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Radiation in spherically symmetric structures. I.
The coupled-amplitude equations for vector spherical waves
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A scalar Green s-function technique is used to derive coupled-amplitude equations for electromagnetic
~aves propagating in a three-dimensional structure with a radially varying refractive index. The vector
nature of the problem is discussed and a method is outlined for reducing the vector wave equations to
characteristic scalar equations. These scalar equations are then solved via an exact coupled-amplitude
formalism, and closed-form solutions are compared with numerical results for the particular case of a
spherical Bragg region. The derivation of the coupled-amplitude equations for vector spherical waves is
a significant portion of the calculation, described in the companion paper [Sullivan and Hall, following

paper, Phys. Rev. A 50, 2708 (1994}],of the radiative effects due to the presence of a spherical Bragg
structure. Furthermore, the formulation is a powerful complement to previously developed Debye po-
tential and transfer-matrix methods.

PACS number(s): 42.60.Da, 03.50.De

I. IN'I'RODUCTION

Coupled-amplitude equations are commonly encoun-
tered in the analysis of problems involving wave propaga-
tion. Equation systems of this type have been used exten-
sively in optics, for example, to characterize integrated
optical couplers [1,2], distributed-feedback laser cavities
[3], and grating-surface interactions [4]. A recent paper
by Hall [5] demonstrated a Green's-function method for
extracting coupled-amplitude equations from a scalar,
second-order differentia equation common in form to the
time-independent Schrodinger equation and Maxwell s
time-independent wave equation. The latter is most gen-
erally a vector wave equation, but reduces to a scalar
equation often enough to make that case interesting. The
earlier paper considered, as a specific example, the cou-
pling of oppositely propagating scalar waves in one-,
two-, and three-dimensional, linearly or radially periodic
structures. The analysis demonstrated an intuitively ap-
pealing dimensional scaling: the coupling process evolv-
ing from contradirectiona1 plane waves to circular waves
to spherical waves as the dimensionality increased from
one to two to three, respectively.

Though restricted to scalar-wave propagation, the ear-
lier paper suggested that problems concerning vector-
field propagation can sometimes be treated by a similar
approach. In this paper, we extend the scalar theory to
examine the vector-wave problem in a three-dimensional
system. For continuity with Ref. [5), we consider the
coupling of oppositely propagating vector spherical
waves in a spherical structure with a radially varying re-
fractive index. We choose this particular problem to il-
lustrate the technique for a specific reason: the calcula-
tion proves useful in treating the vector fields generated
by a real source placed within a radially periodic, spheri-
cal cavity. The properties of an elementary source, such
as an atomic dipole, within what might be called a Bragg
cavity have attracted interest recently in connection with

studies of systems that exhibit photonic band gaps [6,7].
A full treatment of the coupling between an internal
source and the fields within a spherical Bragg cavity is
deferred to the following paper. Here we focus on how
the coupled-amplitude equations for vector waves are
developed and solved to obtain the fields within such a
cav1ty.

The structure of this paper is as follows. We first
present a calculation detailing the derivation of scalar
wave equations for the characteristic field components
from the vector wave equations. These scalar equations
are used to formulate coupled-amplitude equations for
the vector waves via a scalar Green's-function technique.
The solution to the coupled-amplitude equations is dis-
cussed for the particular idealization of a spherical Bragg
structure, and cases which can be solved in a closed-form,
analytic fashion are examined. The construction of the
transverse field components from the radial portions is
also outlined to allow for a complete field determination.
The theory of vector spherical harmonics is used for this
task [8].

V-D=O (la)

V.B=O, (lb)

T X D=ia)B,
e(r)

T XB=ipa)D,

(lc)

(ld}

where e(r) is the radially varying permittivity and the

II. COUPLED-AMPLITUDE EQUATIONS

The formulation of a field solution within a spherically
symmetric geometry naturally begins with a derivation of
the pertinent vector wave equations. Assuming
exp( itot) harmonic time de—pendence and linear media,
Maxwell*s equations in a source-free region take the form
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medium is assumed to be nonmagnetic so that the per-
meability p is constant. The permittivity s(r) can e
defined in terms of a radially varying refractive index
such that

c(r)=son (r)= eo[n 0 +b n (r)], (2)

VXVX D —@co D=O.
s(r)

(3b)

Applying vector identities and noting that for a well-
behaved vector field V it can be shown that [9]

r (V V)=V (r V) —2(V V), (4)

the vector wave equations reduce to the characteristic
scalar wave equations

[V +n k ][r B(r}]=—bn (r)ko[(r B(r)],

[V +n k ][(r D(r)]

(5a)

where co is the permittivity of free space, no is the con-
stant background refractive index, and hn (r) provides
the radial dependence of the permittivity function. A
typical geometry of practical interest, specifically the
spherical Bragg structure, is depicted in Fig. 1, where
the permittivity variation is oscillatory in nature in the
region of interest (r, &r &r, +I.) The. radially varying
function b, n (r) is zero outside this region of interest re-
sulting in a permittivity which is everywhere continuous.

Taking the curl of Eqs. (lc) and (ld) and simplifying
the forms, vector wave equations can be derived

1 GfEVXVXB—pE(r)co B= [r X(V XB)],
E(r) dr

the form of Eqs. (5), the field components which are
transverse to the radius vector decouple at a spherical in-
terface. Thus we can separate the field into components:
(i) transverse magnetic with respect to the radius vector
(TM case)

r B(r)=0, r D(r)

and (ii) transverse electric with respect to the radius vec-
tor (TE case)

r D(r)=0, r B(r) . (6b)

These characteristic components are proportional to the
conventional Debye potentials employed in the literature
[9,10]. Furthermore, these components are continuous
functions as physically they represent the normal field
components with continuity required by Maxwell's equa-
tions. The problem of vector waves propagating in a
three-dimensional, radially varying refractive index struc-
ture is now essentially scalar in nature. Thus we can ap-
ply the scalar Green's-function technique of Ref. [5] to
form the coupled-amplitude equations and proceed to
so ve e1 these equations for a specified permittivity function.

1 butIn general, these equations are solved numerical y, ut
certain limits exist in which closed-form solutions are
derivable. Linked to this development is that, at some
point, the remaining field components can be extracted to
yield the total field. This calculation will be demonstrat-
ed by the definition and application of vector spherical
harmonic functions.

To derive the coupled-amplitude equations for this
geometry, begin with a generalization of Eqs. (5) such
that

ds 1 1
bn (r)ko+ — —+-

dr sr e dr
[r D(r)], (5b) [V +k ](r V)= —4mf(r),

where ko is the free space wave number. These scalar
equations are significant for several reasons. Implicit in

where the wave number k =noko. In Eq. (7a}, the driv-

ing function f(r) is generally defined as

f(r)=O(r}(r V), (7b)

Z [g"'g"'(kr)+A' 'h,' '(«)]Y/(r V)= Z, & I i " im

where O(r), which can be identified by comparing Eqs.
(5) and (7), is either a function of r (TE case) or a
differential operator which acts only upon the radial vari-
able (TM case). Regardless of the specific form of the
driving function, f(r) vanishes in the absence of a refrac-
tive index variation. For f(r) =0, the general solution to
Eq. (7a) is given by

)+L
I

FIG. 1. A spherical Bragg structure. For this case, the per-
mittivity varies sinusoidally with a specified amplitude within
the region of examination (r, (r(rl+I. } and is everywhere
continuous.

where the coefficients Al" are constants determined by
the boundary or initial conditions. Note that the solution
of E . (8) is simply a linear superposition of inward an
outward traveling spherical waves as described y the
spherical Hankel functions. The angular dependence o
the solution is provided by the spherical harmonic func-
tions Yi (O, y). The nature of the solution suggests a
similar approach for f(r)WO, i.e., the development of
coupled-amplitude equations where the physically intui-
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tive concepts of contradirectional coupling and distribut-
ed feedback are modeled.

The particular solution to Eq. {7a) when the refractive
index variation is nonzero is given by the integral expres-
sion

Note that Eq. (11) satisfies the Sommerfeld radiation con-
dition of purely outgoing waves at infinity. To express
Eq. (11) in a form similar to the homogeneous solution, a
spherical wave expansion is employed for the Green's
function [8] such that

(r.V}=f f fG(r, r')f(r')d r', (9) &
iktr —r

G(r, r ')=
where the Green's function G(r, r ') is defined as a solu-
tion to the equation =i4jrk g

+l
g jj(kr( )h("](kr) )

[V'2+k']G(r, r ')= —4n.5(r —r ') . (10)

1=0m = —I

X Y,.(8,, )Y,.{8,,), (12)

In three dimensions, Eq. (10) can be solved to yield the fa-
miliar form of the scalar Green's function

iktr —r I

G(r, r ')=
/r —r'i

where r ) (r ( ) is the greater (lesser) of r and r'.
The procedure to obtain the coupled-amplitude equa-

tions is analogous to the method of Ref. [5]. Substituting
Eq. (12}into Eq. (9) and accounting for the proper inter-
pretation of the Green's function according to the in-
tegration variable, the particular field solution assumes

the form

(r V)=(4nk XX f f fjz(k'r')Yz'(8', 8')f(r )[r s(n8 ]d'r'd'()'d8' 'h]"(kr)
l m

Applying the relation

+ l" r'
Ylm ', y' r ' r' sin ' r' ' q' jl r Ylm

0 0 r
z

j&(kr) =
—,
' [h j"(kr)+hI' '(kr) ],

Eq. (13) yields the result

(14)

(r V)= gg [A& "(r)h&"'(kr)+ AI' '(r)hP'(kr)]Y& (8,(p),
l m

where the field-amplitude coefficients are radially varying functions defined by the following integral relations:

(15)

4 (r)=zz(2 kfnf f [h) "(kr')+hz" z(kr')]Yz'(8', 8')f(r')[r' sin8']dr'd8'd8'

+ f f f hz "(kr')Yz'(8', 4')f(r')[r sin8 ]dr d8 d'qz''' (16a)

A&[ '(r)=i2nk f f f h&" ](kr')1'&' (8',p')f(r ')[r' sin8']dr'd8'dp'
T

A more explicit form for the driving function f(r ') can
be inserted in Eqs. (16a) and (16b) by combining Eqs. (7b)
and (15}. Finally, utilizing the orthogonality relation for
the spherical harmonic functions

f 2 0
Yj~ (8'YIj' ) Yj,~.(8', (p')sin8'd8'ddt' =5&&,5

(17)

=i 2mkr h ' '(kr)
dr

X [O(r ) [ A j (r)h&[ ](kr)

+ Aj ](r)hi[ '(kr)I],
dAj[ '(r) = —i2nkr hl "(kr)

dr

(18a)

and differentiating Eqs. (16a) and {16b}with respect to
the radial variable, the coupled-amplitude equations are
derived in the following form:

X[O(r)[Aj (r)h&' (kr)

+ A (r)h (kr)] ] . (18b)



KEVIN G. SULLIVAN AND DENNIS G. HALL 50

Thus a solution to the above coupled-amplitude equa-
tions combined with Eq. (15) fully specifies the charac-
teristic scalar component for a particular choice of the
polarization.

For the TE case [V(r)—=B(r)], the operator O(r) is
simply a function of r, which is proportional to the varia-
tion in the permittivity. The solution to this problem,
analytically, corresponds to the scalar-waves case exam-
ined in Ref. [5]. For the TM case [V(r) =D(r)], howev-

er, 0 (r) is a differential operator which acts solely on the
radial variable. Thus Eqs. (18) adopt the general form

~(r)

dr

dA&' '(r)

dr
=b, +b2

=Q(+Q2 +Q3
dr

d A~" '(r)
+b3

dr

d A,'."(r)
dr

dr

(19a)

(19b)

where the Q; and b; expressions do not involve either of
the two amplitude derivatives. By substituting the expli-
cit form of the operator O(r) for the TM case in Eqs.
(18), expressions for a; and b; are derived. The following
identities can be analytically proven for this case:

a)b3=a3b),

a, b2 =Q2b],

a2= —b3,

(20a)

(20b)

(20c)

(1—a, )(l b,—)
—a, b, =1 . (20d)

Equations (19) can be solved in terms of a,. and b, to yield

d Ai'"(r)

dr

dA&' '(r)

df

a i (1 b3 )—+a3b,
(1—a2)(1 b&

—
) —a3b&

b)(1 —a2)+b2ai
(1—a2)(1 b3)——a3bz

(21a)

(21b)

Using the identities of Eqs. (20) in Eqs. (21), the coupled-
amplitude equations for the TM case reduce to

d AI"'(r)
=a

dr

dA(' '(r)

(22a)

(22b)

For completeness, the explicit forms of Q
&

and b
&

are pro-
vided below:

a, =—'hp'(kr) ~ gni(r)ko — —.[ A&"'(r)hI'"(kr)+ AI '(r)hl"'(«)]
I Er

A'i'(r) h/~ '(kr)+ A' '(r) h/' '(kr) kr (23a)

h,"'(kr)b= — '
Q&.

h,' '(kr)
(23b)

The coupled-wave equations [Eqs. (18) and (22)] are
very useful for an exact description of the propagation of
spherical waves in a spherically symmetric structure. For
example, the waves generated by a given source can be
described by an expansion in terms of spherical waves of
specified harmonic and azimuthal orders. The interac-
tion of these waves with the spherically symmetric struc-
ture can then be numerically calculated from the
coupled-wave equations. This calculation is useful for
determining both the nature of the waves leaving the
structure and of the waves reflected back onto the source
position. The latter calculation is performed in our com-
panion paper to examine the classical effects of a spheri-
cal, periodic structure of finite size on the radiative prop-
erties of a dipole source.

III. ANALYTICAL AND NUMERICAL RESULTS

The amplitude reflection coefficients can now be deter-
mined for both the TE and TM cases. The problem
reduces to solving the coupled-amplitude equations
developed above for a particular choice of boundary con-
ditions and permittivity function. For demonstration,
consider a spherical Bragg structure with a permittivity

function defined such that

E(r) —Eo /is+ Q sill (r ri )
2 2K

r, (r (r~+L, (24)

A& "(r, ) specified,

A,g'(r, +L, )=O.

(25a)

Physically, the boundary conditions correspond to an
outward traveling wave of arbitrary amplitude incident at
r =r, and the requirement that no waves are approach-
ing from infinity, respectively. The amplitude reflection
coe%cient pI for the 1th harmonic is then defined as

where Q is a constant proportional to the amplitude of
modulation in the permittivity, r

&
denotes the beginning

of the index-modulated region, and A is the period of os-
cillation. This is the case depicted in Fig. 1. Assuming
that the interaction length of the Bragg structure L is an
integer number of sinusoidal periods, the boundary con-
ditions for this case assume the form
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a,(2)(r) )h,"'(kr, )

Ai("(r) )h,"')(kr) }
(26)

where, due to the form of the coupled-amplitude equa-
tions, pE has no dependence upon the azimuthal order in-

teger m. Note that, in general, a phase term may be in-
cluded in the argument of the sinusoid function of Eq.
(24). In this case, the reflection coefficient of Eq. (26},for
a finite structure, would not account for the possibility of
additional reflections due to refractive index discontinui-
ties at r =r, and r, +L. Thus a dynamic boundary con-
dition would have to be incorporated as discussed by
Chinn for the linear grating case [11]. An alternative
method of formulating the problem is to use transfer-

I

matrix theory for propagation of the radial fields through
discrete spherical layers by partitioning the permittivity
function [12].

Certain limits exist in which the coupled-amplitude
equations can be treated in an approximate analytical
fashion. Specifically, the l =0 case can be treated
through the application of a synchronous (nearly Bragg-
matched) approximation. This approximation, discussed
in Ref. [5] and elsewhere, involves the discarding of terms
for which the (first-order) Bragg condition is not nearly
satisfied. The TE case, which corresponds to the scalar-
wave problem examined in Ref. [5], results in the follow-

ing analytical forms for the amplitude coefficients subject
to the boundary conditions of Eqs. (25):

a coshI a[(r r, ) L—]]+i 5—sinhIa[(r r() —L ]—] 'e ' &I)I)'(r) ),a cosh(aL ) —i 5 sinh(aL)
(27a)

—lr sinh {a[(r r1 )—L—]];s(r+„);(2«/()„
a cosh aL i sin—aL

(27b)

where the notation of the earlier paper has been used:

k02Q
K=

4
(28a)

25=2k— 2m

A
(28b)

a2+. 52 —lr2

k=noko .

(28c)

(28d)

Thus, substituting Eqs. (27) into Eq. (26), the amplitude
reflection coefficient for this case is given by

5~0—~ sinh(aL )

a cosh(aL ) i 5 sinh—(aL)
:—tanh(~L ),( )TE—

(29)

where the second expression is the result in the exact
Bragg matching (5=0) limit. Equation (29) is identical
to the results of solving the TE reffection problems for a
one-dimensional periodic region as well as for a cylindri-
cally periodic region, for which the zeroth-order Hankel
functions are well approximated by their asymptotic
forms (see Ref. [5]}. This equivalence is an example of
the dimensional scaling which can occur in the treatment
of wave coupling. The l =0 spherical Hankel functions
are exactly traveling spherical waves which interact with
a spherically symmetric, periodic structure. This interac-
tion is identical to that of traveling plane (circular) waves
with a one- (two-) dimensional periodic structure of the
same period and modulation. For the TM case, in the
weak grating, nearly Bragg-matched limit, the amplitude
reflection coefficient is approximately given by Eq. (29)
with an additional m phase shift, i.e., (po} = —(po)

The remaining case that can be treated analytically in a

closed-form manner occurs when the asymptotic expan-
sions for the spherical Hankel functions are valid. That
this case can also be solved analytically is not surprising:
in the asymptotic limit, the spherical Hankel functions
exactly approach traveling spherical waves with an
order-dependent phase shift. Thus, in this limit, there ex-
ists a great similarity to the 1=0 case. The asymptotic
expansions for the spherical Hankel functions are given

by[»)
ikr

h (1)(kr) ( l )e
—il(«2) e

E
(30a)

—ikr
h(2)(k )

~ il(«2) e
E

(30b)

which are valid for (kr) ))i(i+ I)/2. Solving the
coupled-amplitude equations within the synchronous ap-
proximation, the results for the amplitude reflection
coefficients are identical to the 1=0 results. The order-
dependent phase shift of Eqs. (30) is evident in the amp»-
tude coefficients which are related to the i =0 results by
the expressions

g (1)(r) g (1)(r)eiln/2
Em r —

00 re (31a)

g (2)( ) g (2)(r)e —il«2
m r 00 re (31b)

Equations (31) hold for both TE and TM polarized wave
amplitudes. As expected, the amplitude reflection
coefBcient, which includes the ratio of spherical Hankel
functions exactly canceling the order-dependent phase
shift from the ratio of the amplitude coefBcients, is
translationally invariant in the asymptotic limit. Exclud-
ing the l =0 and asymptotic-limit cases, an analytic solu-
tion to the coupled-amplitude equations may not be pos-
sible due to the increasingly complicated dependence of
the spherical Hankel functions on the radial variable. In
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these cases, a numerical solution to the coupled-
amplitude equations is necessary. The numerical results
also allow for a comparison with the analytic solutions
detailed above to examine the accuracy of the synchro-
nous approximation.

A numerical solution to the coupled-amplitude equa-
tions formally involves the solution to a two-point
boundary-value problem. There exist several methods of
solution for this problem, most notably shooting and re-
laxation methods. Due to the nonlinearity in the radial
coordinate of the coupled-amplitude equations, a deter-
mination of the numerical solution may take multiple
iterations. For the calculations presented in this paper,
we have implemented a shooting method which incorpo-
rates multidimensional Newton-Raphson and fourth-
order Runge-Kutta routines [14]. The numerical genera-
tion of the functions necessary to encode the coupled-
amplitude equations is thoroughly discussed in the litera-
ture [13—15].

For comparison, the approximate analytical results and
the exact numerical results for the TE, I =0 case are plot-
ted in Fig. 2 for a coupling strength product of ~I. =2.
In terms of characteristic exponential decay and growth,
the analytical and numerical results are nearly identical.
The absence of oscillatory behavior in the approximate
solution is a consequence of the synchronous approxima-
tion where harmonic terms which are not nearly phase
matched are discarded. The figure also illustrates the na-
ture of the coupling process: a distributed-feedback
mechanism in which energy is transferred from the
outward- to the inward-traveling spherical wave. As not-
ed in our companion paper, the I =0 term of the field ex-
pansion does not exist for a dipole source. However, the
same graphical behavior depicted in Fig. 2 is observed
for the case in which the asymptotic expansions for the

spherical Hankel functions are valid. This equivalence is
understood in terms of Eqs. (31), where the amplitude
coefficients for the asymptotic case are related to the I =0
amplitude coefficients by an order-dependent phase shift.
Thus the moduli of the field-amplitude coefficients, as de-
picted in Fig. 2, are equivalent for these two cases.

IV. TRANSVERSE FIELD COMPONENTS

With the radial portion of the characteristic fields
determined by Eqs. (15), (18), and (22), it is desirable to
construct the remaining transverse field components to
fully specify the electromagnetic fields. For this task, an
application of vector spherical harmonics [8] proves
sufficient. Using Eq. (ld), the radial component of the
electric displacement field can be related to the magnetic
field such that

—+ $
—+

(r D)= (rXV') B=— (32)
PN

where the di8'erential operator L has been introduced
with the definition

LB,
PN

1L= —.(rX V) .
l

(33)

The L operator acts only on angular variables and is in-
dependent of r; it is also proportional to the familiar or-
bital angular momentum operator of quantum mechan-
ics. Furthermore, as in quantum mechanics, this opera-
tor acting on a spherical harmonic function transforms
the azimuthal integer value m without changing the l
value.

Using the radial component field expansion of Eq. (15),
Eq. (32) can be rewritten

L B=—
)Li,ni(r D)

1.2

0.8-

0.6-

E 04-

0.2-
J'

0-

xL=2; 6=0; L=10A
Exact

= —pni y y t[gIi (r)]™$I~(kr)
1=0m = —1

+ [ A(' '(r) ]™h' '(kr) ] Y, (O, y) .

(34)

Since L operates only on angular variables, the TM por-
tion of the magnetic field assumes the form

oo + I

B = —
)Li,ro g g c, [[A,'"(r)]™hI"(kr)

1=0m = —1

+ [ A ' '(r) ]™hI''(kr) ]

XLY, (Hk, y),

relative position in Bragg region (r —r, ) /&

10

FIG. 2. Modulus of the Seld amplitude coefficient [ A 0'o(r)]
vs relative position in the Bragg region for the TE case of a
spherical Bragg structure with a coupling product of ~L =2, an
interaction length of L =10A, and perfect Bragg matching
(5=0). "Approximate" refers to the synchronous approxima-
tion solution [Eqs. (27)] and "exact" denotes a numerical solu-
tion to the coupled-amplitude equation system [Eqs. (18)].

L Yi (B,q&)=l(1+1)YI (O,g), (36)

and comparing forms with Eq. (34), the coetficient ci is
determined such that

where the coefficient cI is a function solely of the integer I
and not the azimuthal integer. The vector spherical har-
monics LY& (O, q&) appear in the field expansion and pro-
vide the angular dependence for the transverse field com-
ponents. Operating with L on each side of Eq. (35), using
the identity
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XLYt~((9, q&) . (38)

Note that a coeScient similar in form to cI is often used
in the definition of a normalized vector spherical harmon-
ic function [8,13]. The corresponding electric displace-
ment field is calculated through the application of Eq.
(ld). Employing the method above, the electric displace-
rnent field for the TE case can be similarly determined to
yield

ao + I

D =s(r)co g g [ [ At'"(r)] ht'"(kr)
i l (l +1)

+[A,' '(r)] h,' '(kr)]

XLYt (e,q) . (39)

The corresponding magnetic field is calculated through
the application of Eq. (lc). Finally, the total field is given

by a linear combination of the TE and TM field solutions.

U. CONCLUDING REMARKS

We have described a method to derive the coupled-
amplitude equations for vector waves in a three-
dimensional, radially varying r'efractive index structure.
This method demonstrates another example of a growing
list of problems whose details can be elucidated by an ap-
plication of a scalar Green's-function technique.
Specifically, Green's-function methods have recently been
practically applied to investigate coupled-mode theory in
a circularly symmetric distributed-feedback laser [16,17]

1

1(l + 1)

Thus, combining Eqs. (35) and (37), the magnetic field for
the TM case is given by the relation

oo + I
BrM y y [ [g (1)(

)]TMh
(ll(k

t l(l +1)

+ [ AI '(r) ]™h''(kr ) I

and the inhibition of radiation in a cylindrical Bragg
resonator [18].

We have discussed the solution to the derived
coupled-amplitude equations for the particular choice of
a spherical Bragg structure. This discussion includes
cases in which approximate analytical solutions can be
determined, while noting the similarity of these results to
those of the familiar linear Bragg geometry. For com-
pleteness, the characteristic scalar wave equations were
derived and a method for construction of the remaining
field components was provided. It must be stressed that
the formulation comprising the main body of this paper
is numerically equivalent to previously developed
theories, including transfer matrix and Debye potential
methods. However, our formulation has a benefit in-
herent to coupled-amplitude formalisms: it provides in-
tuition regarding the dynamic nature of the coupling
which has made both coupled-amplitude and coupled-
mode formalisms so prevalent in modeling physical sys-
tems.

Finally, the calculation presented here can be con-
sidered an intermediate step toward the completion of
certain cavity calculations. Specifically, the coupling of a
source field to the cavity modes of a radially varying re-
fractive index structure can be investigated. For a spheri-
cal Bragg structure, this investigation can be directed to-
wards a numerical characterization of the radiative life-
time and resonance frequency shifts of an embedded
source as detailed in our companion paper. This calcula-
tion will quantify, for a finite-length structure, the degree
to which a spherically symmetric system behaves as a
photonic band-gap structure.
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