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Quantum states for a Paul-trapped particle in an intense laser field
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The eigenstates are constructed for a Paul-trapped particle in an intense laser Geld. This is done by us-

ing a time-dependent unitary transformation. The application of these results is discussed.
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With the development of high-power lasers, the study
of physical problems in the presence of an intense laser
field has becotne a subject of considerable interest. It has
also stimulated considerable theoretical activity in the de-
velopment of nonperturbative methods and in the
research of exact solutions for time-dependent quantum
systems [1—3).

The Paul trap is a device used to confine the motion of
charged particles. Many interesting physical features of
the system consisting of the charged particles confined by
the Paul trap can be investigated [4,5]. As is well known,
the "geonium atom" is a single charged particle system in
which the atomic nucleus is replaced by an external trap-
ping field such as an electron in the Penning trap. The
physics of a single charged particle in an external trap-
ping field is an interesting subject [6].

In this Brief Report we shall be concerned with the
problem of a single point-charged particle in a Paul trap
subjected to an intense laser field. Brown [7] has recently
shown how to get the exact solution for a particle in a
Paul trap. Here we discuss the exact solution for a Paul-
trapped point-charged particle in the presence of an in-
tense laser field.

For a point-charged particle in the simultaneous pres-
ence of a Paul trap and a laser field, the Hamiltonian is

H= (P+q A/c) +qP(r, z),1

2m
where P(r, z) is the potential of a Paul trap [8]. For sim-
plicity, let us discuss the problem of one dimension
(three-dimensional results can be obtained by considering
the separated variables of the equation). The one-
dimensional Harniltonian can be written as

H = (p+qA/c) + —,'E(t)x1
(1)

a(t)+[P(t)+qA (t)/c]/m =0,
y(t)+a(t)p(t)+ [13(t)+qA (t)/c]z/2m

(8)

+E(t)a'(t)/2=0 . (9)

We now perform another unitary transformation on
the wave function tp(x, t) by Brown's method [7], namely,
by taking

U2=exp[iG(t)x ]exp[ i (px+—xp)In~ f~ /4), (10)

where G(t)=(m/4)(f/f +f'/f'), and f(t) is the solu-
tion of the classical equation

mx+E(t)x =0 .

Under the transformation U2, we have a new Hamiltoni-
an from Eq. (6):

keep the form of the Schrodinger equation, the Harnil-
tonian in the new representation is given by

H, = V',HV, iV—taV, /at . (5)

The function a(t) in Eq. (4} produces a translation in
space and the function P(t) produces a translation in
momentum. Since the functions a(t), I3(t), and y(t) are
arbitrary, we can use them to cancel the unwanted terms
in the modified Schrodinger equation to transform the
laser-assisted problem into a problem of a particle in the
absence of the laser field.

If the new Hamiltonian is taken in the form

H, = p + ,'E(t)x—1
(6)

we obtain that the arbitrary functions a(t), P(t), and y(t)
satisfy the following equations:

P(t) —mK(t)a(t) =0,

where H2=(P /2m+mwx /2)/~f~ (12)

K(t)=a+b cosQt . (2)

We now perform a unitary transformation on the wave
function, namely,

g(x, t)= U, (t)qr(x, t)

and take U&(t} as

U, ( t) =exp [ia( t)p) exp[P( t)x ]exp [iy( t)],

(3)

where a,P, y are arbitrary functions of time. In order to

The solution of the new Schrodinger equation corre-
sponding with the new Hamiltonian H2 can be obtained
immediately:

q)~(x, t) =exp iE„Jdt'/~ —f ~
(mw/n2"n I}'~

XH„(&mwx)exp( —mwx ),
where w is the Wronskian of two solutions f and f ' of
Eq. (11),H„ is a Hermite polynomial, and E„ is the ener-

gy of the one-dimensional ordinary harmonic oscillator,
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i.e., E„=fiw(n +—,
' ).

By performing the time derivative in Eq. (8) again and
then substituting Eq. (7) into it, we have

a(t) —E(t)a(t)+qA(t)/mc =0 .

It is a second-order, linear, inhomogeneous differential
equation with variable coefficients. We can then get the
solution

a(t)=ao(t) f dt ao (t)f (
—q/mc)A(t'}a o(t')dt',

where ao(t) is the solution of the homogeneous equation

af,. = ( —I /R) fdt & gf ~ V~ g; ) . (14)

af, =( —i /A') g ( i)—'F(n', n, 1)
j = —oo

X dt exp i a t hp

For the one-dimensional problem by substituting
P= U, Uzpz into Eq. (14) and by taking

1n~f ~

=(d /4)(l+cos2Qt),

where d =b /(m Q ) « 1, we can obtain

a,(t) —K(t)a,(t)=0 . (13)

Both Eqs. (11) and (13) are Mathieu's equations for K(t),
defined by the expression of Eq. (2).

For the Paul trap, it is often of practical interest to
consider the case in which the parameters a and
b/(mQ ) in Eq. (2) are small [~a~, b/(mQ ) &&0.5]. In
this case, we have a good approximation to the solution
[7 9]

f =exp(ice&t)[ 1+[b/(mQ )]cosQt],

ac=[1—(b/Q )cosQt]costozt,

where co; =P, Q/2 and P; (i =1,2) are Paul-trap parame-
ters [9]. If we note that (to, /Q) « 1, we have the Wron-

skian m = co& ~

From the above results, we can say that all quantum
mechanics for a Paul-trapped point-charged particle in
the presence of a laser field can be obtained from the gen-
eral solutions of the classical equation of motion. This is
similar to Brown's results in the absence of a laser field.

As an example for the application of the obtained wave
function, we consider the probability amplitude af, for
the transition from the initial state i to the final state f by
the Coulomb potential V as a perturbation. It is

iAE—„f dt'/~ f~ i21Q—t],

where

F(n', n, l) =N„N„f dx J~(»)H„(v'm. w x) p'(x)

X~„(v mwx)exp( ihx—mwx—),
~P PJ 5'f

hE =E„—E„.

h —=d Ap /4

We can see that the integrand can be separated and the
integral is easy to perform. The time integration corre-
sponds to the energy exchange processes occurring at
various harmonic or overtone frequencies.
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