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Antinormal ordering of Susskind-Glogower quantum phase operators
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A quantum phase description is developed by the use of the antinormal ordering of Susskind-
Glogower phase operators. The theory is studied in the in6nite-dimensional Hilbert space and it
is closely related to the Pegg-Barnett quantum phase description in the 6nite-dimensional Hilbert
space with a proper limiting procedure. Various applications of the antinormal ordering technique
are presented.

PACS number(s): 42.50.Lc

I. INTRODUCTION

The problem of defining a Hermitian phase operator
is an old one [1—3). In quantum mechanics any observ-
able should be related to a Hermitian operator. The
problem with the use of Susskind and Glogower (SG)
cos and sin Hermitian phase operators [1—3] follows from
the fact that the energy spectrum is restricted from be-
low. A very important development in this field has been
made by Pegg and Barnett (PB) [4—6]. They have de-
fined a Hermitian phase operator in a finite-dimensional
(but arbitrarily large) Hilbert space O'. In the PB quan-
tum phase formalism the problems about the unitarity
of the exponential phase operator are solved by using a
cyclic relation which connects the highest number state
ls) and the vacuum state l0). Since the natural descrip-
tion of the electromagnetic field means the use of infinite-
dimensional Hilbert space, one must take the infinite-
dimensional limit at the end of expectation value calcu-
lations performed in the 4' space [4—6]. The properties of
such limiting procedures were discussed by Vaccaro and
Pegg [7].

Luks and Perinova [8,9] have suggested the use of anti-
normal ordering for SG quasiunitary quantum phase op-
erators. We will show later that use of this antinormal
ordering is equivalent to defining the vacuum as a state
of a random phase, analogous to the case of the familiar
normal ordering of a and at operators that defines the
vacuum to be a state of zero energy. A similar idea for
explaining the physical nature of the antinormal order-
ing was discussed by one of the authors [10]. Recently
Vaccaro has shown [11] that the algebra of PB phase op-
erators is conserved in the infinite-dimensional limit (the
weak limit) when the antinormal ordering is used. The
weak limit of a PB phase operator can be represented by

a Fourier-like series in the SG quasiunitary operators esG

and esG [11].The idea for using such Fourier-like oper-
atoric series in the SG formalism was first introduced by
Luks and Perinova [8,9].

In the present work we have made a systematic study of
various properties of the antinormally ordered SG quan-
tum phase operators and their relation to the PB quan-
turn phase formalism. In Sec. II we discuss the basic

theory and explain the physical meaning of the antinor-
mal ordering. In Sec. III we derive additional useful
properties of the antinormal ordering. We show that the
antinormal ordering efFectively replaces the orthogonal-
ity of phase states in the SG formalism. We develop a
technique that simplifies the calculations with the anti-
normal ordering. Also, we derive a Parseval-like identity
that is connected with the algebraic properties of the SG
phase operators under the antinorrnal ordering. In Sec.
IV we discuss some applications of the antinormal order-
ing. We derive the PB phase operators, which give in
the weak limit the antinormally ordered Carruthers and
Nieto (CN) phase operators [2]. Also, we discuss the use
of a phase distribution function q(8) and its relation to
the antinormal ordering. In Sec. V we summarize our
conclusions.

(2.1)

where

27rm
8 =8,+, m=o, 1, . . . , 8.8+ 1

(2.2)

By the choice of Ho it is possible to build the Hermitian
phase operator Ps. Pegg and Barnett [4—6] have studied
extensively the properties of this operator. We quote
here only some important formulas that are relevant to
the present research:

(2.3)

(2.4)

II. ANTINORMAL ORDERING
AND THE RELATION BETWEEN PB AND SG

QUANTUM PHASE FORMALISMS

Pegg and Barnett have developed [4—6] the theory of a
Hermitian phase operator by using a finite-dimensional
Hilbert space O'. Such (s+1)-dimensional state space 4'
is spanned by the number states ln) (n = 0, 1, . . . , s) or,
equivalently, by the complete orthonormal set of phase
states [4],
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By using the Hermitian operator Ps it is possible to con-
struct the unitary phase operator,

A on'R if

(glA. I&) ~ (glA-l~)» ~ ~ ~ (2.7)

exp(its) = lo)(11 + 11)(21 + "+ ls —1)(sl

+exp[i(s + 1)Ho]
l
s) (0l . (2.5)

Commuting Hermitian phase operators cos(gs) and

sin(Ps) can be formed in the usual way from the uni-
P

tary phase operator exp(its) and its Hermitian conjugate
exp(-its).

Since physical reality is related to the infinite-
dimensional Hilbert space 'R, the procedure for using the
desirable properties of the 4 space is to calculate expecta-
tion values in the Gnite-dimensional space and only after
that to take the in6nite-dimensional limit s ~ oo. The
exact relations between operators and states in 4 space
and those in conventional R space have been studied in
great detail by Vaccaro and Pegg [7]. They have shown
that in the limit s ~ oo the expectation values of Her-
mitian operators remain real, in agreement with a basic
postulate of quantum mechanics. There are two types of
limiting procedures in the transition &om 4 space to '8
space: strong and weak limits. The strong limit is valid,
for example, for any power series in a and at that is
bounded. Here an operator A, belonging to the 4 space
and its strong limit A on the 'R space are called bounded
if

ll A, lf) ll& oo Vs, and llAlf)ll & oo, Vlf) & R. Un-
der the strong limit the algebra of bounded operators is
conserved [7],

lim (A, ), = (A ),
+~weak

(2.8)

P

where an 'R-space operator A is the weak limit of A, .

So, the two formalisms give the same expectation values.
However, the main problem is nonconservation of algebra
under the weak limit,

lim (A, B,), g (A & )8~~weak
(2.9)

As a simple example we note that the PB operators

exp(its) and exp( —its) are unitary, but their weak limits
are not:

SG SG 1 —
I
o) (o I

However, it still holds that

(2.10)

for all lg), lf) C 'R. For example, the well-known SG
ip —ip

quantum phase operators esG and esG are the weak

limits of the corresponding PB operators exp(its) and

exp( —its). The PB phase operator Ps and its functions

converge only weakly to operators on 'R. Uaccaro and

Pegg [7] have shown that 'R space and 4 space formalisms

are consistent in the weak limit due to the relation

lim a,
l

lim
-&(

~~~strong ~~~strong

ip —ip
eSGeSG (2.11)

lim (B,A, )lf), (2.6)

where lf) E 'R.

A sequence of operators A, converges only weakly to

One can define [8,9] antinonnat ordering of SG quan-
tum phase operators as a procedure that places all raising

operators esG to the right of all lowering operators esG.
Our notation of the antinormal ordering consists of two
*, on either side of an expression,

+
(

24 )1111
(

24 )121 (
24 )1112

(
24 )'R2

(
24)mg

(
1f )Tl 4 2( i' )n1+n2+" +nq

(
—ig)m. 1+m2+ +my" (2.12)

iP —iP g —iP iP 8

SG SG * SG SG*
——1 (2.13)

Analogously, by using the antinormal ordering, C and S
(the SG cos and sin) operators become commuting:

:[C, S].* = 0 . (2.14)

The vacuum state may then be described as a state of a
random phase, similar to all other numbers states,

where m, , n, (i = 1, 2, . . . , k), and k are arbitrary positive
integers. The example given by Eqs. (2.10) and (2.11)
indicates that the antinormal ordering realizes in the SG
description the advantages of the PB description and we

will see it later. For instance, the unitarity is restored for
ip —ip

esG and esG operators:

(nl*, C*,ln) = (nl;S,*ln) =
2 (including n = 0), (2.15)

and therefore,

(2.16)

The question must be raised: What is the physical na-
ture of the antinormal ordering of the SG quantum phase
operators~ Our answer is that by antinormal ordering we

define the vacuum to be a state of a random phase (in the
same way as for all other number states) corresponding
to our physical perceptions. In the calculations of the
electromagnetic-field energy, we use normal ordering for

a and at operators to exclude the infinite energy of the
vacuum and actually define the vacuum to be the state of
zero energy. In a similar way, by using the antinorrnal or-

dering of esG and es& operators we exclude nonrandorn
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S

G(A) = ) .G(8-)18-)(8-I
m=O

(2.17)

has the weak limit

phase properties for the vacuum.
Vaccaro has shown [11] that a function of phase in 4

space, which is given by

(2.23), Eq. (2.24) can be written also as

f
Hp+2~

"8G(8)F(8)18))((81= ,*GscFsc ~ (2.25)
Hp

III. ADDITIONAL PROPERTIES
OF THE ANTINORMAL ORDERING

lim G(gs) =; ) Gy(esc )";= Gsc, (2.18)
&~~meak k= —oo

where

(esc~) k ) 0

(esc), k ( 0,
(2.19)

and Fourier coeKcients are given by

Hp+2~

Gq = — d8 G(8)e'"
2Tt H

(2.20)

The idea of using Fourier-like series in operators esa
and esG to represent phase-dependent operators in the
SG formalism was introduced by Luks and Perinova [8].
Such expansion [Eq. (2.18)] is valid for an operator that
corresponds to a 2m —periodic function G(8) that has con-
vergent Fourier series. For a function G(8) that is not in-

trinsically 2x periodic (e.g, . 8 related to operator Ps and
its weak limit Psc) we must use the periodic expansion
on the entire real axis, e.g. ,

;[Gsc)Fsc]; = 0 . (3.1)

The important thing is that operators GSG and FSG
would be commutive if the states I8)) were orthogonal.
Indeed, according to Eq. (2.25), we get

Hp+2m Hp+2m

d8'G(8) F(8') 18))((818'))((8'I:
Hp Hp

The phase states I8)) defined in Eq. (2.22) are not
orthogonal. The orthogonality problem (as emphasized
by Carruthers and Nieto [2]) is related to the restriction
of the energy spectrum from below by the vacuum state.
If we had continued the spectrum of the number operator
N until —oo (like that of angular momentum for a plane
rotator) we would obtain orthonormalized (by b' function)
phase states and solve the problems related to the SG
quantum phase formalism. But such a continuation of
the number operator spectrum is not correct physically.

Nevertheless, the antinormal ordering effectively re-
places the orthogonality of I8)) states. From Eq. (2.25)
we see that for any two operators Gsc and Fsc, which
may be written in the form (2.23), the antinorrnal order-
ing provides the commutation relation

8~„=8 for 8 c [8p, 8p+ 27r)

+27r-periodic expansion on IR . (2.21)

Hp+2m

d8 G(8)F(8)18))((81 (3 2)
Hp

An operator Gsc defined by (2.18) can also be written in
another form by using the function G(8) and the states

It is easy to see that we would have gotten the right-hand
side of this equation if instead of using the antinormal
ordering we had assumed the orthogonality of the states
18)):

18)) = , ):""'l~)
~—p

(2.22) ((8I8')) = h(8 —8') (hypothetic) .

One gets [8,9]

Hp+2~

d8 G(8) 18))((81 .
Hp

(2.23)

The form (2.23) for Gsc and the idea of the antinormal
ordering of SG phase operators have been discussed by
Luks and Perinova [8,9].

The use of the weak limit (2.18) leads to a very im-
portant theorem [11] that relates the weak limit and the
antinormal ordering:

(Gsc) = Tr(pGsc), (3.4)

where p is the density operator of the state. It is simple
to treat pure states for which

s = 14)HI. (3.5)

So, we find that the antinormal ordering replaces efFec-
tively the orthogonality of the phase states I8)), which
are essentially not orthogonal.

To explore the phase properties of a state of the elec-
tromagnetic Geld, we need to calculate expectation value
of a phase operator,

1'm G($8)F(4e) = .GscFsc, .
8~~w'eak

(2.24) So, we get

This theorem shows that the algebra is conserved in
the weak limit with the antinormal ordering. Using Eq.

Hp+2~

(Gsc) = d8 G(8) I (@18))I'
Hp

(3.6)
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It is convenient to introduce [S,9] [by using an analogy to
the well-known Q(n) function of coherent states] phase
distribution function

Hp+2vr

r5 I") = f dr ~ (r)lr))((rlo)
Hp

Hp+2m

Q(0) = T (~10))((01)
' = l(&10))I'

Hence, Eq. (3.6) may be written in the form

Hp+2m

(GsG) = d8G(8)Q(8) .
Hp

(3.7)

(3.s)

d0D(0)e*" In) = ) D„ln) .
n=o

(3.13)

In order for D to be a state-creating operator, obeying

(3.14)

Properties of the antinormal ordering cause the phase
distribution Q(8) to be very useful, in spite of nonorthog-
onality of I8)) states since, according to Eq. (2.25),

Hp+2n

(;GsGFsG,') = d0 G(8)F(8)Q(8) . (3.9)
Hp

So, we may investigate the phase properties of different
states of light without leaving the infinite-dimensional
Hilbert space. The results are the same as those derived
in the frames of the PB theory [6] taking the infinite-
dimensional limit after expectation values are calculated.
Therefore, with the antinormal ordering of SG phase op-
erators, the order in which the infinite-dimensional limit
and expectation value calculations occur is unimportant.
Hence these two operations become commuting, as re-
quired Rom a standard physical point of view.

Any state in Hilbert space may be represented by a
superposition of the number states:

(3.10)

Then the Q(8) function defined by (3.7) is

we must choose a corresponding function D(8), such that
its Fourier coeKcients are

C„, n&0
0, n&0. (3.i5)

The Fourier coefBcients D„with negative values of n
must vanish in order to prevent an ambiguity in the
choice of D Also, . Eq. (3.15) gives the correct normal-
ization condition for the function D(8). By using the
Parseval identity [12], we get for the normalized state

] p+27c

27t H

d0ID(8) I' = ). ID- I' = ).I&-l' = 1

(3.i6)

It must be emphasized that state-creating operators, de-
fined in this way, are generally not unitary and are differ-
ent &om the usually used unitary displacement operators.
However, when acting on the vacuum, our state-creating
operators and the corresponding unitary displacement
operators give the same results. For example, the co-
herent state-creating operator

q(0) ) ) G+G i(rr rn)8—
2m

n=O m=o
(3.1i)

n!n=o

and the Glauber displacement operator

(3.i7)

According to Barnett and Pegg [5,6], a state lg) is "phys-
ically accessible" if the series

(@l~'I&) = ):n" I&-I'
n=O

(3.12)

is convergent for any given finite integer p. It is evident
that for any physically accessible state l(I() the Q(8) func-
tion is well defined and we may find the phase properties
of such states by calculating the corresponding expec-
tation values. This is not the case for a state lg) that
is not physically accessible; for example, the formalism
does not work for the phase state I0)) itself, since it does
not possess a finite norm. But this discrepancy is of no
importance in any physical application.

It is interesting to note that there are operators that
have phase representation (2.23) and that can create
single-mode physical states &om the vacuum. For any
operator D of the form (2.23), we get

D( )
—[ai /2 ace —a'a (3.iS)

1
Q(0) =-

27r ) Ge ins ) G irns—
m=O

) De irre ) D —irrre

2
ID(0)l' (3.19)

both give the coherent state by acting on the vacuum.
The state-creating operators, in spite of their nonunitar-
ity, are useful for describing phase properties of light. By
expressing the state-creating operator in the form (2.23),
we change the basis In) with coefficients C„ into the ba-
sis I0)) with the function D(8). We can find a relation
between the function D(8) corresponding to the state-
creating operator and the Q(0) function that contains in-
formation about phase properties of the state lg). From
Eq. (3.11), we see that
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It is interesting to note that the properties of the weak
limit connection between the ill space and the 'R space
can be used as a mathematical tool to derive various re-
sults for the SG phase operators on the 'R space. Equa-
tion (2.25) is one exainple and we also provide another
example of such results. Let F(x, y) be a polynomial in
x and y, i.e.,

F(2:,y) = ) F„x"y
fLifA

(3.20)

with arbitrary ordering of z and y. Analogously we define

F(esc, esc ), G(esc sc ), and H(esc sc ) ' polyno

mials in operators esc and esc (with arbitrary ordering
of these operators) obeying the relation

~ e

H(esc, esc ) = F(esc, esc )G(esc, esc ) . (3.21)

H( sc sc) ( sc sc) ( sc sc)
[ F(esc esc ):]

x[;G(esc sc ) 1 (3.22)

This theorem shows that it is possible to simplify the
calculations with the antinormal ordering of complicated

functions of esG and esG by performing the antinormal
ordering in intermediate steps and, only at the end of
calculations, to complete the antinormal ordering proce-
dure. Assuming the special case G = F",we get

»Fn»»[»F»][»Fn 1»]»— (3.23)

Then we are able to prove (see Appendix A) the following
result.

Theorem i. For the antinormal ordering of a product
that contains SG phase operators it is possible to take,
in an intermediate stage, the antinormal ordering of each
multiplier.

That is,

Hp+2m.

Gsc = ) Gi (etc )" =
k= —OO Hp

d8 G(8) 18))((81 ~

(3.27)

where Gi, are given by Eq. (2.20). Replacing G(8) by
G'(8) in Eq. (2.20), we get

Hp+2m

d8G'(8)e'" = G'I, ,
2X H

(3.28)

and the Fourier-like series in (3.27) with these coefficients
becomes

) G' „(esc~) = ) G'„(esc) = Gsc . (3.29)

Therefore, we get

Hp+2vr

Gsc = d8 G'(8) 18))((81 .
Hp

(3.30)

So, a Hermitian operator GSG corresponds to a real func-
tion G(8). Using Eq. (3.30) we prove in Appendix B the
following result.

Theorem 8 (generaLized Paraeval-like identity). For
any two operators Gsc and Fsc, which satisfy Eq. (3.27),
and for any number state In) (n = 0, 1, 2, . . .), the follow-

ing identity is valid:

portant formulas in the 'R space. They are valid with-
out any relation to the existence of the PB description.
However, the very effective and convenient way to derive
these equations is by using the properties of the weak
limit [Eqs. (2.18) and (2.24)], which connects the SG
and PB descriptions. In the following section, we show
some applications to the above results and to the general
theory presented in the preceding section.

In Eqs. (2.18) and (2.23) we have shown that an oper-
ator in the SG quantum phase formalism can be written
in difFerent forms,

and by a simple recursion relation, we obtain

( sc sc )]":=:[.*F( sc sc ):] (3.24)

(nl:Ft, Gsc:ln) = ) F„'G, .
Ic=—oo

(3.31)

In a similar way, we find f'rom Eq. (2.24), by using the
above theorem, that

In Appendix B, we also generalize this result to nondiag-
onal matrix elements:

lim [G(ge)]" = G"sc = ', [Gsc]";,
S~OOvreag

(3.25) (nI*FscGsc*ln') = ) F'Gle+---
Ie=—oo

(3.32)

or, in another form corresponding to Eq. (2.25),

Hp

Hp+2~

d8[G(8)l"I8))((8I

Hp+2m

Hp

n

d8 G(8) l8)) ((8l; . (3.26)

We have obtained in Eqs. (2.25) and (3.26) very im-

So, we can get the matrix elements in the number-state
representation for the antinormal ordering of any SG
phase operator or product of such operators by using
the corresponding Fourier coeKcients. These relations
provide us with a mathematical tool to calculate numer-
ous infinite series, but we would get similar results in the
frames of the ordinary Fourier expansions [12]. However,
as we will soon see, the importance of the Parseval-like
identity (3.31) is its connection with the algebraic prop-
erties of the SG phase operators. This connection helps
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in the explanation of the physical nature of the antinor-
mal ordering. In the SG description, we are considering
a set of operators

—iP k —ip " ip k(OsG} ( ''( sG ) '''' sG ' esG ' ' ( sG)

(3.33)

It is interesting to note that this set of operators has
all the properties of a group if and only if we use the
antinormal ordering. Without the antinormal ordering
we find, for example,

SG SG 1 —
I o) (0I (3.34)

i.e. , the multiplication of two operators belonging to the
set (OsG} produces the projection operator for the vac-
uum, which does not belong to this set. Introducing the
antinormal ordering, we close the set (OsG} and provide
it with all the properties of an Abelian group. Indeed,

the identity elements is 1, the inverse of (es~G)" is (esG ) ",
and commutative and associative properties are fulfilled
as is evident from Eq. (2.13).

The use of the antinormal ordering of the SG phase op-
erators is related to the theory of ordinary Fourier series
[12]. Consider a Euclidean space W, which consists of
continuous in parts and 2x-periodic functions G(8). The
scalar product in W is defined to be

(3.37)—(3.39) for the W space of classical functions G(0)
are analogous to the properties of the Fourier-like series,
which represent operators GsG on 'R [see Eqs. (2.18)—
(2.20) and (3.31)]. For example, the orthornomal set of
functions (e *" } is transformed by (3.40) into the set

(OSG}, defined by Eq. (3.33); and the Parseval identity
(3.39) based on the functions (e '"s}is analogous to the
Parseval-like identity (3.31), based on the operators be-

longing to (OsG}. This Parseval-like identity (3.31) is

valid only with the use of the antinormal ordering, and
the set (OsG} is closed also due to the use of the anti-
normal ordering. Such a relation is very similar to the
classical connection between the Parseval identity and a
closed set of orthonormal functions.

Ps = sin ' S = asS "+',
k=O

(4.1)

7t ]
PG =cos C= ——sin C=

2
g2k+1

k=o

(4 2)

IV. APPLICATIONS OF THE ANTINORMAL
ORDERING

Carruthers and Nieto have defined [2] two independent

Hermitian phase operators Ps and PG,

8p+2 sr

(G, F) = — d0G(0)F*(0) .
271 g

(3.35)

P

where S and C are the SG sin and cos Hermitian phase
operators and ak is a short notation for the Taylor ex-
pansion coeScients:

IIFII' = (F F) =).I(F Vi)l'. (3.36)

Any orthonormal set (yi, }in W is closed if, and only if,
the Parseval identity is fulfilled [12]: (

—1)" t',' l (2k+1)!!
2k+1 ( k ) (2k)!!(2k+1) (4 3)

It is known [12] that (e '"s} (—oo ( k ( oo) is such
an orthonormal and closed set, which may be used to
construct the Fourier series

U = e'&&

Us = &'~'

U~tUc ——UeU~~ = i,
U,'U =U U,'= i.

(4.4)

(4.5)

By using Ps and PG it is possible to build unitary phase
operators [2]:

where

G(0) = ) Gi e

k= —oo

(3.37)
But these definitions do not solve the quantum phase

problem since Ps and PG do not commute:

Ho+2~

Gg = (G(0), e '"
) = d0 G(0)e'

2' g
(3.38)

(G, F) = ) Gi,F„' .
k= —oo

(3.39)

Corresponding to each function G(0) in W we can define

the operator GSG acting on the Hilbert space R. ,

The Parseval identity may be written in the generalized
form,

[Pc, Ps] 7 0 . (4.6)

w ~2k+1+,&s, = g
k=o

Oo+27r

We can use the results of the previous sections in order to
find a relation between the PB phase operators defined in
the 4 space and the antinormally ordered CN operators

Ps and Pc in the 'R space. Applying the antinormal
ordering to the CN operators we get, by using Eq. (3.26),

80+2m

d0 G(0) 10))((01
Hp

(3.40)

where ~0)) are given by Eq. (2.22). We find that Eqs.

d0 ) ai, (sin 0) "+'~0))((0~
k=O

d0 sin (sin 0) ~0)) ((0~, (4.7)
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and in a similar way,

Hp+2m

dH cos (cos 8) IH))((HI .
~p

(4.s)

We note that the functions sin (sinH) and cos (cosH)
do not coincide with the function 8 in the whole 2x-wide
region (Hp, Hp + 2vr) for any choice of Hp. We define

8, (k) = — dHI8 I.*"'
2'
' —2/(vrk2), k odd

0, k even(k/0)
x/2, k=0,

and similarly

(4.12)

Hc = cos {cosH) = IHI for 8 6 [
—m, x)

+27r-periodic expansion on R, (4 9)
where

:4s:= ). Hs(k)(esc)' (4.13)

~ g ~ 7r
Hs = sin (sinH) = ——8 ——

2 2

3n')
for e

2 2

+2+-periodic expansion on IR . (4.10)

Accordingly to Eq. (2.18), we find

dH(w/2 —I8 —m/2I) e*"
3m/2

es(&) = —f
—ai w/28 (k)

i(—1)&"-'!i"2/(~k )
~

~0, k even. (4.14)

where

:Pc', = ). Hc(k)(esG ) (4.11) These results for ', Ps,'and;Pc', can be checked by a
direct calculation without using Eq. (3.26). By the bi-
nomial expansion in Eqs. (4.1) and (4.2) we get with the
antinormal ordering,

r 1iI 2&+&

&22%+1 / ~ p!(2k + 1 p)( ( sG i
k=o p=O

2%+1 (2k+1) (,p)2s~i 2„
22%+1 g pl(2k + 1 p)!k=O y=O

(4.15)

(4.16)

We substitute

q = 2k+1 —2p,

and then find

:4s'. =
odd q= —oo

'(-1)' ""A(~)(esG')'

(4.17)

(4.18)

plicated expression (4.20). We find that the calculational
method based on the property of the antinormal order-
ing [Eq. (3.26)] is much simpler than the straightforward
calculation used to find Eqs. (4.18)—(4.21). As follows
from Eqs. (2.17), (2.18), and (2.23) the knowledge of
a function G(8) enables us to find immediately the 4'-

space operator, which corresponds in the weak limit to
the given SG operator. Hence by using Eqs. (4.7) and
(4.8), we get the PB operators that tend in the weak limit
to the antinormally ordered CN phase operators:

where

:4c'.= 2—
odd q= —oo

&(&)(esc~)' (4.19) 8
X

&s(~) = ):I

——8- ——
I IH-)(H-I

E2 2) 2

(4.22)

(I2k —1I")'
;, 2'"+' (k+ ', ')!(k+ '+') ~

Comparison of these formulas with Eqs. (4.11)—(4.14)
shows that the results of the two methods coincide due
to the relation

8

Ps(C) = ) I8 IIH )(8 I, Hp
———vr .

m, =O

According to the above formalism,

hm 4e(~) =:4s'. ,
+OOmeak

(4.23)

(4.24)

&(~) = 2
(4.21) 4e(t") =:4c'.

+OO weak
(4.25)

which was confirmed by numerical calculation of the com- It is possible to use the present methods for calculat-
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.*[@c].*=.*[(*.@c*.)"]*..

Substituting (4.8) for *,Pc'„we get

(4.26)

ing more complicated cases. For example, a direct cal-
culation of ,*[41&];by a straightforward use of the Taylor
expansion in Eq. (4.2) will be very complicated since it
needs to take a power of infinite series. But it follows
from Theorem 1 and Eq. (3.24) that

(3.24) and (3.26), we are able to represent in the form

(2.23) any antinormally ordered well behaved function of
the CN phase operators. For example,

OO

:~:=:"'-:= ):—„,:[~;]:= ):—„,:[(:~-:).]:
n=O n=o

(4.32)

By using Eq. (4.28), we find
7r n

:I4"I: =: f «~l&~l~l&))((&~l

and by using Eq. (3.26), we finally find

(4.27)
Uz* —— ge'I I g

and similarly,

(4.33)

:I4cl: = f
It is obvious now that

(4.28) 37r /2

—n/2
dH e*&~~'—~

—~~'~1
lH)) ((Hl

(4.34)

&e(C) =*.[&c]:
8~ I-IOweak

(4.29)

where Pe(C) is given by Eq. (4.23) and in the PB de-

scription it is easy to 6nd

8

&e(C) = ).IH-I" IH-)(H-I
m=o

(4.3O)

For even powers of n,

Ne(C) = 4e (4.3I)

We End here the interesting result that the weak limits of
even powers of the PB phase operator Pe (Hp ——vr) are
equal to the antinormally ordered corresponding powers

of the CN operator Pc. By using Theorem 1 and Eqs.
I

One should take into account that the quantum phase
formalism is related to the expansion into Fourier-like
series. For an operator, which is an antinormally or-
dered function of C and/or 8, it is possible to obtain
the Fourier-like series by Taylor expansion of this func-

tion (as was made above for', Pc*, and;Ps', ). The use of
the desirable properties of the antinormal ordering [espe-
cially Eq. (3.26)] for these cases greatly simplifies such

a procedure. In the examples with;Pc*, and ,*|ts,'the
use of Eq. (3.26) was very effective but not obligatory.
However, often a straightforward calculation of the Tay-
lor expansion without the use of Eq. (3.26) does not lead
to corresponding Fourier-like series. If we take as an ex-

ample the operator ,'(1/i) ln(e&~&); the Taylor expansion
of ln gives meaningless results unless Eq. (3.26) is used:

Hp+2m

; —.1II(esc)*, =;—.1II
H H

n

dH e'IH))((HI —I (4.35)

It is now possible to use the completeness of the states lH)) [2]:

Hp+2~

«IH))((HI = ~ .
Hp

(4.36)

And by using Eq. (3.26), we find

«(e' —I)"IH))((HI

dHHIH))((HI .

1 1 (—1)+ f
'

*.- ln(e',~~)*. = —)*Z nn=1 Hp

Hp+2m Hp+2~
«-. »(e') IH))((HI =

Hp Z Hp

(4.37)

So, we get the weak limit of the PB phase operator: The corresponding Fourier-like series is

Hp+2n

lim ye = ysc = ,*—ln(esc): =ip
8~~weak *Z

Hp

« HIH))((HI

(4.38) where

isc = ) H~(esc~)" (4.39)
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Ho+2m

dg g 2)gg 80 + K) k 0
le

—
2 ieikso kg0 (4.40) (~l:&":l~)=

e-~~~' "
n&

I
Ira —2PI y

y(n p) q
[ I~—2PI

p=o

We find here the SG counterpart of the PB Hermitian
phase operator. But if we do not use Eq. (3.26) and
carry out a straightforward calculation, we will get We substitute

Xe—2(n —2p)x (4.48)

1 2P ~ 1:—, »(esG)**= —, ).W(es'G)"
p=o

where the coefficients

(4.41)
and then find

&~l:|-"":l~)

/=A —2pq (4.49)

(-1)"'
pI

(4.42)

Q(8 n) e
—

I
I' ). I+II le' ! x @I&!(Iii'I) ( 3)2'

where

(4.44)

In the classical limit of a large mean photon number
[13,2], we get for any non-negative integer q,

lim 4', (~a[) = el (4.45)

Therefore,

lim Q(8, n) = h(8 —y) .
/a/~-+oo

(4.46)

So, in this limit we get, as can be expected, a classical
wave with a perfectly defined phase. We find &om Eqs.
(3.8) and (4.43) that the expectation value of a phase
operator is given by

(o'/Gsa fbi)
—e

—
I

I' ) [o.fl IG„e—
x@1&l(f'i'f) (

Considering GSG ——*,C ', we get

are divergent for any non-negative integer p. So, this
expansion is meaningless.

Applications of the phase probability function Q(8).
The phase probability function Q(8) was described in
Eqs. (3.7) and (3.11) and it was shown that it is useful for
investigating phase properties of difFerent physical states
of light. An important advantage in such formalism is the
ability, by using the antinormal ordering, to work directly
in the infinite-dimensional Hilbert space 'R, which is nat-
ural for the description of the electromagnetic field. As
recognized by Pegg and Barnett [5,6] the number states
are the states of random phase. Indeed, we get &om Eq.
(3.11) for any number state Q(8) = I/2vr, which exactly
coincides with the corresponding result for the uniform
classical distribution. As an interesting example, we dis-
cuss the phase properties of a coherent state ~a), where
o. = ~a~e'x. By a straightforward calculation, we get from
Eq. (3.11)

n'[~I'~. ([~I))( —)(j()()(')
where

Our results obtained by the antinormal ordering are es-
sentially different from the corresponding formulas of CN

[13,2] when the mean photon number [o.
~

is sufficiently
small. But the present theory implies that if we use
the PB formalism and then take the infinite-dimensional
limit [6,14,15] we will get the same results as derived
here. The use of the Q(8) function and the antinormal
ordering enables us to get rid of the infinite-dimensional
limiting procedure. Such a technique may be considered
as a simplification that will be useful in various physical
problems that are related to quantum phase.

V. CONCLUSIONS

We have discussed the relations between the PB quan-
tum phase formalism defined in the finite-dimensional
Hilbert space 4' and the antinormal ordering of the SG
phase operators on the infinite-dimensional Hilbert space
'R. In addition to that we have suggested the physical
explanation of the antinormal ordering, which is based
on the idea of defining the vacuum as a random-phase
state. We have shown that phase properties of light can
be conveniently investigated by using the ~8)) states since
the antinormal ordering effectively eliminates the prob-
lem related to nonorthogonality of these states. We have
developed a technique that essentially simplifies the cal-
culations with the antinormal ordering. We have derived
the Parseval-like identity and have shown the relation be-
tween this identity and the algebraic properties of the SG
phase operators under the antinormal ordering. This re-
lation is analogous to that used in the theory of ordinary
Fourier series. We have described various applications of
the present formalism. Especially we find the PB oper-
ators, which tend in the weak limit to the antinormally
ordered CN phase operators, and have analyzed the prop-
erties of these CN operators and their functions under the
antinormal ordering. Finally, we have investigated by us-
ing the antinormal ordering formalism the phase proper-
ties of coherent states. This example demonstrates the
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applicability of the Q(8) function for different physical
phase-related problems.

ACKNOWLEDGMENTS

We thank Dr. J. A. Vaccaro for sending us informa-
tion on his recent work. C. Brif thanks the Venezuela
Technion Society for financial support. This research was
supported by the Fund for the Promotion of Research at
the Technion.

II(e'&', e *4") as polynomials in the PB unitary opera-
tors. They have the same functional form [see Eq. (3.20)]

as the polynomials defined in Sec. III, F(etc, esc ),

G( sc sc ), and H(esc sc ) respectively, but diifer
in their arguments:

H(e'~e e '«) —F(e'~e e '4'e)G(e'4'e e '4'9)

By using the definitions of the weak limit and the anti-
normal ordering, one obtains [ll]

APPENDIX A: PROOF OF THEOREM 1

In this proof we use the properties of the weak limit

[7,11]. We define F(e'~', e '«), G(e'«, e '«), and

lim G(e'4", e '~') = ,*G(e&~&,esc~)„',
8 ~OOweak

and similarly for F and H. Now we use this result and
Eq. (2.24) to calculate

",H(esc sc ) F( sc esc )G(e'sc sc~)*

lim H(e'4", e '~') = lim [F(e'4",e '~')G(e'«, e '~')]
8~Oo weak 8M Ooweak

lim F(e*~', e '«) lim G(e*~', e '«) I',
+Ooweak 8~Ooweak

=;[;F(esc sc ):][:G(sc sc )"*].

and we get the desired result.

APPENDIX B: PROOF OF THEOREM 2

We use the form (2.23) for an operator in the SG description, the form (3.30) for its Hermitian conjugate, Fourier
series for corresponding functions, and property (2.25) of the antinormal ordering. Then we find

d8 F*(8)G(8) l((8ln) I'

ggg'(" '~~ = y"G

Hp+ 2'.
(nl:FscGsc:ln) =

Hp

Op+2m

d8 F'(8)G(8)2' g
oo oo

~
ep+ 2~

= »:: ,.f—
A:=—oo l= —oo p

and we get the result of Theorem 2 [Eq. (3.31)]. Similarly, we treat the case of nondiagonal matrix elements [Eq.
(3.32)]:

d8 F*(8)G(8) (n]8) ) ((8]n')

d8 F*(8)G(8)e*i"

ge i(k —l+n —n') 6l

Hp+ 2'
(nl:Fs'cGsc'. In') =

~p

ep+2~

27t g
oo oo

g
gp+27I

) F'~ ,.f-
k= —oo l=—oo p
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