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Utilizing a classical model, the interaction of a centrally positioned radiating dipole with a finite-sized
spherical Bragg structure is treated. A straightforward approach is adopted to calculate the radiative
lifetime and resonance frequency shifts of a source within a three-dimensional Bragg structure, and ap-
plied to a simple physical system that can be expected to provide a good estimate of the finite-size effects
that will occur in more complicated structures. These calculations are of fundamental theoretical in-
terest for understanding dipole-surface interactions, particularly in spherical geometries requiring a vec-
tor formulation. The work is of potential practical interest as applied to spherical cavity and photonic
structure design, and stresses the connection between recent photonic band-gap research and the earlier

investigations of dipole-mirror interactions.

PACS number(s): 42.60.Da, 03.50.De, 41.20.Jb

I. INTRODUCTION

It is well understood that the presence of an interface
or structure can significantly impact the characteristic
behavior of a radiating system [1,2]. Specifically, the ra-
diative decay rate and resonance frequency of a radiating
system depend on the electromagnetic modes (or states)
associated with the surrounding environment. This
dependence is expected as radiative properties are not in-
herent to an isolated atom but characteristic of an atom
coupled to a physical system. For an isolated atom in a
vacuum, an infinity of states exist which are available to
the radiated photon. By modifying these states through
the presence of an interface or cavity, the radiative prop-
erties of excited atoms can be strongly modified. Systems
that change the density of modes are currently of great
interest in the fields of photonics and quantum electro-
dynamics.

The origins of this renewed interest can be traced to
earlier investigations concerned with the effects of metal
and dielectric interfaces, and metallic waveguides near
cutoff, on atomic radiation [3,4]. A series of experiments
by Drexhage [5] and others demonstrated the strong
dependence of the fluorescent lifetime of molecules on the
separation between the molecule and a conducting sur-
face. The experimental shift in the resonance frequency of
an electric dipole near a conducting surface was demon-
strated by Holland and Hall [6]. Due to the inherent los-
sy nature of metallic structures, recent investigations
have considered periodic dielectric structures. The struc-
tures considered incorporate one-dimensional and three-

dimensional rectangular periodicities. @The one-
dimensional case is applicable to vertical-cavity surface-
emitting semiconductor lasers [7-9]. The three-

dimensional (3D) case offers the possibility of a total pho-
tonic band gap, i.e., an energy band of nonzero width in
which electromagnetic wave propagation is isotropically
forbidden [10]. Two-dimensional periodic structures
have also received considerable interest [11,12].
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For multidimensional systems, previous research fo-
cused on energy gap calculations for translationally in-
variant systems. The objective is to use a periodic refrac-
tive index (Bragg structure) to produce a photonic band
structure, which is analogous to the periodic potential en-
ergy in a crystalline solid which produces an electronic
band structure. A source placed within such a periodic
medium would find no channels for radiative decay for
frequencies that fall within the forbidden frequency gaps.
Radiation at those frequencies would thus be inhibited.

Most photonic band-structure calculations considered
systems that are infinite in extent, a condition needed for
complete inhibition of the source radiation, but one not
easily realized in experiments. A 3D Bragg reflecting
structure at optical frequencies has a fundamental length
scale set by the optical wavelength in the material, typi-
cally a few thousand angstroms. A structure at least
several times that length along each spatial direction will
be required to achieve a strong Bragg reflection and
hence strong enhancement or inhibition effects. Experi-
ments designed to measure the radiative lifetime face fa-
brication issues that limit the size of available samples
and hence the size of the effects that can be obtained. Fu-
ture applications in optoelectronics can also be expected
to place upper limits on the sizes of acceptable structures.
It is therefore important to understand quantitatively the
degree to which finite-size structures can inhibit or
enhance the radiative decay rate.

In this paper, we investigate the radiative properties of
a dipole placed at the center of a concentric spherical
Bragg structure of finite size. This work extends to three
dimensions our earlier investigation of a two-dimensional
system: a line source in a cylindrically periodic structure
[13]. The spherical Bragg structure is not translationally
invariant, so terms such as photonic band structure and
band gap are not appropriate. Physically, however, a
source placed at the center of this system will experience
along all directions the strong Bragg-reflected fields ex-
pected to occur in a material that exhibits a true band
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gap. The reflected fields at the central position in the
concentric-spherical system will be at least as large as
those at a typical point in a photonic band-gap structure
of comparable size. Therefore, it is unlikely that the de-
gree of enhancement or inhibition of the dipole’s radia-
tive decay rate in a photonic band-gap material will
exceed that in a spherical Bragg cavity of similar size.
We provide in this paper a straightforward approach to
calculating the radiative lifetime of a source within a 3D
Bragg structure and apply it to a simple physical system
that can be expected to provide a good estimate of the
finite-size effects that will occur in more complicated
structures.

The organization of the paper is as follows. In Sec. II,
we develop the theoretical formulation to calculate the
enhancement and inhibition of radiation from a dipole
source in terms of the radiative damping rate (inverse
lifetime) and the associated frequency shifts. The formu-
lation utilizes vector spherical coupled-wave theory as de-
tailed in our companion paper to calculate the reflection
of the radiated field back onto the source. Using the re-
sults of Sec. II, the case of a centrally positioned dipole
source in a spherical Bragg cavity is considered in Sec.
III. In Sec. IV, the enhancement and inhibition of radia-
tion and frequency shifts are numerically examined for
several structures. Finally, in Sec. V, conclusions are
drawn from the results of this investigation.

II. THEORY OF RADIATIVE EFFECTS
IN A SPHERICAL BRAGG STRUCTURE

A. Source equation of motion

In this subsection, closed-form expressions for the nor-
malized radiative damping rate and the resonance fre-
quency shift are derived via a classical approach. As sug-
gested above, there is a strong connection between the re-
cent work on photonic band-gap structures and the ear-
lier body of work on the problem of radiation from a
source placed in front of a metal mirror. The behavior of
the radiative lifetime in both cases is well explained, qual-
itatively and quantitatively, as that of a molecule radiat-
ing in the presence of its own reflected field [14]. Adopt-
ing this model, we treat the source as a classical dipole
that interacts with its own reflected field within the
spherical cavity. A source placed within this Bragg-
reflecting structure, which plays the role of a three-
dimensional mirror with a frequency-dependent
reflectivity, is therefore subjected to strong reflected
waves that modify the radiative lifetime and resonance
frequency of the source.

The above approach was used successfully by Chance,
Prock, and Silbey [15] to quantitatively model the radia-
tive lifetime experimental data of Drexhage. The theory
as applied to the calculation of resonance frequency shifts
was later confirmed experimentally by Holland and Hall
[6]. Furthermore, it was shown that this classical fre-
quency shift exactly agrees with the quantum-
mechanically calculated level shift for the first excited
state when the source is a simple harmonic oscillator
[16]. A more realistic atomic model requires a quantum-
mechanical calculation to accurately predict the level
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shift.

The idealized dipole source is modeled as a harmoni-
cally bound charge with dipole moment p that obeys the
equation of motion

Ptoip= Eg—bop , 1

9
m

where o, is the resonant angular frequency in the absence
of all damping, g is the effective charge, m is the effective
mass, Ep is the component of the reflected field parallel
to the dipole moment orientation at the source position,
and b, is the damping constant in the core material for
E, =0. Equation (1) describes a driven, damped harmon-
ic oscillator, where the external driving force is propor-
tional to the component of the reflected field that does
work on the bound charge. The dipole moment p and
reflected field component E; oscillate at the same com-
plex frequency Q=w—ib /2:

p =poexpl —iQt]=pyexp[ —(iw+b/2)t], (2a)
Egx=E, exp[—iQt], (2b)

where w and b are the resonance frequency and damping
rate in the presence of the cavity, respectively.

Substituting Eqgs. (2a) and (2b) into Eq. (1) and equating
real and imaginary portions, the following equations re-
sult:

2
b g, 3)
by mawpybg
b2 be 2
2_ 20" __9
o' —wp=, 2 p— Re(E,) . 4)

Equation (3) is the expression for the normalized radia-
tive damping rate (inverse of the normalized lifetime).
Equation (4) can be simplified by recognizing the relative
magnitude of the frequency shift, ie.,
Av=w—w,<<w,0, Using this assumption, which will
be examined in detail in Sec. IV, Eq. (4) yields the ap-
proximate result

b2 be 2

T Re(Eo) (5)

Thus the normalized radiative damping rate and frequen-
cy shift are related to the out-of-phase and in-phase com-
ponents, respectively, of the reflected field which does
work on the point dipole source. It is this reflected field
that is calculated in the subsequent sections through the
application of a coupled-amplitude formalism and elec-
tromagnetic boundary conditions. In general, Egs. (3)
and (5) are coupled equations. Approximate, decoupled
forms which are valid for a wide range of structures and
sources are derived in Sec. IT'F.

B. Source field

Consider the geometry depicted in Fig. 1 of the preced-
ing paper. We consider an idealized system consisting of
a single (point) electric dipole radiator placed at the
center of a spherically symmetric Bragg reflector as de-
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picted in that figure. The square of the refractive index of
the spherical system is constant in the range O<r <r,
varies sinusoidally with period A in the range
ry<r <r;+L, and is everywhere continuous. Thus the
square of the refractive index can be defined such that

nXr)=ni+Anir), (6a)

An¥r)= QOsin[2m(r —r))/A] ri<r<r,+L (6b)
0 otherwise ,

where Q is the amplitude of the modulation in the square
of the refractive index and r; denotes the beginning of
the modulated (Bragg) region. The period A is chosen to
satisfy the (first-order) Bragg condition at the wavelength
A emitted by the source, i.e., A=A/2 (for Aw <<, w).

Having established the system geometry, the objective
of this subsection is to determine analytically the source
field generated by a point dipole placed at r =r,. The
derivation of the source field (subscript S) in the core
(0<r <r;) begins with an examination of the vector
wave equation in a homogeneous, unbounded medium.
The electric displacement field Dy(7), in the presence of
an oscillating current density, is governed by the stan-
dard vector wave equation [assuming exp(—iwyt) har-
monic time dependence]

V XV X Dg(F)— 0duoeDs(F) =ipgweed (F) 7

where o, is the free-space angular frequency, p, is the as-
sumed constant permeability, and e=gqn} is a constant
permittivity. For a point dipole, the current density can
be defined such that

A8 —ry)8(0— 68—y
J7H=& 0 O Py, =G8(F—F o), .

r?sin@
(8)

where « is a unit vector denoting the dipole moment
orientation, 8(¥ —7,) is the three-dimensional Dirac delta
function, and J, is a parameter denoting source strength.

The general integral solution to Eq. (7) may be formed
such that

Ds(F)=ioqe [ [ [ G-TFd7 ©)

where 6(?,7’) is the dyadic Green’s function, which
satisfies

VXVXG(F,7)—k*G(F,F)=T8(F—F') , (10)
where k =(ue)!/?0,, and the appropriate boundary con-
ditions discussed below. In the abov& equation, T is the
unit dyad defined such that I-V=vV-I=V for any vector
field V. The solution to Eq. (10) can be found subject to
the Sommerfeld radiation condition, i.e., purely outgoing
waves as the radial variable r approaches infinity. For
this physical boundary condition, the analytical form for
the dyadic Green’s function is given by [17]

GF7)=[T+VV g7 7), 11

where g(7,7’) is the three-dimensional scalar Green’s
function with the familiar form
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ikir—r"
¢ (12)

g(r,7") e

While the above development is strictly valid for an
unbounded, homogeneous region, a reciprocity argument
can be used to prove equivalence for a bounded, homo-
geneous region [17]. Thus, substituting explicit forms for
the dyadic Green’s function and current density, Eq. (9)
reduces to give the electric displacement field in the
source region

Dg(F)=iwgugel, g(*,?&oﬂ;{%ﬁ’ﬁg('f,?o)-é‘}

(13)

Furthermore, the magnetic field is determined by an ap-
plication of Maxwell’s equations which yields the result

Bs(F)=V X {podog (F,7y)d]} . (14)

Note that the source fields have a singularity at the
source point ¥=F,, which is typical for a point-dipole
field expansion. This singularity will not pose a problem
as subsequent calculations involve only the reflected field
evaluated at the source position. In general, the field
components generated by a point dipole can be expressed
as a dyadic differential operator of the field variables act-
ing upon the scalar Green’s function.

As detailed in our companion paper, the field descrip-
tion in the Bragg region of the structure involves an in-
tuitively appealing coupled-amplitude formalism of
inward- and outward-traveling spherical waves. Thus the
scalar Green’s function is expandable in terms of spheri-
cal waves such that

o 1
g(r.F)=ikS 3 jitkr )h{V(kr.)Y,, (6,¢)
I=0m=-—1
ik

4r

XYE (8 p0)=——h (kIF—Fol) ,

(15)

where r. (r_) is the greater (lesser) of r and r’, and
spherical Bessel, Hankel, and harmonic functions have
been used. While Eq. (15) is an infinite series, only a finite
number of terms is necessary in practice to evaluate Egs.
(13) and (14) at any field point (¥57,) for a given dipole
position. This is due to the numerical convergence of the
spherical Bessel and Hankel function product.

C. Construction of the total field
in the source region

The field solutions in the core and the Bragg regions
have been examined separately in Sec. II B above and in
our companion paper, respectively. The remaining task
is to combine these independent calculations through the
application of electromagnetic boundary conditions to
obtain the reflected fields in the core region. Returning
to the source field, Eq. (13) can be rewritten in the form

Dg(F)= —wguoekd o (T +VV)g (F,7o)-a . (16)
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As noted above, Dg(F) can be expressed as a dyadic
differential operator acting upon the scalar Green’s func-
tion. This differential operator acts only upon the field
variables (r,0,¢). Outside the source point, however, Eq.
(16) can be recast in a form where the differential opera-
tor acts solely upon the source variables. This transfor-
mation will later prove fortuitous in the extraction of the
transverse field components of the reflected field as de-
tailed in Sec. II E.

Following Ref. [17], we examine the source generated
fields in the core region for 7+7,. Equation (16) can be
alternatively written as

— iJog . - A~
DS(?)=:)£VXVX&’g(?,?O), FHT, . (17)
0

As demonstrated in our companion paper, only the radial
component of the above equation is necessary. For the
TM (transverse magnetic with respect to the radial vec-
tor) case involving Dy, the characteristic component out-
side the source point is given by

. Ty  — o~ A
[?-DS(?)]TM=—w—o?-VXVX&’g(?,?O) , FHET, .
0

(18)

Using reciprocity arguments and the symmetry property
of the scalar Green’s function, it can be shown that Eq.
(18) is equivalent to the following form:

- R =\1TM lJO gl = - - — —-
[7-Dg(7)] =w—a-V0XV0Xr0g(r,r0) , TFF . (19)
0

A similar method can be used for Eq. (14) for the TE

(transverse electric with respect to the radial vector) case
such that

[F-Bg(F) TB=ipglo@-Vo X Fog (FoFy) , F#F, . (20)

Thus the characteristic TE and TM fields generated by
the point dipole have been recast in forms where the
differential operator acts solely upon the source (zero sub-
scripted) variables. Equations (19) and (20) can be gen-
erally written such that

N ®© !
[FVs(M]=05(F) 3 3 Jitkr Oh{(kr )

I1=0 m=—1
XY (6,0)Y 5, (60:p0)
PRy, (21)

where Og(7,) is a polarization-dependent differential
operator acting on the source variables and the spherical
wave expansion [Eq. (15)] for the scalar Green’s function
has been used.

In the source region, the total radial component of the
field can be expressed as the sum of the radial com-
ponents of the source and reflected fields. This reflected
field (subscript R) consists of outward- and inward-going
spherical waves generated by reflections from the spheri-
cal Bragg structure. The total characteristic field (sub-
script T') in the core region can be written
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[F- V(P =[F-Vs(F)+[F-Vr(P)], (22)
where [7-Vg(7)] is given by Eq. (21) and
[F-Vr(F)=05(F) S S 4V h{Vikr)
I m
+ A2 (kr)]Y,,(6,0)
(23)

where A4,) are constant outward- and inward-traveling
wave amplitudes.

D. Applying the boundary conditions

The constant wave amplitudes can be determined from
the boundary conditions on the source region. At the
center r =0, the sum of all outward-traveling radial
waves must be equal to the sum of all inward-traveling
radial waves. This boundary condition is necessary to
prevent the total field from diverging at the center owing
to the singular nature of the spherical Neumann func-
tions. There is still a difficulty if the source is located at
the system origin as the generated field is inherently
singular at the center of the structure. However, this
singularity does not affect the analysis, which is con-
cerned only with the well-behaved reflected field at the
source position. This boundary condition is already built
into the source field as the lesser of r and r is associated
with the nonsingular spherical Bessel function. The ap-
plication of this central boundary condition for the
reflected field [Eq. (23)] requires that

Af)=A=4,, . (24)

Equation (24) can be logically interpreted in the context
of the closed nature of a spherical geometry where a
reflected wave in the central region becomes part of a
standing wave. Intuitively, the boundary condition sug-
gests that an inward-going wave becomes an outward-
going wave as it passes through the center.

The other boundary condition is applied at the inner
radius of the spherical Bragg structure r =r,. It requires
that the sum of the inward-traveling radial waves be
equal to the sum of the product of the outward-traveling
radial waves and the amplitude reflection coefficients p;.
Mathematically, this condition assumes the general form
to be satisfied at r =r:

Os(Fo) 33 Al h{(kr) Y, (6,90)
I m
=0s(?o)22p1Az‘,.‘.’hz‘”(kﬂYzm(@,w
I m
+05(F) 3 S piistkr OhiV(kr )
I m

X Ylm(0!¢)YI:n(00’¢0) . (25)

Equation (25) must hold for all r; independent of angular
position. Thus, multiplying Eq. (25) by Y',..(6,9), in-
tegrating over 47 sr, and utilizing the orthogonality rela-
tion for the spherical harmonic functions

f 02" ) O"Y,fm,(e,¢)y,m(e,¢)sino'de'd<p'=8,,.5,,,,,,, ,  (26)
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we obtain

A k(P ke )=p [ Ajph{ (k)

+j,(kro B Vkr )Y (60, 00)] . (27)

In the derivation of Eq. (27), the explicit form of the radi-
al component of the source field [Eq. (21)] was used. The
inverse of the linear differential operator Og '(7,) was
also applied to both sides of Eq. (25). As a consequence
of Eq. (26), all the / and m harmonics are decoupled in a
spherically symmetric region. The value of the /th-order
amplitude reflection coefficient p, is provided by a solu-
tion of the coupled-amplitude equations for a particular
polarization case in the spherical Bragg region, as dis-
cussed in our companion paper. Equations (24) and (27)
can be combined to yield the reflected wave amplitude
such that

prjitkro)h(kr )Y, (66,9)
Ay = o D . (28)
(kry)=pih; '(kry)
Thus, Eq. (23), with the application of Egs. (24) and (28),

fully defines the characteristic radial component of the
reflected field.

E. Transverse field components of the reflected field

In most cases, it is necessary to construct the remain-
ing transverse field components to fully define the com-
ponent of the reflected electric field which does work on
the point dipole. The results from our companion paper
can be applied to determine these components. The com-
mutation of the angular momentum operator L with the
source differential operator Og(7,) is necessary for the
validity of the field forms detailed below. This commuta-
tion is assured by the reexpression, in Sec. II C, of the
source differential operator to the source variable space,
which is independent of the field variable space of the an-
gular momentum operator.

Applying the results from the companion paper, and
Egs. (23) and (24), the reflected magnetic field for the TM
case is constructed, yielding the expression

S 1 .
BR'= —powo05 (7o) 3 2 T 2 Am) i k)
1=0 =—]

XLY,,(6,p) . 29)

The corresponding reflected electric displacement field

can be obtained through the application of Maxwell’s

equations:
DiM=—'_VxBM (30)

Howo

The reflected electric displacement field for the TE case

can be similarly determined to yield

— © 1
Dg —E(L)OOSE(VO 2 2

T 2 Am)
A TT S DI

TEj (kr)

XLY,,(6,p) . 31

Finally, the component of the reflected electric field
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parallel to the dipole moment orientation at the source
position is a linear combination of the TE and TM field
solutions such that

Eg=(egn3)”' lim {@-[Di%F)+Dj

r—r,

ME L (3)

It is Eq. (32) that provides the reflected field component
required for a calculation of the radiative damping rate
and frequency shift of Egs. (3) and (5), respectively.

F. Radiative damping rate and frequency shift

The preceding subsections provided a formulation for
the calculation of the reflected electric-field strength at
the source position for a dipole in the core region of a
spherical Bragg structure. From Egs. (3) and (5), it is
necessary to calculate b,, the radiative damping rate in
the absence of the structure. This result can be calculat-
ed by using a classical radiation reaction argument [18] to
yield
g’}

3

- (33)
6meymce

bo=n

where the additional prefactor of n, accounts for the in-
dex of the core region. As the normalized radiative
damping rate b /b is independent of the absolute source
strength, it is also useful to introduce the electric field pa-
rameter Eg:
Eg= ~HowokJy ipgwgpok ‘ (34)
6 6

Jo has been replaced by —iwgp, in the second expression.
Equation (34) collects parameters introduced via Egs. (13)
and (15); a factor of 1/67 was included to mimic the
form of the radiative damping rate in the absence of the
Bragg structure.

Substituting Eqs. (33) and (34) into Eq. (3), a simplified
expression for the normalized radiative damping rate in
the presence of the cavity is obtained:

) (35)

where the approximation o= w, was used. Thus the nor-
malized radiative damping rate (inverse normalized life-
time) is proportional to the real part of the reflected elec-
tric field normalized by the source strength. Because this
normalized reflected field spans the range (—1, o), b /b,
will span the physically meaningful range (0, ). As
b /by—0, the radiative lifetime becomes large, indicating
inhibition of radiation. This limit may be physically in-
terpreted as arising from a vector field node at the source,
i.e., the normalized reflected electric field produces an
effect equal in magnitude and exactly out-of-phase with
the source oscillation, thus canceling the oscillation. As
b/by— o, or when there is a vector field antinode, the
radiative lifetime becomes small, indicating enhancement.
The expression for the frequency shift can be reex-
pressed by substituting Eq. (35) into Eq. (5), yielding
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b2 2
A —_——
@ 8600

Lbo [E
2 E

E
Re—&

Es (36)

Equation (36) can be simplified by comparing the relative
magnitudes of the term coefficients. For example, consid-
er a harmonically oscillating dipole source in free space
emitting in the middle of the visible spectrum at A,=0.5
pm. In this case, @,=0.4X10'® Hz and b,=8.9X10’
Hz. Therefore, by <<, and Eq. (36) is well approximat-
ed by the relation

A b°1
= 21'1'1

ER

Es (37

Thus, for a large range of normalized reflected field
values, the frequency shift is on the order of the free-
space radiative damping rate, indicating that Aw <<aw,.
This inequality has been assumed in the derivation of
Eqgs. (35) and (36). The possibility of large frequency
shifts is addressed more carefully in Sec. IV when numer-
ical results are considered.

III. THE ROTATIONALLY SYMMETRIC
SOURCE POSITION

In this section, the capability of a spherical Bragg
structure to enhance or inhibit source radiation is
theoretically investigated for the simplest case.
Specifically, the source is placed at the center of the
structure (r,=0). This case corresponds to a rotationally
invariant geometry where the dipole moment orientation

need not be specified. For dipole orientation &=z and
J

~D
Il M 8

N

R)

[

J,”
)

j,(kr) [ MpD(kr,) ]

hlm(k"l )_Pthl(l)(krl )
Jitkrg

V.
kro ]-sm@o [

As indicated by Eq. (38), it is necessary to evaluate Eq.
(41) in the limit as r —r,—0 due to the central position
of the source. Furthermore, the angular limits require
that 6— 6, and ¢—¢,. Logically, Eq. (38) must yield the
same result regardless of the value of the source angular
variables due to the degeneracy in these variables at the
system origin. Thus it is expected that the angular
dependence on the source variables apparent in Eq. (41)
will not be present in the final field solution. To demon-
strate this expected behavior, examine Eq. (41) in each of
the three limits stated above. Beginning with the radial
limit and excluding the / =0 case, it can be shown that

cosfy {11 +1)

m=-—

Jilkro) (krg)=18 42)
r0—>0 kro l-—>0 d (k ) ]I "o 30U
where
0, I#I'
8=y, 1=1". 43)
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position 7,=0, only the TM characteristic field com-
ponent is necessary to determine the reflected electric
field. A thorough examination of Eq. (31) shows that the
TE characteristic fields vanish for this choice of dipole
orientation due to the azimuthal symmetry of the dipole
orientation. R

From Eq. (32), the & =§’, the desired reflected field is
given by the expression

Ex=— lim [Z-DM7)] . (38)

V—PTO

The radial component of D™ is obtained by combining

Egs. (23) and (24)

7-DaM(F)=0M(7)) S 32 4, (kr)Y,,, (6,9) , (39)
I m

where the source differential operator OJ™(7,) is given
by comparing Egs. (19) and (21) and the constant
reflected wave amplitude 4 M is given by Eq. (28). For
convemence, the explicit expressmns for OJM(7,) and
A™ are provided below:

OM(Fy)=——"Z-VyX Vo X7, , (40a2)
0
T™ - (1) *
(kro)h{Vkr ) Y1 (60, @0)
™_ P1_JiiKTo /M 1/ ¥1m Y0 Po . (40b)

n h{ker ) —p™h{(kry)

Substituting Eqgs. (40a) and (40b) into Eq. (39) and per-
forming the re%uu'ed differential operators, the radial

component of Dg " reduces to
j[(kro) d a
- 1(kro) (=2 | Yim (60:00) Y (6,0) . (41
kr d(kro)Jl( ro)]ae Y (60,90)Y;,,(6,9) 41)

.
Applying Eq. (42) to Eq. (41), the following simplified
equation results:

piMr\V(kr,)
h(12)(k"1 )—PlTMh(ll)(krl)

cosBO—sinOO—a%—
0

im(00@0)Y 1, (0,0) . (44)

Performing the angular limits implied by Eq. (38) and
noting that

3 172
YTm(eo’%): [z;] 50m ’ (45)

cosfy— sineo—a%—
0

Eq. (44) yields
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piMh Y (kry)
R (kr)—p™Mh P (kry)

cosf ,

(46)

where the explicit form for the spherical harmonic
YIO(GO’ @0) was used.

The remaining task is to calculate the transverse field
components from this characteristic component. This
procedure is tedious, but straightforward through an ap-
plication of Egs. (29), (30), and (40) to yield

piVhi (kry)

6-DM(7y)= —2¢E
£ * A k)= p ™R (k)

sinf, .

(47)

Thus the reflected field which does work on the source
can be formed by projecting the dipole orientation vector
onto the reflected field defingd by Eqs. (46) and (47). Not-

ing that a =?=$’0 cosBO—50 sinf,, Eq. (38) yields the

desired reflected electric field
201MR 4" (kry)

hP (kry)—pi MR (kry)

Eg(ro=0)= E¢=TE, , (48)

where p[™ is determined by applying the vector coupled-
wave theory of the companion paper and I is an effective
reflection coefficient. The expressions for the normalized
radiative damping rate and frequency shift can be formed
by substituting Eq. (48) into Egs. (35) and (37), respective-
ly. Performing this substitution, the simple expressions
below are obtained:

b iiRe), (49)
b,

by
Aa)::TIm(F) . (50)

Equations (49) and (50) are the expressions used in the
next section to perform numerical calculations.

As expected, Eq. (48) is independent of both source and
field angular variables. Furthermore, the form of this
equation can be treated as a general result regardless of
source position. Specifically, the reflected electric field at
the source position is always factorable as an effective
amplitude reflection coefficient multiplied by the source
strength. For a given source position, I' will generally
consist of an infinite sum of TE and TM polarized waves
and fully characterizes the effects of the Bragg cavity on
the radiation from the source. For the centrally posi-
tioned source considered here, only a single term of the
effective reflection coefficient series is nonzero due to the
rotational invariance of the coupled system. The remain-
ing computation is to determine the amplitude reflection
coefficient of the / =1 harmonic for the TM polarization
case p',rM. In general, however, this coefficient can only
be calculated numerically as discussed in our companion
paper. Finally, the / =0 case was excluded from the
above analysis. For all source positions in the core region,
it can be shown that this case does not contribute to the
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reflected field solution due to the dipole nature of the
source radiation.

IV. NUMERICAL RESULTS AND DISCUSSION
OF RADIATIVE EFFECTS DUETO A
SPHERICAL BRAGG STRUCTURE

Using the results of Sec. III, the capability of a spheri-
cal Bragg structure to enhance or inhibit dipole source
radiation can be investigated numerically for some
representative cases. The normalized radiative damping
rate as a function of various parameters, such as the
modulation, placement, and size of the Bragg structure, is
of principal interest. The relative magnitudes of possible
source frequency shifts are also examined to determine
the validity of the assumption used in decoupling Egs. (3)
and (5).

For comparison to previous results, most notably the
results from a line source in a cylindrical Bragg structure
[13], a conventional notation for characterizing the
source and structure is adopted. The vector spherical
coupled-wave theory of our companion paper shows that
the parameters that characterize a Bragg structure deter-
mine the reflectivity according to the coupling strength
product L, where

k=kQ /4n3 . (51)

To allow for maximum interaction with the Bragg struc-
ture, the source is exactly tuned to the Bragg frequency,
or wgny =wpg, where

wg=mc/A , (52)

throughout much of the numerical analysis. The possibil-
ity for the cavity to appreciably shift the source frequen-
cy to significantly impact the calculated radiative lifetime
of the source is one of several issues to be explored below.

Most of the cases considered below involve structures
with only ten Bragg periods. This length is perhaps the
lower limit that one might employ in any practical struc-
ture, since significant reflectivity from a ten-period struc-
ture requires large modulation or coupling constant «.
While this small number of periods is chosen for conveni-
ence to demonstrate possible cavity effects while minimiz-
ing computation time, the theory developed above is ac-
curate for any modulation and Bragg region length. Even
though coupled-wave theory is employed, the theory is
not perturbative; synchronous or slowly varying envelope
approximations are unnecessary. Also, most of the cases
below place the beginning of the Bragg structure at least
ten periods from the center, allowing for comparison
with the calculations performed in Ref. [13].

The dependence of the normalized radiative damping
rate on the inner radius of the Bragg region is first exam-
ined assuming that a centrally positioned source is exact-
ly tuned to the Bragg frequency. As discussed in the com-
panion paper, a phase term ¢ may be included in the ar-
gument of the sinusoid function which defines the square
of the refractive index [Eq. (6)] such that

ni+Qsin[2n(r —r;)/A—¢], r<r<r +L
2y =
nir)=, , . (53)
ny otherwise .
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However, it is not strictly accurate to vary the phase of
the periodicity due to the introduction of index discon-
tinuities, and thus additional reflections, at the end points
of the Bragg region which are unaccounted for by the
developed coupled-wave theory. It will be shown, howev-
er, that the results of the variation in the normalized ra-
diative damping rate are nearly identical whether the
phase or the inner radial position is varied. Furthermore,
the error introduced by varying the phase and not ac-
counting for the additional reflections is shown to be
insignificant for the structures examined by a comparison
to the results from a transfer-matrix method [17].

The normalized radiative damping rate, as defined in
Eq. (49), is plotted as a function of the inner radius of the
Bragg region in Fig. 1 for a source positioned at r,=0.
The Bragg region extends ten periods along the radial
direction and three different coupling strengths are exam-
ined, denoted by xL =1, 2, and 4. As the length of the
Bragg region is constant for these curves, an increase in
the kL product corresponds to an increase in the squared
index modulation Q. Over most of the range of the inner
radii examined, the source experiences inhibited radia-
tion, since b /by <1. As the strength of the modulation
increases, the size of this range and degree of inhibition
similarly increase. There does exist, however, a range of
r, that produces strongly enhanced emission. The mag-
nitude of the enhancement resonance also increases with
increasing Q, but becomes significantly sharper for
stronger modulations.

As discussed above, varying the inner radius of the
Bragg region, as in Fig. 1, is similar but not identical to
varying the phase of the sinusoidal periodicity. In each
case, the phase of the source wave with respect to the
periodic structure is altered. However, in varying r, /A,
the refractive index remains continuous and additional
reflections due to index discontinuities at r; and r; +L
need not be considered. An examination of Eq. (48) indi-
cates that the qualitative results of Fig. 1 are nearly

104
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102_

1014 m

radiative damping rate b /b,
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10714
10727
1073 kL =4
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10 10.5 11

inner radius of Bragg region r; /A

FIG. 1. Normalized radiative damping rate vs inner radius of
Bragg region for a centrally positioned source.
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periodic with a period of r,/A=1. Quantitatively, the
phase and amplitude of I vary slowly between periods of
r,/A and approach asymptotic values for kr, >>1. The
maximum (minimum) value of the normalized radiative
damping rate in Fig. 1 will decrease (increase) between
periods as the inner radius decreases and the resonant
peak will shift to the left. The asymptotic behavior is ex-
pected as the source wave approaches its spherically sym-
metric limit and strongly interacts with the Bragg struc-
ture.

The normalized radiative damping rate is plotted as a
function of the phase of the periodicity in Fig. 2(a). This
rate functionally depends upon the / =1 TM amplitude
reflection coefficient p[™ in Eq. (48). The two curves for

10*
) r,=0 r,=10A L=10A
1034 Coupled amplitude egs.
— — Transfer matrix method
102 =

radiative damping rate b/b

10 , ; T
0 100 200 300
phase of permittivity function (degrees)
104
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103v
& 107
~
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£ 104
-
50
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. 10%4
g
<
°
£ 101
=
s
£ 1023
=0 r;=10A L=10A
10734 — Coupled amplitude egs.
— — Transfer matrix method
104

330 335 340 345 350 355 360

phase of permittivity function (degrees)

FIG. 2. (a) Normalized radiative damping rate vs phase of
periodicity for a centrally positioned source. (b) Expanded view
of (a).
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each coupling product correspond to calculating this
reflection coefficient by either coupled-mode theory or a
transfer matrix method. The results from the two
methods are nearly identical, with Fig. 2(b) illustrating on
an expanded scale the slight, modulation-strength-
dependent shift which occurs in the enhancement reso-
nance. Note that the quantitative peak enhancement and
inhibition values are essentially identical and that the
curves of Fig. 2(a) behave in a manner nearly indistin-
guishable from the curves in Fig. 1. Thus, while most of
the results presented in this paper involve variations in
the position of the Bragg region, the results apply to a
fixed-position Bragg structure with varying phase with
only negligible error.

It is interesting to compare the results plotted in Figs.
1 and 2 to the results obtained in Ref. [13] for the depen-
dence of the radiative damping rate on the phase for a
line source centrally positioned in a cylindrical Bragg
structure [19]. The features of the numerical analyses are
nearly identical. In our companion paper, a dimensional
scaling was noted from contradirectional coupling of cir-
cular waves in two dimensions to spherical waves in three
dimensions. A consequence of this scaling is that the am-
plitude reflection coefficients used in the effective
reflection coefficients are equal, to within a phase factor,
in the asymptotic limit for the cylindrical and spherical
Bragg structures. Conceptually, the cavity effects on the
centrally positioned source for the two-dimensional and
three-dimensional Bragg structures are similar. In the
case of the cylindrical Bragg structure, a line source gen-
erates outward-traveling cylindrical waves which interact
with a cylindrical structure. This is analogous to a point
source which generates outward-traveling spherical
waves which interact with a spherical structure. The
comparison is not strictly valid due to the presence of a
dipole source which does not radiate 1sotropically and to
the vector nature of the interaction, but the two systems
nevertheless remain very similar.

The next examination of the centrally positioned
source geometry involves the variation in the normalized
radiative damping rate as a function of coupling strength.
Figure 3 shows b /b, plotted as a function of «L for
several values of the inner radius of the periodic region.
Fixing the squared index modulation, the length of the
structure is varied. A few values of r, in the range
(F)min <F1 <(r;)max are selected, where (r,),;, and
(71 )max correspond to the minimum and maximum
values, respectively, of b /b, for kL =2 in Fig. 1. The
damping rate approaches zero (complete inhibition) as
the length L of the periodic region increases. Note that a
true maximum occurs for each inner radius value in Fig.
3, but that the asymptotic behavior (b/by,—0) with in-
creasing «L is independent of r,. This asymptotic
behavior is similar to that of a photonic band-gap struc-
ture in which a band gap is created when the reflectivity
of the Bragg structure approaches unity.

Figures 1 and 3 demonstrate that for kL =4, a spheri-
cal Bragg structure composed of only ten periods can in-
hibit the radiative decay rate by more than three orders
of magnitude. The location 7, as discussed above, and
the magnitude of the squared index modulation Q play
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FIG. 3. Normalized radiative damping rate vs coupling
strength for varying values of the inner radius. The source is
centrally positioned and the permittivity modulation is fixed,
thus varying the coupling strength is equivalent to varying the
length of the Bragg region.

major roles. The larger the squared refractive index
modulation, the smaller the value of L needed to achieve
a specified level of inhibition. Consider the example of al-
ternating layers of GaAs and AlAs, such as those used in
a typical vertical-cavity semiconductor laser [20]. The
squared refractive index difference corresponds to
Q ~3.76, for which kA=0.28. For a central region one
wavelength (2A) in  diameter, an inhibition
b/by~1X10"* requires xL~S5, so that L/A~18
periods. This means a Bragg sphere of 38 periods in di-
ameter, or approximately 6 um at A;=2n,A=0.98 um,
can provide a nearly four-order-of-magnitude reduction
in the dipole’s radiative decay rate. An increase to an 8-
pm-diam  structure will produce an inhibition
b/by~1X107%. In general, a desired radiative damping
rate and a maximum cavity diameter resulting from fabri-
cation limitations can be specified. A set of universal
curves with a specified Bragg interaction length L can
then be generated to determine the necessary coupling
constant k and therefore the squared index modulation Q
to achieve the desired degree of inhibition. Note that, in
terms of Fig. 3, this set of universal curves would consist
of various (r),,;, curves of differing slopes which scale
with the coupling constant. An example of these curves
for the GaAs/AlAs material system is provided in Fig. 4.

The relatively small size associated with practically
achievable squared refractive index differences is an en-
couraging sign. It will admittedly be challenging to fabri-
cate photonic band-gap structures, but our calculations
show that finite-size structures can indeed be expected to
produce significant levels of inhibition. Some degree of
caution is appropriate however. Not every materials sys-
tem produces index changes (~0.58) as large as those of
the GaAs/AlAs system considered here. For example,
the core-cladding refractive index difference in a silica-
based optical fiber is much smaller, typically of order
0.01. Much larger structures would be required in that
case.
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FIG. 4. Normalized radiative damping rate vs interaction
length for varying values of the coupling constant. The source
is centrally positioned and the inner radial position is chosen to
give maximum inhibition (minimum enhancement) at the Bragg
frequency.

For the above analysis, the assumption has been made
that the source is always tuned to the Bragg frequency. A
natural question to consider when using a Bragg cavity,
however, is whether it is possible for the cavity to shift
the frequency of the source enough to push it outside the
reflection bandwidth of the cavity. If such a shift were
possible, then the above numerical analysis would be in-
validated by the interdependence of the normalized radia-
tive damping rate and frequency shift. As shown below, it
is an excellent approximation to assume that the cavity-
induced frequency shift is negligible as far as Bragg-
reflectivity effects are concerned.

In Fig. 5, the radiative damping rate as a function of
frequency detuning from the Bragg frequency for a cen-
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radiative damping rate b/b,

1072
10000

-5000 0 5000 10000

source detuning (@0-0p)/c (cm™)

FIG. 5. Normalized radiative damping rate vs detuning of
the source frequency from the Bragg frequency defined by the
Bragg structure. The dipole source is placed at the center and
the inner radial position is chosen to give maximum inhibition
at the Bragg frequency.
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FIG. 6. Cavity-induced frequency shift of the dipole vs inner
radius of Bragg region for a centrally positioned source.

trally located source is plotted. Assuming a Bragg struc-
ture designed for a source emitting at Ay/ny=0.5 um, so
that A=0.25 um, and fixed Bragg frequency, the source
frequency @ =wgn, is varied. The inner radial position is
chosen to give maximum inhibition at the Bragg frequen-
cy. The plot shows expected oscillations in the damping
rate, with the maximum inhibition occurring at the
Bragg frequency. Note that the cavity resonances that
produce local maxima in inhibition are more closely
spaced for the weaker modulation case since the radial
extent of the cavity is effectively larger due to the propor-
tionality which exists between cavity reflectivity and
Bragg region modulation. More importantly, the radia-
tive damping rate does not change significantly over a
range of frequencies greater than 1000 cm ! (AL>4 nm)
around the Bragg frequency.

Typical frequency shifts induced by the presence of the
cavity are examined in Fig. 6. The plot of source fre-
quency shift as a function of the inner radius of the Bragg
region is qualitatively similar to Fig. 1 in terms of the
characteristic resonance behavior. The source is again
placed at the center to give an indication of the limiting
range of possible frequency shifts for any source position.
Even at resonance, the maximum frequency shift does not
exceed +0.05 cm ™! for a modulation of kL =2. Compar-
ing this value to the 1000 cm ™! range over which Bragg
detuning can be considered negligible for calculations of
the radiative damping rate, the assumption used above
that the source always remains tuned to the Bragg fre-
quency is reasonable.

V. CONCLUDING REMARKS

It has been shown that it is possible to either enhance
or inhibit the emission of radiation from a dipole source
located inside a spherically symmetric periodic structure
for a centrally positioned source. Whether the source ex-
periences enhancement or inhibition depends upon the
position of the Bragg region with respect to the center of
the spherical system. By altering this position, the phase
of the source waves varies with respect to the phase of
the periodic, index-modulated region. For the centrally
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positioned source, the dipole tends to experience inhibi-
tion for most of the range of structure positions. A very
narrow range of positions exists that leads to enhance-
ments with the width of this range inversely proportional
to the modulation strength. These quantitative results
provide an understanding of the degree to which finite-
size structures can inhibit or enhance the radiative decay
rate. Furthermore, the generalized vector theory used to
derive the above results can also be employed to examine
the range of source positions about the central position in
which appreciable radiative effects persist, an issue that
lies outside the scope of this paper.

An analysis if the dipole source frequency shifts due to
the presence of the spherical Bragg structure finds the
shifts to be small. This analysis was performed only for a
centrally positioned source, but this position, due to sym-
metry, represents the location of maximum coupling
which can occur between the source and cavity. By com-
paring these shifts to the frequency range over which
Bragg detuning can be considered negligible for calcula-
tions of the normalized radiative damping rate, it is
found that the source remains nearly exactly tuned to the
Bragg frequency even in cases of strong inhibition or
enhancement of radiation. As with the results of the nor-
malized radiative damping rate as a function of the inner
radius of the Bragg region, the resultant frequency shifts
for a centrally positioned source in a spherical Bragg
structure are similar to those associated with a line
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source in a cylindrical Bragg structure. This similarity is
another example of the scaling which occurs in dimen-
sionality: from the coupling of cylindrical waves to a cy-
lindrically symmetric cavity to the coupling of spherical
waves to a spherically symmetric cavity.

In summary, we have determined the degree to which a
finite-size, 3D Bragg structure can be expected to inhibit
the radiation from a point dipole placed within it. Even
though the calculation was carried out for a Bragg cavity
possessing a great deal of symmetry, we believe the con-
clusions are broadly applicable. It is encouraging that
only relatively small structures are needed to produce
measurable changes in the radiative decay rate, provided
the squared refractive index difference is sufficiently
large. The classical theory we applied to this problem
provides a connection between the relatively recent work
on photonic band-gap structures and the earlier essential-
ly one-dimensional work on the dipole-mirror problem,
for which the same classical theory proved extremely suc-
cessful.
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