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Low-frequency fluctuations observed in the coherence collapse of semiconductor lasers are numerical-
ly investigated based on the Lang-Kobayashi model. It is found that the attractor in the compound cavi-
ty mode loses its stability due to a crisis with an antimode. Chaotic itinerancy among the destabilized

compound cavity modes is also found.

PACS number(s): 42.50.Ne, 42.55.Px, 42.60.Mi, 05.45.+b

I. INTRODUCTION

Semiconductor lasers with delayed optical feedback
show a variety of behaviors because the delay
configuration intrinsically creates an infinite number of
degrees of freedom. This rich variety of behavior has
been attracting many researchers’ attention from both
the scientific and the practical points of view. Scientists
believed that this system was a good candidate for explor-
ing low-dimensional chaos. Along this line, two possible
routes to deterministic chaos were found: the period-
doubling route [1] and the quasiperiodic route [2]. For
practical applications, on the other hand, this rich
dynamical behavior can cause problems that must be
overcome. For instance, either weak or strong feedback
can realize single-mode narrow-linewidth operation,
while moderate feedback causes the linewidth to increase
dramatically up to several tens of gigahertz. This drastic
linewidth broadening is called coherence collapse [3].
The coherence-collapse state has been studied in terms of
deterministic chaos by several authors [4-6]. At
moderate feedback levels, intermittent drops in light in-
tensity, each followed by a gradual increase, have been
observed near the lasing threshold [7] and, in the frequen-
cy domain, these drops manifest themselves as low-
frequency fluctuations (LFF) [7,8] at frequencies less than
one-tenth the external cavity resonance frequency. These
drops cause a kink in the light-current characteristic.
Several authors claim that this phenomenon is noise-
induced switching between bistable states. Henry and
Kazarinov introduced a potential model considering that
the maximum-gain-reduction mode is always linearly
stable but because of the higher-order term the potential
well has a peak that can be surmounted by spontaneous
emission noise [9]. Their approximate analytical results
well explained the qualitative current dependency of the
drop period. This conjecture was further pursued by
Mgrk, Tromborg, and Christiansen [10]. Their theoreti-
cal analysis suggests that these drops are noise-induced
switching from the stable maximum-gain-reduction mode
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to the temporally stable (within the external cavity
round-trip time) minimum-linewidth mode. They
demonstrated numerical simulations that included the
noise effect and reproduced the repetitive drops. They
performed other simulations that omitted the spontane-
ous emission noise and were able to reproduce at least
one deterministic drop. This possible deterministic drop
suggests that the conjecture of noise-induced switching
might be valid only for the initial switching from the
originally stable state (the maximum-gain-reduction
mode) and not for the subsequent drop process. The ac-
tual mechanism of the drop is not yet known. Research
to date, however, has been based on either the adiabatic
elimination technique, by which only the initial transition
from the stable state could be analyzed [11], or incom-
plete direct analysis. It is necessary to analyze the model
equations directly in terms of nonlinear dynamics.

This paper investigates the origin of the intensity drops
based on the Lang-Kobayashi equations. In Sec. II, we
derive the steady-state solutions of the equations, some of
which correspond to the known compound cavity modes
and the others correspond to antimodes, which are al-
ways unstable saddle-type solutions. We plot the location
of these solutions in phase space. The next section intro-
duces the direct numerical calculations of the Lang-
Kobayashi equations that reproduce the deterministic in-
tensity drop phenomenon. The dependency of this
phenomenon on variations in injection current is also
demonstrated to duplicate the characteristics found in
previous experimental results. In the fourth section, the
numerical solutions are compared with the steady-state
solutions in phase space. It is found that each intensity
drop is initiated by crisis: a collision with an unstable
saddle solution. Moreover, we find chaotic itinerancy
[12,13] observed as switching between destabilized com-
pound cavity modes. A simple example of how the crisis
is reached is shown in the fifth section. The sixth section
introduces a physical interpretation.

II. MODEL EQUATIONS
AND STATIONARY SOLUTIONS

This paper assumes that even in the regime of relative-
ly strong feedback and near the lasing threshold, the
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Lang-Kobayashi equations are a good representation of
the physical process. Here, we concentrate on the phys-
ics of the drop phenomenon, so we use the normalized
equations [14]

Z—}:=ANP+27/\/P(t—T)P(t)cos[¢(t)—¢(t—T)+a)f]
+BN +Fp(1) (1)
1/2
dé _a, . _|P(t—1)
dt 2 AN P(1)
Xsin[¢(1) —¢(t —7)+wT]+F4(t), (2)
dgtN = —AN—(K +AN)P +AJ +F 45 (1) . 3)

These are the temporal evolution equations for the
photon number P, the slowly varying part of the optical
phase ¢, and the deviation of the carrier number from the
threshold value N, of the solitary laser AN=N —N,,.
In this notation, w stands for the optical angular frequen-
cy of the solitary laser, K is the damping constant for the
photon number, and AJ is the pumping-current deviation
from the threshold of the solitary laser. «a is the
linewidth enhancement factor and r is the round-trip
time of the external cavity. The feedback strength y is
given by
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where R is the power reflectivity of the external mirror, r
is that of the laser facets, 7, is the round-trip time of the
laser cavity, and 7 is the coupling ratio. Fp(t), Fy(¢), and
F,y(t) are Langevin noise terms representing stochastic
spontaneous emission events and [ is the spontaneous
emission factor. These equations have succeeded in ex-
plaining weak feedback effects both for Fabry-Pérot
lasers and for distributed-feedback lasers. This paper
neglects stochasticity, which blocks the investigation of
the fully deterministic problem, and sets some of the pa-
rameters to typical values: a=6, = 1073, K=10%,
n=1, and N, =10°.

For simplicity, we omit the term representing the con-
tribution of the spontaneous emission to the photon-
number evolution in (1), i.e., =0, so the stationary solu-
tions are easily obtained as

AN=—2y cosp , (5)
p= AJ +2y cosp (6)
K —2y cosp

AwT=—ayTcosp+yTsing
= —y7V' 1+a’sin(p+arctana) , (7)

where ¢p=¢(t)—¢(t —7)+ w7 is the phase difference be-
tween the field inside the laser cavity and the field fed
back into the cavity. The determination of ¢ from Eq. (7)
is only possible numerically since (7) is a transcendental
equation. The solutions of (7) can be graphically ob-
tained as shown in Fig. 1. Since the value of yr deter-

TAKUYA SANO 50

AT (rad)

FIG. 1. Graphical solutions of the equations. (a) y =1, r=1
) y=1,r=10.

’

mines the amplitudes of the sine term of (7), the number
of solutions increases as the value increases. For this
reason, several authors used y7 as a control parameter to
discriminate the operation region [15]. A linear stability
analysis suggests that there are two types of solutions;
one type is always unstable and the other is stable or un-
stable depending on the parameter values [16]. Following
the definition given in Ref. [2], the former is called the
antimode, and the latter is the usual compound cavity
mode (eigenmode). Both types of solutions are created in
pairs by a saddle-node bifurcation [2].

From (4) and (6), the steady-state solutions lie on an el-
lipse, as illustrated in Fig. 2, as was shown by Henry and
Kazarinov [9],
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FIG. 2. Steady-state solutions in the AN-AwT space. The
solid line is the phase condition curve, and the dashed line is the
gain condition curve. The intersections of these curves fall on an
ellipse (dash-dotted line).
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The compound cavity modes are located in the lower half
of the ellipse, whereas the antimodes lie on the upper
half. The detuning value ot simply changes the location
of these solutions in a clockwise direction along the el-
lipse circumference. The solution at the lowest point of
this ellipse corresponds to the mode with the lowest gain,
where @~2mn (n is an integer) and AN =~ —2v, and the
solution with ¢ =~2mn—arctana and AN =0 corresponds
to the mode with minimum linewidth, which is located at
the center [17]. At the strong and distant feedback limit
(Y1~ ), the number of solutions increases, resulting in
more solutions on the ellipse. If we restrict @ in the
range between 0 and 2, then there exists a solution for
any ¢ regardless of the detuning value wr. This fact al-
lows us to neglect the ot dependence of the solutions at
the large-y7 limit. The following analysis assumes
oT=0.

III. NUMERICAL SIMULATIONS

The equations are solved directly using the Runge-
Kutta method. Here, we consider the case of relatively
strong feedback (power reflection rate =~1%) and distant
reflection (the delay time much larger than the carrier
lifetime). Figure 3 shows calculated temporal wave forms
for y =5 and 7=20. Figure 3(a) shows the temporal evo-
lution of the photon number with smoothing, considering
the limited bandwidth of the measurement setup usually
employed. The figure clearly demonstrates that the
deterministic intensity drops are followed by gradual
steplike increases, with each step equivalent to the
round-trip time. Figures 3(b) and 3(c) depict the corre-
sponding temporal evolution of the carrier number AN
and the phase difference ¢(¢)—¢(t —7), respectively. We
can ‘also see the sudden rise in the carrier-number plot
even without smoothing, and the sudden change of the
phase relation in the phase-difference plot. The depen-
dency of the drop period on pumping current is shown in
Fig. 4. In this figure, only the carrier numbers are plot-
ted. The drop period shortens as the pumping level in-
creases, paralleling the widely known observed depen-
dence [5,7,8].

Here, we can no longer resort to the potential model
introduced by Henry and Kazarinov [9] to explain this
dependence, since their model assumes a stable fixed-
point solution and a finite amount of spontaneous emis-
sion noise.

To gain insight into the main features of the dynamics,
the simple case of a small ¥ value (y =5, 7=2) is calcu-
lated and plotted in Fig. 5. The temporal evolution of the
phase difference [Fig. 5(a)] more clearly suggests switch-
ing between destabilized compound cavity modes (quasi-
attractor) since the lifetimes of all modes are longer than
in the previous example. In the case of carrier number
[Fig. 5(b)], large oscillation conceals only small switching
events, not those corresponding to the intensity drops.
To characterize this phenomenon more precisely, the cal-
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FIG. 3. Calculated temporal wave forms for (a) the smoothed
photon number P, (b) phase difference ¢(¢)—¢(t —7), and (c)
the carrier number AN. The parameters are ¥ =5, 7=20, and
AJ=0.00.

culated points are plotted onto the phase space men-
tioned in the previous section to yield Fig. 5(c). Accord-
ing to this figure, the buildup process is due to the change
in lasing mode, driven by oscillation in the carrier num-
ber, from smaller phase-difference modes to larger
phase-difference modes (right to left). The drop process,
on the other hand, occurs in the antimode region (the
upper half of the ellipse). The phase-space plot also indi-
cates that each drop is initiated by a collision between the
quasiattractor in one of the compound cavity modes and
the associated antimode. This collision is what we call a
crisis in nonlinear dynamics [18]. After the crisis, the
carrier number AN increases almost directly to the
threshold value 0, and then the phase difference shifts to
a smaller value, which is almost equivalent to the thresh-
old value of the solitary laser.

It should also be pointed out that switching to higher
frequencies, opposite to the normal buildup direction can
occur randomly during the buildup process. We call this
kind of switching inverse switching (IS) and regard it as a
sign of chaotic itinerancy [12,13]. Chaotic itinerancy is
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FIG. 5. Simulated wave forms of the phase difference
¢(t)—¢(t—7) (a) and the carrier number AN (b) and their
phase-space portrait (c) for y =5 and 7=2. Crisis and inverse
switching are denoted by C and IS, respectively.

deterministic random switching between quasiattractors,
and is widely seen in dynamical systems with high de-
grees of freedom. In the present case, the compound cav-
ity modes which lose stability correspond to the quasiat-
tractors, and the trajectory moves from one of these to
another during the buildup process. Although switching
mainly occurs in one direction, from smaller to larger
phase-difference modes, this motion is randomly inter-
rupted by switching in the other direction. The interest-
ing point is that the high degrees of freedom of this sys-
tem originate from the feedback delay, not the number of
variables themselves.

IV. EXAMPLE OF CRISIS

In this section, the process that leads to a crisis is de-
scribed precisely as the change of an attractor through
parameter variations. To this end, we choose a certain
compound cavity mode solution as an initial condition
and observe how the attractor changes. We take 8=0 in
order to simplify the choice of the initial condition. The
injection current is the control parameter, and is in-
creased from slightly above the modified lasing threshold.
Figure 6 shows changes in the attractor against six injec-
tion currents at the mode of the minimum carrier number
using the condition specified for Fig. 5, and Fig. 7 shows
the corresponding fast Fourier transform (FFT) power
spectra.

When AJ = —9.7, the attractor is a fixed point, i.e., the
laser operates in the stable compound cavity mode. For
AJ = —9.0, the attractor is a periodic limit cycle, which
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FIG. 6. Change of the attractor in the compound cavity mode with increasing pumping current J. (a) A fixed-point attractor, (b) a
limit cycle, (c),(d) a quasiperiodic torus, (e) a chaotic attractor, (f.1) a blowup of the attractor (crisis), and (f.2) the whole picture of

(f.1) (only the transients are shown).

emerges from the fixed point due to a Hopf bifurcation.
In the power spectrum, peaks are located near the inverse
of the round-trip time of the external cavity and its har-
monics. At AJ=—7.7, a quasiperiodic torus becomes an
attractor as a result of the second Hopf bifurcation, and
another peak appears in the lower-frequency region,
showing the appearance of relaxation oscillation. The
torus has a very complicated appearance with many exit-

ed harmonics of the lower-frequency peak, as can be seen
at AJ=—7.0. At AJ=0.0, the phase-space plot suggests
the emergence of a local chaotic attractor. This is
confirmed by the broad noise spectrum seen in Fig. 7(d).
This is a quasiperiodic route to chaos, the same type as
that found by Mgrk, Tromborg, and Mark in the same
system with high injection current [2]. The slight in-
crease of injection current to AJ=0.2 causes a crisis at
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FIG. 7. Change of the power spectrum of the photon number P with increases in the pumping current J corresponding to (b), (c),
(d), (e), and (f) of Fig. 6, respectively. (f) is for a slightly higher pumping current (AJ =5.0) than (e). In (f) and (e), the low-frequency
fluctuations are marked by arrows at the normalized frequency 0.031 and 0.064, respectively.

the antimode. This crisis changes the local chaotic attrac-
tor to transient chaos, equivalent to a quasiattractor.
The trajectory confined in the compound cavity mode in
the case of lower injection current, after some transient
time, escapes away from this region toward the upper
right corner of Fig. 6(f.1). The trajectory then goes
straight to the threshold value of the carrier number and
begins to travel a wider region of the phase space as we
saw in Fig. 6(f.2) and the previous section. The corre-
sponding power spectrum in Fig. 7(e) shows more
broadening compared to the simple chaotic case of Fig.
7(d). Further increase of the injection current makes the
LFF peak shift to a higher frequency from 0.031 (normal-
ized frequency) in Fig. 7(e) to 0.064 in Fig. 7(f), which
parallels other experimental results [19,20].

Figure 8 schematically illustrates this crisis. An an-

unstable
manifold

| > stable manifold

P(t)-¢(t-1)

FIG. 8. Schematic illustration of the antimode dynamics
(crisis).
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timode is a saddle-type solution that has one stable and
one unstable manifold. In this case, the stable manifold is
a plane almost perpendicular to the AN-{¢(¢)—¢(t —7)}
plane. The unstable manifold encompasses both increases
and decreases in the carrier number. A trajectory that
fails to pass through the stable manifold rapidly returns
to the chaotic compound cavity mode. A trajectory that
passes through the stable manifold continues to head in
the direction of increasing carrier number up to the
threshold of the carrier number. As is suggested by Fig.
2, the antimode is also a phase-locked solution in which
locking is enhanced by the strong-feedback photons com-
pared to the decreasing photons inside the cavity, even
though the refractive index changes with the photon
number. As a result, the phase difference remains almost
unchanged during the intensity drop, as is seen in Fig. 5.

V. DISCUSSIONS

The LFF process demonstrated so far is summarized in
Fig. 9. It consists of two parts; one is the intensity build-
up along the compound cavity modes and the other is the
intensity drop due to crisis. The buildup process is physi-
cally interpreted as a wave-mixing process. Chaotic os-
cillation in a single compound cavity mode generates side
modes at the other compound cavity mode frequencies,
resulting in multimode oscillation. The energy in each
mode is then transferred to the lower-frequency side as a
result of the anomalous interaction of lasing modes as
proposed by Bogatov, Eliseev, and Sverdlov [21]. They
found that, in the presence of two lasing modes in a laser
cavity, the lower-frequency mode acquired excess gain
due to the nonlinear scattering by the dynamic grating
with the beat frequency of the two modes. After the re-
petition of this process for several round-trip periods,
changes in the refractive index cause destructive interfer-
ence which reduces the optical intensity. Laser oscilla-
tion then restarts at the frequency of the solitary laser.
In this way, the LFF process is repeated.

Contrary to existing studies, the intensity drop is not
switching between bistable states since the new state is
not stable even during the interval of the round-trip time.
The intensity drop is self-generated by antimode dynam-
ics, which is usually considered to be physically meaning-
less. Concerning antimodes, Ref. [2] shows an example of
modes and antimodes and the corresponding potential.
According to that potential, the unstable manifolds of an
antimode connect two adjacent compound cavity modes.
This is certainly the case for weak feedback and short
round-trip time. On the other hand, for stronger-
feedback conditions, where more degrees of freedom can
be generated, other types of unstable manifolds, such as
the one described in the present paper, appear. It is very
important to consider the relation between the feedback
condition and the possible dimension of the attractor
since this system has an inherently infinite number of de-
grees of freedom.

This study also suggests that the coherent interaction
between the field in the cavity and the field fed back into
the cavity is necessary for the drop phenomenon. As is
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FIG. 9. Schematic illustration of the LFF process.

shown by the phase portraits, phase dynamics plays an
important role even in the coherence-collapsed regime.

In this model, just one longitudinal mode is sufficient
to cause the LFF process, although more degrees of free-
dom (the other longitudinal modes of the solitary laser
and the quantum noise) seem to be necessary to simulate
exact laser operations. This latter point was also men-
tioned by Mdrk, Tromborg, and Christiansen [10]. They
found that the inclusion of more longitudinal modes
smoothed the LFF process and that the spontaneous
emission noise also had a stabilizing effect instead of
causing the drop. Despite these facts, we find that the
principal dynamics is accurately modeled by the single-
mode, noise-free equations.

The model equations also show chaotic itinerancy. It
can be described by the chaotic modulation of the feed-
back effect expressed as y[P(t—7)/P(¢)]'/?, which
determines the effective locking strength. Physically, it is
considered to be the result of complex interaction among
the compound cavity modes and the relaxation oscilla-
tion. This paper finds that chaotic itinerancy fundamen-
tally originates from delay, whereas research to date has
considered only multiple variables.

VI. CONCLUSIONS

We investigate the dynamical properties of the Lang-
Kobayashi equations near the threshold of a solitary
laser. The sudden intensity drops are found to be caused
by crises between local chaotic attractors and associated
antimodes, which are unstable saddle-type solutions. The
subsequent buildup process is shown to be switching be-
tween compound cavity mode oscillations, which is inter-
preted as the result of a wave-mixing process. The
change in a local chaotic attractor via crisis is demon-
strated. In addition, chaotic itinerancy is found during
the buildup process, which is understood as the effect of
complex modulation of the effective feedback rate by the
relaxation oscillation.
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