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A class of positive quantum phase-space distributions based on antinormal ordering of the
squeezed-photon annihilation and creation operators is introduced. This class of distributions, re-
ferred to as the generalized antinormally ordered distributions, is shown to be generated when the
Wigner distribution is smoothed with a squeezed Gaussian wave packet. The distribution function
associated with generalized antinormal ordering can thus be identified as the Husimi distribution
function. The usefulness of the distributions in studies of the quantum particle dynamics is illus-

trated with simple examples.
PACS number(s): 03.65.—w

The phase-space formulation of quantum mechanics,
which dates back to the classic work of Wigner [1], al-
lows one to calculate expectation values of quantum-
mechanical observables in the classical manner using only
constant number equations [2]. It is well known, how-
ever, that there is no unique way of defining the quantum
phase-space distribution function due to the noncom-
mutability of quantum-mechanical operators. Perhaps
the best-known scheme of classifying quantum phase-
space distribution functions is due to Cohen (3], accord-
ing to which a wide class of the distribution functions
can be defined as

Flap.t) = g5 [ de [ dnTelpe a7 p(6.m))
Xe—ifq—inp’ (1)

where p is the density operator and f(&, n) is an arbitrary
function which completely specifies ordering of the non-
commuting operators § and p and thus the distribution
function itself. The simplest choice of f(£,n) = 1 yields
the celebrated Wigner distribution function.

In this paper we consider a class of distribution func-
tions characterized by

F&,n) = e 800 (2)

where k is assumed to be a real positive constant. With
f given by Eq. (2), one can show that Eq. (1) can be
written as
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where A(q,p,t) refers to the distribution function
F(q,p,t) that results from choosing the function f ac-

cording to Eq. (2), and the operator b and the constant
z are given by
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Of course, a different value of the parameter « leads to a
different distribution function A(q,p,t). Hence the dis-
tribution functions A(q,p,t) defined as in Eq. (3) repre-
sent a general class of “antinormally ordered” distribu-
tion functions.

The physical significance of the generalized antinor-
mally ordered distribution function A(q,p,t) introduced
above becomes clear when it is used to describe quantum
states of a radiation field. The operator b can be written
in terms of the usual photon annihilation and creation
operators & and a' as

b= pa + vat, (6)

where

(D) ()

and w is the frequency of the field. It can be easily seen
that [b,61] = 1 and p?> — v? = 1. One thus sees that
the operators b and b! are the annihilation and creation
operators of a “squeezed photon.” The eigenstate |3), of
the operator b

b18). = B18). (8)

is the well-known minimum uncertainty squeezed state
[4,5] with one of the quadrature amplitudes squeezed by

a factor of |p—v| = /¥ (if k <w) or |u+v| = /5 (i
£ > w). It then is immediately clear that our generalized
antinormally ordered distribution function can simply be
written as

A(B,ﬁ*,t) s <ﬁlﬁlﬂ>s/ﬂ—v (9)

where A(B,[(*,t) is the distribution function defined in
the complex 3 plane (squeezed state phase space) as
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and d?z = d(Re z)d(Im z). Equation (9) indicates that
our generalized antinormally ordered distribution func-
tion is the density operator expressed in the squeezed
state representation. Obviously if the parameter x is
set equal to the frequency w of the radiation field, the
distribution function A is reduced to the usual antinor-
mally ordered Q function[6-9], A(a,a*,t) = (a|p|a)/,
where |a) refers to the usual coherent state. Equation
(9) indicates also that the distribution function A(q,p,t)
is nowhere negative, an important property of the gener-
alized antinormally ordered distribution function.

We now wish to show that the generalized antinor-
mally ordered distribution function A(q,p,t) is obtained
by smoothing the Wigner distribution function W (g, p, t)
with a Gaussian wave packet. The simplest way to show
this is to make use of the formula [10] that relates two
distribution functions F(q, p,t) and F>(q, p, t) associated

with fl(f,’l]) and fz(ﬁﬂl),

Fi(g,p,1t)
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Substituting Eq. (2) for f; and f; = 1 and performing
integrations in ¢ and 7, we immediately obtain

A(q’p’t)=/dql/dp e~ R(@ -5 (' -p)’

xW(q',p',t). (14)

Thus, the distribution function A is obtained when
the Wigner distribution function W is smoothed by a
Gaussian function representing a minimum-uncertainty
squeezed state. Of course, when k is equal to the fre-
quency w of the field, the smoothing Gaussian function
becomes the coherent state wave packet yielding the Q
function.

The distribution function given by Eq. (14) is widely
known as the Husimi distribution function [11]. Since a
positive distribution results when the Wigner distribu-
tion is smoothed with a Gaussian function whose prod-
uct of variances AgAp, is at least that of the minimum-
uncertainty wave packet [12], Eq. (14) provides another
proof that our generalized antinormally ordered distribu-
tion function A(q,p,t) is nowhere negative. More impor-
tantly, the identification of the Husimi distribution func-
tion as a class of Cohen’s signifies that, despite Gaussian
smoothing, the Husimi distribution function contains as
much information about the system under consideration
as the Wigner distribution function or, for that matter,
any other distribution function of Cohen associated with
different f(£,n), because it allows evaluation of the ex-
pectation value of any combination of moments §"p™;
one only needs to rearrange the given operator in the
antinormal order of b and bt. In principle, when any of
the phase-space distribution functions as defined by Eq.
(1) is given, one can obtain the density operator for the
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system [13].

The usefulness of the generalized antinormally ordered
distribution function outside the realm of quantum op-
tics comes mainly from its identification as a Gaussian
smoothed Wigner distribution function as indicated by
Eq. (14). In fact, it was realized earlier [14, 15] that,
since Gaussian smoothing is necessarily involved in an
observational process, the Husimi distribution function
is usually more useful than the Wigner distribution func-
tion in studies of the correspondence (or noncorrespon-
dence) between quantum and classical dynamics. In or-
der to illustrate the usefulness of the Husimi distribution
function in the study of the quantum particle dynamics,
we consider a particle in an infinite square well poten-
tial. Figure 1 shows contour plots of the distribution
function A(q,p,t) computed using Eq. (14) for three dif-
ferent values of the “coarse-graining” parameter x [16,
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FIG. 1. Contour plots of the Husimi distribution function
for a particle of mass m = 1 in a symmetric infinite square
well potential of width D = 6 in a unit system in which A = 1.
The particle is assumed to be in its fifth eigenstate. Contours
are drawn in steps of 0.005. The coarse-graining parameter x
is (a) 1.56, (b) 3.12, and (c) 31.2.
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17]; k = 1.56, 3.12, and 31.2, assuming that the particle
is in its fifth eigenstate and taking the mass of the parti-
cle m = 1, the width of the square well D = 6 and & = 1.
One sees that the distribution function takes a drastically
different shape depending upon the coarse-graining pa-
rameter k, even if the same system in the same eigenstate
is represented. At a small (large) value of x, the Wigner
distribution function is smoothed with a Gaussian func-
tion of large Aq (large Ap) and thus fast variations along
the g direction (p direction) tend to get wiped out, i.e.,
the coarse-graining parameter determines ultimately the
relative resolution in ¢ space as compared to p space.
Thus, one sees in Fig. 1 that the two-peak structure
along the p axis which is obvious at K = 1.56 disappears
at k = 31.2, while the five-peak structure along the ¢
axis becomes evident only when x is increased to 31.2.
Depending upon what one wants to see, the Husimi dis-
tribution function furnishes a wide spectrum of positive
quantum distributions from which one can choose. De-
spite the differences, however, all distributions associated
with different values of k are equal in the sense that they
all contain the same information. Full information on
the structure along the g direction [furnished directly by
A(q,p,t) with large ] automatically ensures full informa-
tion along the p direction [furnished directly by A(qg,p,t)
with small «] and vice versa, because ¥(q,t) and ¥(p,t),
wave functions in the coordinate and momentum spaces,
are related via Fourier transforms.

Another point worth noting about the Husimi distri-
bution function A(g,p,t) is that, since it is an averaged
version of the Wigner distribution function, it generally is
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simpler in structure and therefore more readily amenable
to physical interpretation than the Wigner distribution
function. In fact, it was realized [9, 18] that a transition
from the Wigner to the Husimi distribution function is
analogous to a time evolution of the temperature dis-
tribution in a heat conducting system; any variation in
temperature gets smoother and broader as time goes by.
This property of the Husimi distribution function bears
importance especially in studies of the quantum dynam-
ics of classically chaotic systems for which the Wigner
distribution often exhibits extremely complex patterns.
As an illustration, we show in Fig. 2 “quantum Poincaré
maps” of the Wigner and Husimi distribution functions
for a particle of mass m in an infinite square well poten-
tial of width D driven by an external force F' = Fj cos t,
where the parameter values are chosen to be m = 1,
D =6, F, =4, Q =5, and h = 1. The quantum
Poincaré map of the Wigner distribution function shown
in Figs. 2(a) and 2(b) is defined by

~ 1 N-1
n=0

where T is the period of the driving force, T = 27/,
while that of the Husimi distribution function shown in
Figs. 2(c) and 2(d) is given by the same formula ex-
cept that the Wigner distribution function W(q,p,t) is
replaced by the Husimi distribution function A(g,p,t).
Figures 2(a) and 2(c) are drawn for the case when the
particle is given initially as a wave packet localized in
the neighborhood of the center (¢ = —3,p = +9.6) of the
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FIG. 2. Quantum Poincaré
maps of the Wigner distribu-
tion function [(a) and (b)] and
the Husimi distribution func-
tion [(c) and (d)]. The parti-
cle of mass m = 1 in a sym-
metric infinite potential well of
width D = 6 is driven by a
sinusoidal force FpcosQt with
Fo, = 4 and 2 = 5 in a unit
system in which # = 1. The
Wigner plots are drawn in steps

e 16n/3

of 0.02, where the solid, dot-
ted, and dashed curves, respec-
tively, represent positive, zero,
and negative contours. The
Husimi plots are drawn in steps
of 0.006 and the coarse-graining
parameter is chosen to be k =
1.56. The particle is assumed
to be given as a wave packet
centered at the elliptic fixed
point, ¢ = —3,p = £9.6, of the
period-1 resonance for (a) and
(c), and at a point, ¢ = 3,p =

I -16n/3

3 +8.4, for (b) and (d).
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period-1 primary resonance, whereas Figs. 2(b) and 2(d)
assume that the initial wave packet is centered at the
point (¢ = 3,p = +8.4) that lies in a classically chaotic
region. In all cases we choose N = 110, and for the
Husimi plots the coarse-graining parameter < = 1.56 is
used. One sees immediately from Figs. 2(a) and 2(c)
that a wave packet prepared well within the period-1 res-
onance tends to remain localized near the initial distri-
bution. On the other hand, Figs. 2(b) and 2(d) indicate
that, if a wave packet is prepared near the separatrix of
the resonance, there exists some spreading of the proba-
bility. One notes, however, that the spreading is limited
in that there is very little penetration into the central
region of the period-1 resonance or into the period-3 res-
onance which is located at p = +3.2. This last observa-
tion, in particular, is significant because, at Fy = 4 at
which Fig. 2 is drawn, the period-3 resonance is com-
pletely destroyed and is dominated by a chaotic sea in
the classical phase-space map [19]. One thus sees that
the important phenomenon of the quantum suppression
of classical chaos is suggested by both the Wigner plot of
Fig. 2(b) and the Husimi plot of Fig. 2(d). In general,
all observations that can be made from the Wigner plots
concerning the nature of the quantum motion involved
can also be derived from the corresponding Husimi plots.
It is clear, therefore, that the Husimi plots exhibit all
essential structures necessary to obtain meaningful in-
formation, whereas the Wigner plots contain extremely
complex patterns especially in the neighborhood of nodal
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curves that make it difficult to extract information out
of it. The complex structure showing rapid oscillations
of the Wigner distribution in the region p = 0 that exists
in Figs. 2(a) and 2(b) has no physical significance when
an actual observation is considered. It is thus no surprise
that the Husimi distribution function has found a grow-
ing popularity recently, as witnessed by its frequent em-
ployment in many studies of the quantum-classical cor-
respondence in the regular and chaotic dynamics of a
variety of systems[15-17, 20-23].

In conclusion we have introduced a general class of
antinormally ordered quantum phase-space distribution
functions which can be identified as the density opera-
tor in the squeezed state representation. We have shown
that this class of distribution functions is generated when
the Wigner distribution function is smoothed with a
squeezed Gaussian wave packet. As the process of Gaus-
sian smoothing tends to average out fast variations with-
out loss of any essential information, the smoothed dis-
tribution seems well suited to studies of the quantum
dynamics of complex systems. Furthermore, it offers
an added advantage as one is free to choose the coarse-
graining parameter which determines the relative resolu-
tion in ¢ space versus p space.
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