rotation operator R(g) = exp(P, . i (;~a;a~—
$~.ata~), which transforms a and at as follows [14]:

R($)t a R($) = exp/' —(t) a:— exp(i4) a,
R(g) t at R(g) = exp( —i4 ) at (20)

In the matrix notation the above condition can be com-
pactly rewritten as

The matrix ( does not necessarily obey Eq. (15).
Next we study the statistical properties of the bosonic
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fields in the SU(2) generalized coherent states by evalu-

ating the Mandel's Q parameter for each mode [15]. The
Q parameter of mode j is defined as

7 A 7 —T A 7 —7 A 7
(21)

with their transformation &om one mode into the other
as well. In other words, in this process one photon field
with sub-Poissonian statistics can be transformed into
another sub-Poissonian photon field. According to the
Wei-Norman algebraic procedure [16], the evolution op-
erator corresponding to this Hamiltonian can be written
in the form

where nz ——a-a~, and is a natural measure of the de-t

parture of the variance of the boson number from the
variance of a Poisson distribution. For the mean boson
number (w]ni]r), one can find

U(t, 0) = exp[b+(t)K+] exp[ho(t)Kp] exp[b (t)K ]

(26)

(r Ini I r)= A/ [exp( —iB)]ivy [exp(iB)]i~
= &][exp(ia)] ivl' . (22)

Similarly, the mean value for the squared boson number
can also be obtained, and is given by

(&In,'I&) = (&]nil&) + (&Ia,"a,'l~)
= (~] n, ]~) + JV(A' —1)][exp(iB)],~]

I)+]I——
)& I ])

As a result, the parameter Qs can be evaluated:

Q2 = ——&~lnsl~) = -][exp(i&)]2~1' o (24)

It is obvious that all modes have sub-Poissonian statis-
tics, which means that the variance of the boson number
of each mode is less than that of a Poisson distribution.

Finally we shall see how the SU(2) generalized coherent
state discussed above can be generated. It is obvious that
the dynamic Hamiltonian which can produce these states
is given by

H= AKO + BK+ + B Kt. . . t . ~ . tio;a, a; + ) (g;za, as + g; a;a )
iwj

(25)

where io; = AA, ;+BP;;+O'P;;and g;s = (.AA, +BOP;z+.
B'P';)/2. A (real) and B are arbitrary parameters. This
Hamiltonian describes the process in which the photon
in one mode (say mode i) is annihilated simultaneously
with the creation of the photon in another mode (mode

j), and vice versa (the total number of photons remains
constant). It follows that the statistical properties of
photons in difFerent modes are changed simultaneously

where bo(t), b~(t) and b (t) are determined by the associ-
ated Schrodinger equation. If the initial state ]%(t = 0))
is the SU(2) vacuum state ]vac) defined by K ]vac) = 0,
then one can easily show that the state at any time t ) 0,
U(t, 0)[vac), will be a SU(2) generalized coherent state.
That is, the time evolution of the system is essentially a
SU(2) displacement process to generate the SU(2) gener-
alized coherent state. Furthermore, it should be noticed
that this Hamiltonian has exactly the same form as the
effective Hamiltonian describing the multiple scattering
of light in an inhomogeneous medium (with no photon
creation from the medium), discussed in Refs. [17,18].

In summary, we have constructed the multimode
bosonic realization of the su(2) Lie algebra, on the ba-
sis of which the SU(2) generalized coherent state in the
multimode Fock space is derived. It is shown that in the
multimode coherent state each bosonic mode has the sub-
Poissonian statistics, and that the unitary displacement
operator can be identified as the generalized multimode
rotation operator. Since the SU(2) group is very useful in
many branches of physics, and according to the Levi theo-
rem [19],the su(2) algebra is one of the essential building
blocks of every Lie algebra —this means that we can deal
with a generic Lie algebra by decomposing it into its fun-
damental blocks, we believe that the results obtained in
the present work should have valuable potential applica-
tions. For instance, the SU(2) generalized coherent state
can be used in time-dependent variational approaches to
multidimentional and time-dependent quantum systems,
with possible extensions to many-body systems. [20)
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