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EfFect of the continuum on electromagnetically induced transparency with matched pulses
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We discuss how transparency and population trapping effects are affected when a realistic continuum
is involved. We consider the propagation of matched pulses in a A-like system, where the upper level is
replaced by a continuum.
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A laser field coupling two of the three levels in a A
scheme can make an atomic medium transparent to
probe radiation that is resonant with the other transition.
Such an effect is called electromagnetically induced tran-
sparence (EIT), and this type of EIT was first demonstrat-
ed experimentally [1], and has later been further investi-
gated theoretically [2,3]. Recently Harris [3] proved that
under the right initial conditions for the applied coupling
and probe fields, the medium will be driven towards a
trapped state that is transparent to a certain superposi-
tion of these two propagating fields; since this very super-
position is the field produced by the medium in this
trapped state, both transparency and trapping will con-
tinue to exist, also in time-dependent pulses. The sugges-
tion has been made that these effects persist when the
upper state is replaced by a continuum [1-3]. Here we
will show, however, that under the same pulsed condi-
tions the effect of atoms and fields producing transparen-
cy and trapping at the same time does not exist for a real-
istic continuum. More precisely, only if the continuum is
modeled in such a way that the asymmetry parameter q,
to be defined below, is zero, does this effect remain [4].

On the other hand, we have already shown elsewhere
that a transparency will develop inherently for an au-
toionizing state [5]. That is, a probe field can induce its
own transparency without need for an additional cou-
pling laser. The required destructive interference in the
absorption is now supplied by the configuration interac-
tion with the continuum, which provides a second (in-
direct) channel for ionization. There we also showed that
the effect is quite robust: deviations from ideal condi-
tions lead only to small atomic decay and small photon
absorption. The same is shown to be true here. Al-
though strictly speaking the transparency and the steady
state are not reached in a time-dependent field, the ab-
sorption of a probe field can nevertheless be dramatically
decreased, also through coupling to the continuum.

When one replaces the discrete upper level in a A
scheme by a continuum, one in fact describes the so-
called laser-induced continuum structure (LICS). The
coupling laser induces a pseudoresonance structure in the
continuum which will be probed by the probe laser field.

For a review on LICS see [6]. We describe the probe and
coupling fields by the amplitudes a and a„respectively,
which are normalized such that their modulus squared
gives the number of photons per atom. The coupling of
the two bound states e and g to the continuum and to
nonresonant bound states results in an effective shift of
the energy levels (ac Stark shift) and in a broadening.
The broadening arises from the pole part of the coupling
to the continuum. For simplicity the shifts will be
neglected hereafter. The effective field-dependent decay
rates from the two bound states to the continuum are
given by the respective dipole coupling matrix elements
squared, and will be written here as

The constants r,o and I so have the Physical meaning of
the respective decay rates in the presence of one photon
per atom. Conversely, they are also equal to the respec-
tive photon absorption rates in the presence of one atom
per photon.

Using a standard derivation one finds the slowly vary-
ing atomic amplitude equations for the two bound states,

—cs = —
—,
' rscs —i Q(q i )c, , —

—c,= —
—,'l, c, iQ (q i)c—+isc, —.

(2)

Formally q is defined as the ratio of the principal value
part plus the bound part of the two-photon dipole matrix
elements to the pole contribution of the continuum [6,7].
Physically it represents the relative magnitude of the cou-
pling of the two discrete states compared to the product
of decays directly into the continuum. %e note that for
q =0 the equations are equivalent to those for a discrete
A system, when the upper state has been adiabatically el-
iminated, as in [2,3]. We will show that a nonzero q
prohibits the occurrence of above-mentioned effects. The
quantity Q, defined here as

(3)
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is useful in that it underscores the symmetry between the
equations (2) for the atomic amplitudes and (6) for the
field amplitudes. It is worth noting that for a system in-
volving a continuum such that q =O, Q is identical to the
two-photon Rabi frequency coupling the two lower states
of the A system. Finally, the detuning of the probe field
with respect to the coupling laser is defined as
5=a) +E —(co, +E,).

The equations for the field amplitudes can be cast into
a similar form as the atomic equations when one recog-
nizes the correspondence relations

r, =r„lc, ',
r, =r,olc, I' ,

and the coherent photon exchange rate

0=
—,'Qr, orgoc'c, .

One finds then

d—a = —
—,'I a —iQ(q i }a,—,

—a, = —
—,'I,a, —i 0'(q i )a—

(4)

(6)

where d /dt = r)/Bt+c8/Bz, assuming one-dimensional
propagation in the z direction at the same speed c for
both fields (this is the same assumption as used by Harris
[2,3]). Thus, apart from the detuning 5 occurring in the
atomic equations, the analogy between field and atoms is
manifest. Using this format, then, it is easy to derive the
two conservation laws

—c =—az d 2

dt ' dt

—c, = a,
Bt ' dt

expressing the fact that on each absorption of a probe
(coupling} photon one atom is removed from the ground
(excited) state. Furthermore, the total ionization rate,
equal to the total photon absorption rate, is given by

cg~ap,' ce~aq

To make this explicit, we introduce the photon absorp-
tion rates

5= —,'q(I' —I, ),
a relation which has been derived before [8]. The condi-
tion (11), however, cannot be satisfied at all times in a

pulsed field. The only thing one can hope for is to come
close to (11) during the major part of the pulse. Similar-

ly, the rate of change of R due to the fields is

Q=+r oa'c, —Ql, oa,'c (13)

It is not possible, however, to define a conserved quantity
when q%0. A similar quantity is found to be convenient
in [9], but there it is not proven that this quantity will

reach a steady-state value. Furthermore, in their numeri-
cal example the condition I,0=I 0 was chosen, which
implies that Q is accidently always conserved. Namely,
the rate of change of Q due to the evolution of the atomic
variables is

=-,'tqr, Q+i(5 —
—,'q[r, —r, ])Qr„a,'c, ,

t
atom

(14)

while the change of Q due to the fields is

dR = —
—,'(r, +r +iqr, )z

field

,'—iq—( rz
—I,)+r,oc,a, . (12)

Hence, this leads to an additional condition I,=I for
transparency that, again, cannot be satisfied in general
(when qAO) at all times in a time-varying field. On the
other hand, this condition will be satisfied, as we will
show below, if the initial applied coupling and probe field
contain the same number of photons, i.e., Ia, I

= la~ I
.

When q =5=0, the quantity R will always be driven to
zero, both in space and in time, irrespective of initial con-
ditions. A discrete system will, therefore, at zero detun-
ing be driven towards a steady state without decay and
without photon absorption. We note here that 5 is
indeed implicitly taken to be zero in [3],and also in relat-
ed work [9].

For a discrete A system it is easy to define a quantity
linear in the atomic amplitudes that is conserved in con-
stant fields. The unique (up to a scale factor) solution
which is linear in field amplitudes as well, is

with

—(lcgl'+ lc, I'}= (la, l'+ la, I')= —I&
' (8) =(r„—r„)z c,c,

field

+—,
' iq+ I,OI oc,c

~=&r,oa, c, +Qr Oa c

Now consider the rate of change of R due to the atomic
evolution only. One finds

M = —
—,'(r, +r, +tqr, )z

c}t atom

—i(-,'q[r, —r, ]
—5)&r,Oa, c, , (1O)

which shows that a stable atomic state will be reached in
constant fields if the detuning satisfies

X(+r oa,'c,' —Ql, oa*c') .

This shows that, when q =5=0, this variable will reach a
steady-state value both in time and in space, since R will

be driven to zero. When qAO one again needs the condi-
tion (11),and even then I Q I

is conserved only in constant
fields.

We can now reconstruct the concept of normal modes
in a discrete A system as defined in [3], which shows at
the same time how the two approaches of Refs. [3] and

[9] are connected. At any given position one can find
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FIG. 1. (a) Relative absorption of probe field after propaga-
ting over a time Lt=10I gp' as a function of detuning 5 for a
discrete A system (i.e., q =0). Photon absorption coefFicients are
r„=r&p the pulses are Gaussian with intensity given by
I~ exp[ (tie} ]

—with v=2(I'go} ', and the initial peak values
of the number of photons per atom are ~a~ )

= 1 and ~a, ~

= 100.
(b) Same as (a), but with upper level replaced by a continuum
with q =1. The optimum detuning is found to be 5= —49.5I &p,

where the absorption is 0.33%.

and

h =I OA2a +r,uA, (a,

b, =Qr OAz c, —A, *, Qr, c

corresponding to Q, will reach a (nonzero) steady-stage
value [10]. It is straightforward to show that the reverse
is true as well: if, e.g., h =0, then bz will be driven to
zero and the pair (s, b, ) will reach a steady state. Con-

coefficients A, , and A,2 such that

X,Qr„—c, +X,Qr„c,=0 .

Then, substituting this relation into the definition of R,
shows that the linear combination of field amplitudes

s—:A, ,a —
A,2a,

will be driven to zero, while at the same time the two
linear combinations

versely, if one applies coupling and probe fields with the
same temporal envelopes (matched pulses [3]), the ratio
between the field amplitudes is fixed, and will remain
fixed. This ratio determines the value of A, , /A, 2 and there-

by at the same time the steady atomic state. In the spe-
cial case that ~A, , ~

=
~A,2~, the populations will be driven

towards a steady state in which the photon absorption
rates are equal, I,=I' . Thus, the normal modes (s,b, }
and (h, b2), as found in Ref. [3], can be constructed from
the quantity Q, as used in Ref. [9],and R.

We now take a numerical example similar to the one
used in Ref. [3], to study the influence of a nonzero q
value (see Fig. 1). We take the photon flux of the cou-
pling field, ~a, ~, 100 times as large as that of the probe
field,

~
a ~, and take equal absorption coefficients

I p
=I go. We plot the relative peak intensity of the

probe pulse after it has propagated over a distance where,
without coupling field, this value would have decayed to
the value exp( —10)=4.5X10 . When q=0 [Fig. 1(a)]
there is no loss at the peak at zero detuning, while at not
too large detuning the loss is still much smaller than
without the coupling laser. For q =1 [Fig. 1(b)], there is
a great loss at zero detuning, and the coupling laser has
no positive effect. Instead, one finds almost lossless prop-
agation at large negative detuning around 5= —50I go,
which is nothing but an effective time-averaged condition
(11). The total peak loss is then 0.33%. The fact that
this loss is still very small is partly due to the assumption
that the two applied laser pulses are and remain com-
pletely overlapping. Indeed, related to this, it has been
shown recently [11] that for the same system population
transfer through the continuum is inhibited more serious-
ly compared to that in a discrete A system, since this
transfer is in general larger when a delay is introduced
between the two pulses. For the optimum population
transfer the same condition (11) would be needed, but
with delayed pulses it is no longer possible to fulfill this
requirement, even not approximately.

Let us finally remark that we did not include the extra
decay from the excited state due to the probe field, and
from the ground state due to multiphoton transitions in
the coupling laser field [7]. One of these decays may be
small, under special conditions both of them might be
small, but in general they always diminish the coherent
eff'ect of transparency. Furthermore, the ac Stark shifts,
which may be small too, affect the detuning in a time-
dependent way, but do not necessarily interfere destruc-
tively, partly because this shift has the same time depen-
dence as the atomic decay rates, partly because these
shifts may in principle be compensated for by chirping
the laser frequencies [12].
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