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Coherent atomic waveguides from hollow optical fibers: quantized atomic motion
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We present a theoretical analysis of coherent atomic motion through a straight atomic waveguide
constructed from a hollow optical 6ber. Atoms are guided by the evanescent light 6eld at the
6ber's interior glass-vacuum interface. The atoms' internal structure is modeled by a J~=O to J,=1
transition. The atomic wave functions are determined and the loss rates due to spontaneous emission,
tunneling to the wall, and nonadiabatic transitions are estimated. The in6uence of Casimir-Polder
forces is considered. We conclude with a discussion of the feasibility of the proposed waveguides.

PACS number(s): 42.50.Vk, 42.81.@b

I. INTRODUCTION

Light tuned above resonance exerts a mechanical force
repelling atoms &om regions of high light intensity. This
is due to the electric dipole interaction between the light
and atom [1—4). In the laboratory this force has been used
to reflect atoms &om evanescent light fields on the surface
of glass [5—9]. Evanescent light fields have strong inten-
sity gradients and hence can exert strong repulsive forces
on atoms. In this paper we consider how the evanescent
field on the interior of a hollow optical fiber can be used
to guide atoms through the fiber [10].

Such a waveguide is analogous to a cylindrical hol-
low microwave waveguide. The wave equation and con-
ducting boundary conditions determine the modes of
a microwave waveguide. For an atomic waveguide the
Schrodinger equation and repulsive evanescent field de-
termine the modes. The decay length of the evanescent
Geld is approximately the wave number of the light, about
0.1 pm for visible light. Hence the evanescent field ap-
proximates a step potential, forcing the confined atomic
wave functions toward zero at the fiber's wall.

The evanescent light field is found by a standard di-
electric waveguide analysis of the hollow optical fiber. In
order to get large evanescent fields the light propagating
in the glass Gber must be confined to as small a trans-
verse area as possible. Hence we consider fibers that are
optically single mode, having hole and core dimensions
of a few micrometers. Even so, the maximum confined
transverse atomic velocities are only a few centimeters
per second, corresponding to cooled atoms.

The atomic dynamics is governed by the Schrodinger
equation with an electric dipole coupling to the evanes-
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cent Geld. The relevant atomic transition is assumed to
be J~=O to J,=l. We consider a straight fiber so that
the motion along the fiber is decoupled from that in the
confined transverse directions. We have not considered
the eH'ect of bends in the Gber. A WKB approximation
is used to calculate the transverse eigenfunctions, kom
which the loss rates are then estimated [11]. We are
concerned with preserving the quantum-mechanical co-
herence of the atoms during the propagation. This is a
requirement if the guided atoms are to be used for inter-
ferometry. We assume that spontaneous emission causes
atoms to be lost from such coherent propagation. This is
the major loss mechanism except for highly excited wave
functions for which tunneling to the wall dominates.

An alternative type of hollow atomic waveguide has
been proposed by Ol'Shanii et al. [12]. Their approach
uses a conducting type optical waveguide and therefore
has light propagating down the hollow region which also
guides the atoms. The light is tuned below atomic res-
onance so that the atoms are attracted to the intensity
maximum in the hole's center and away from the walls.
An advantage of our scheme is that the atoms only inter-
act with the light in a thin region near the walls instead
of throughout the guidance region. This minimizes spon-
taneous emission, which is essential for ensuring coherent
transport ~

This paper is organized as follows. In Sec. II the optical
properties of a hollow optical fiber are calculated and de-
scribed. This gives us specific evanescent fields on which
to base our subsequent analysis of the atomic guidance.
Section III introduces the Schrodinger equation and con-
structs WKB approximations to the atomic transverse
wave functions. In Sec. IV estimates of the loss rates from
these wave functions are made. Losses are due to spon-
taneous emission, tunneling to the fiber's wall, and non-
adiabatic transitiolis to attracting, instead of repelling,
adiabatic potentials. The effect of the Gasimir-Polder
force is also estimated. Finally in Sec. V our results are
related to realistic systems for guiding sodium or cesium
atoms.
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XI. ELECTROMAGNETIC FIELDS
IN HOLLOW FIBERS

In this section we investigate the modal structure of a
hollow optical fiber. The fiber is modeled by a piecewise
constant, cylindrically symmetric refractive index profile

n(z, y, z) = n(r), where r = gz2+ y2 is the distance
from the symmetry axis and

1 forr&pi (I)
n(r) = ( nF for pi & r & p2 (II)

nci for r & p2 (III).

E(z, y, z) = e(z, y)e'(p' ') + c.c.,

H(z, y, z) = h(z, y)e'~P'

where E is the electric field, H is the magnetic field, P is
the propagation constant along the fiber, and u = ck is
the angular frequency of the incident Beld. It is shown in
Ref. [13] that the z components of the field amplitudes
e = eq +e,z and h = hq + h, i obey Helmholtz equations

(V,'+n k —P)e, = 0, (V,'+n'k' —P)h, =0, (3)

within each region of constant refractive index n. Here
Vq ——x

& +y denotes the transverse gradient operator.
The transverse components eq and hq are related to e,
and h, according to [Ref. [13],Eqs. (11)—(43)]

PoeI = — PVII, — —kk x V,k, },P 8'o

Gp
h, = — pVIh, + —kII k x V,k, },Po

(4)

Here pi is the radius of the hole and pz is the radius of
the interface between the annular core and the cladding,
which is assumed to extend to infinity. The magnetic
permeability of the glass is assumed to be equal to the
vacuum permeability po. To calculate the electromag-
netic field modes which represent unattenuated propaga-
tion along the fiber, we follow the procedure of Ref. [13].
These modes can be written in the form

where

U = pi/P' —k',

&= p, ~F&2—

W = pg
2 —n2, k2,

(6b)

(6c)

0.35 I I I I I ~
] I \ I \ I I I ~ I ~

I
I I I I I ~ I I ~ I ~ ~ I I I I

and I„, K„, J„, and Y„are Bessel functions of integer
order v = 0, +1,k2, . . . and cq, . . . , c4 are unknown con-
stants.

The solution for h, is identical to Eq. (5) with the
substitutions e, ~ h, and four additional constants
c„+c„+4. Matching these solutions at the hole-core
interface pi and at the core-cladding interface pz leads
to eight linear, homogeneous equations for these eight
unknowns. These equations are listed in the Appendix.
The nontrivial solutions determine the electromagnetic
eigenmodes of the hollow fiber and in particular their
propagation constant P as a function of u and the fiber
parameters.

For the guidance of atoms along the fiber it is desirable
that the electric field does not have a static zero anywhere
on the wall. In this case there would be no evanescent
field to repel the atoms. The electric field inside the fiber
is in general very complex since it is a superposition of all
allowed eigenmodes. The amplitudes and phases of the
various modes depend strongly on the way the incident
laser light is coupled into the fiber. Another factor that
might complicate the description of the fields is the coher-
ence length of the laser light. This determines whether
the superposition is a coherent or incoherent one. To cir-
cumvent these diKculties, we choose to concentrate on
single-mode fibers, even though most of our conclusions
are valid for multimode fibers.

To investigate the structure of the evanescent wave in-
side the hole, we first calculate the dependence of the
propagation constants P„of the various modes on the
hole radius pi, while keeping the core thickness Ep =
pz —pi constant. A plot of the modes v = 0,1,2 is shown
in Fig. 1. The independent parameters in this problem

where p = nzk —Pz and eo is the vacuum dielectric
constant.

Thus we are left with the problem of solving the
Helmholtz equation (3) in each of the regions (I)—(III).
These solutions have to be matched at the boundaries, so
that the magnetic field H, the tangential component of
the electric field E~~, and the normal component of the di-
electric displacement vector eon K~ are continuous. The
solutions of the Helmholtz equation (3) are separable in
polar coordinates and have the form
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(5)
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FIG. 1. Modal structure: normalized propagation constant
P„ for v=O (dashed), v=1 (solid), and v=2 (dotted) vs hole
radius for the fiber parameters of Table I ~
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are pi 2/A, P/k, and nF c!,and therefore we plot a nor-
malized propagation constant P, defined by

P /k —nc&

nF —ne&

as a function of pi/A. It is easy to check that 0 & P & 1
and that P = 0 corresponds to the cutoff of the vth mode
(if it exists at all). For a hole radius going to infinity, the
modal structure is very similar to that of an asymmet-
ric planar waveguide [13]. In this limit we find highly
degenerate values for the propagation constants, which
correspond to TE and TiVI modes of the slab waveguide.

This degeneracy is removed for finite values of the hole
radius. Decreasing the hole radius pi (while keeping the
core thickness Ep constant) leads to the disappearance
of modes as they get cut ofF. Under certain conditions,
all modes except the fundamental mode HEqq are cut ofF

at a critical hole radius pi, [14]. In Fig. 2, the region
below the solid line shows the parameter regime where
the hollow fiber is single mode for the re&active indices
given in Table I. The dashed line corresponds to the cut-
off for the TEi modes of the slab waveguide. For a core
thickness close to this cutoff we can have, in principle,
an arbitrarily large hole radius. Strictly, the HEqq mode
represents two degenerate modes, corresponding to two
linearly independent polarizations. By using appropri-
ately polarized laser light to illuminate the fiber, we can
ensure that only one of the two modes is excited.

As a specific case for later calculations we use the fiber
parameters in Table I. We chose the re&active indices
of the core and the cladding to be nF = 1.500 and
ng) ——1.497, respectively. A core thickness and a hole
radius of !r!p = pi ——2.889A (corresponding to 1.65!Mm
for the sodium D line) ensures that this hollow fiber is

single mode [15]. These parameters correspond to a fiber
similar to a 300 meter long hollow single-mode fiber pro-
duced by Sudo et al. [16].

For these parameters we solved the eigenvalue problem

10

TABLE I. Hollow fiber parameters.

Parameter
Refractive index of the annular core nF
Refractive index of the cladding nc, ~

Hole radius over wavelength pi/A
Core thickness over wavelength Ep/A

Value
]..500
1.497
2.889
2.889

and found Pii ——0.049. The electric field can be written
in the form

(8)

with E(r) a real positive function depending only on the
radius and e(!t!) a complex unit vector. A plot of the
function 8 (Fig. 3) shows that the evanescent wave is
limited to a small region close to the wall. Since U = 20.2
the Bessel functions in (5) can be expanded for large
arguments giving the following approximation to 8 in
the evanescent wave (region I):

E(r) = Fo exp i

)
(9)

fp ——1.51 x 10
1

!am

P (mw)
10

(V m '). (10)

Using spherical unit vectors ey = p ~(x+ iy) and e, =
z, the polarization vector e is found to be

e(P) = ~~ie '~e+ +!J,e, + u) ie*~e

with the parameters ~+ ——0.90, w, = 0.45, and ~
1.9 x 10

E'0 depends on the power P guided along the fiber of
Table I according to

7
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FIG. 2. Map of the various modal structure regimes in the
p1-Ap plane. All points above the solid line correspond to a
configuration which either is multimode or possesses no (unat-
tenuated) modes at all. The dashed line indicates the cutofF
for the TE& modes of the asymmetric slab. Refractive indices
are the same as in Table I.
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FIG. 3. Electric field strength E(r) for the HEii mode vs
radius r for the parameters of Table I.
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III. QUANTIZED ATOMIC MOTION
IN THE FIBER

translation in the P, representation, we find the equation
of motion, in the rotating wave approximation, [17]

In this section we will derive an approximate expres-
sion for the eigenstates of the center-of-mass motion for
atoms confined by the evanescent field to the interior of
the hollow fiber.

The simplest realistic model for an atom inside the
fiber is a two-level system with a nondegenerate ground
state (angular momentum Jz——0) and an excited state
(J,=l) with Zeeman substructure. The notation for the
various levels is given in Fig. 4. The evanescent field
will be treated classically. Since we only want to study
the coherent propagation of atoms along the fiber we do
not consider the state of the atom after a spontaneous
emission. Hence we only need to calculate the wave func-
tion without any photons spontaneously emitted into the
quantized electromagnetic field vacuum. This is the first
term in the expansion [17]

I~(')) = (II&.('))&Ilg)

+ ) ill('))&Ii))~ "')&Ii~c)+" (»)
~=+,0

where j labels the Zeeman sublevels. The motion of
the atom along the fiber decouples from the transverse
motion for a straight fiber. Hence it is convenient to
represent the center-of-mass wave functions ~g~) in an
eigenbasis of the complete set of commuting observables

(X,Y; P, ), i.e., Q~ (z, y, p„t) = (z, y, p, [Q~ (t) ). Using

(8) and (11), we can write the dipole interaction with
the classical field as

d E,(a, t) = ) O~(z, y)A e'~' ') +H.c., (13)

where

( h', (p, + 5P)'
M~'+2M 2M

.A]c—i —(1 —h~i) + V~„, (16)

and p, v = g, 6, 0. Here fc is the spontaneous decay rate,
b is the Kronecker symbol, ps ——p, is the z component of
the momentum of the atom in the ground state, p~ o ——

p, + hP is the momentum of the atom in the excited
states (including the additional momentum due to the
absorption of a photon from the laser field), and b, =
(d —(d~ is the atom-laser detuning. We define w, ff =
b, p, P/—M —h2P /2M, the effective detuning including
a Doppler shift due to the atomic motion and a recoil
shift. The coupling between the states is then given by

V=
( hd, ff

—O+(x, y)
-O, (z, y)

( -O (z, y)

-O' (z, y) -O; (z, y) -O' (z, y) I
0 0 0
0 0 0
0 0 0

(17)

where we use the ordering (g, +, 0, —). The Schrodinger
equation (15) has the property that it only couples the
ground state with momentum p, to the excited states
with momentum p, + hP. Therefore the momentum p,
plays the role of a parameter and will be omitted in the
following.

The next step is to transform to an adiabatic basis [18],
obtained by diagonalizing V(z, y) for each x, y. Using the
notation

ih —@ (x, y, p, t) = ) (H,ff) „Q„(z,y, p„, t) (15)
v=g, +,0

with

O+(z, y) = dE(r)(d+i,

O, (z, y) = df(r)(d, e'~,

O (x, y) = dt(r)u) ie '~.

(14a)

(14b)

(14c)

2

O () = [«()]'+I
r

Here A~ = ~g)(j[ are the atomic lowering operators and
d is the dipole moment of the transition (d incorporates
the Clebsch-Gordon coeKcients, which are all equal to
1). Making use of the fact that the z dependence of the
dipole interaction (13) is ei ', which corresponds to a

FIG. 4. Atomic level scheme. The line thickness of the var-
ious transitions indicates their strength in the field of Egs. (8)
and (11).

and

rti, 2(r, 4) = Ni, 2(r)

( hE ff/2 +O~(r) )
O+(r, P)—

—O, (r, P)
-O (r, 4)

(
0

Tt3(P) = N3 . 2 f TL4($) = N4

u), e '& )

(
~2 + ~2

iqbice,u+e
—(d ue'~)

(20)

The latter two possess no admixture of the ground state
and therefore represent purely excited states. Nz, . . . , N4

we find the eigenvalues are Vi 2(r) = hd, ,ff/2+Oft(r) (the
plus sign refers to the adiabatic state ni and the minus
sign to n2) and V3 4 —0. The corresponding eigenvectors
are
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are normalization constants. Note that the eigenval-
ues are functions only of the radial coordinate r. This
fact considerably simplifies the calculation of the atomic
eigenstates as will be shown later. Expanding Q
(Qg, g+, g„@ ) in the adiabatic basis,

vP(z, y, t) = ) n~(z, y, t) e ' "n~(x, y),

where her„= (p, +hP) 2/2M —M„g, we deduce from (15)

In this case, the adiabatic state which converges to the
ground state in the limit E' ~ 0 is nq and the confining
potential is Vq.

It is clear from (22) that there are three processes that
limit the confinement of particles inside the fiber. The
first is loss due to spontaneous emission. Since all adi-
abatic states and particularly the state nz have admix-
tures of excited internal states, there is a nonzero prob-
ability for them to decay to an untrapped state. We
introduce the parameter q, proportional to the ratio of
the Rabi &equency to the detuning,

8 ".(
in —~, =)

~

H „+V,":——r,.~~., (22) g = 2dfo/hA, g. (26)

where

H - =
l

—M&~'+ &~(&) I ~~- (23)

The probability of the atom being excited increases with
g. From (25) and (19) we deduce that I'qq is a monoton-
ically decreasing function of the detuning. In particular,
r» has a series expansion in g

is the adiabatic Hamiltonian,
2I'„= r.e ~" ' ~ ' —+O(rl ). (27)

4

V"'„= — ) n* (V, n j + 2n* (Vgn„Vq)
cr=1

This is just the spontaneous emission rate times the prob-
ability for the atom to be in its excited state. Similarly
the confining potential Vq can be expanded

describes the nonadiabatic coupling between the adia-
batic states [18], and

&2(dg)2 &~&2(dg)2 p p

~,~, (dg)2 ~2(dg)2 p p

0 0 1 0
0 0 01)

(25)

~E

t~

0 0.2
I

0.4
r/PI

0.6 0.8

I

I

I

t

Ij
I

I

l

FIG. 5. Schematic plot of a typical wave function in the
con6ning potential Vj. The dashed line on the right repre-
sents the hole-core interface. The attractive potential V2 is
also plotted, but the separation between the two potentials is
understated.

is the damping due to spontaneous emission. In Eq. (24)
n„denotes the cath component of the vector n„. The
adiabatic Hamiltonian (23) governs the evolution of a
wave packet, prepared in one of the adiabatic states (or
a superposition of them), in the corresponding adiabatic
potentials V~. A plot of these adiabatic potentials is given
in Fig. 5. It is easy to see that we need a blue detuning,
i.e., A,g ) 0, for the confinement of ground state atoms.

V, (r) = hA, g ~

1+ —e ~" 'l~ '
~

+ O(g ). (28)

(29)

with m = 0, +1, . . .. The eigenvalue equation for 6& is

d'
d, + V~(r)

I
~~(r) = @~~(r)2M dr2 (30)

with the potential

m —
4
1

V, (r) = V, (r) +
2M r2 (31)

including the centrifugal barrier. To be rigorous, we

In the following we assume g/2 (( 1 so that these expan-
sions can be used.

A second loss process is the tunneling of the atoms to
the wall. In this case the atoms will stick to the wall or
will be scattered &om it, leading to a loss of coherence.
We assume here that all these particles are lost &om the
coherent transport. So far we have neglected any inter-
action between the atoms and the wall (Casimir-Polder
force [19]). In Sec. IVD we will estimate its magnitude
and discuss its inHuence on the guidance of atoms. The
third loss mechanism is due to the nonadiabatic transi-
tions to the nonconfining adiabatic potentials. We will
estimate the magnitude of the three loss mechanisms in
Sec. IV.

We next consider the atomic center-of-mass eigenstates
of atoms in the adiabatic state nq under the assumption
of negligible losses. A confined atomic wave function of
the form (21) can only have an uq component. Exploiting
the radial symmetry of our problem, we can write the
eigenstates as simultaneous eigenvectors of H and the
z component of the angular momentum operator L,
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should write aq@, but we will suppress the indices E
and m for simplicity of notation. We will calculate the
eigenfunctions in a WKB approximation. Using a Langer
transformation [20] to avoid difficulties with WKB solu-
tions in the vicinity of the origin, we can write the nth
bound eigenfunction in terms of Airy functions as [20]

Since U/pq is on the order of P [cf. (6a)], eR is of the order
of the recoil energy h k /2M. We denote the (center-of-
mass) energy of the atom relative to the bottom of the
potential Vg+ h m /2Mr by

EI, = E —hb„g —5 m /2Mp~

2M hm 1
kg(r) =

h2
E —Vj (r)—

2M T2 (33)

1/4c crt /k~ Ai(o.g ) for r & r+ —e

[ (—1)"c 0'q+/k~ Ai(a'q+) for r & r + e

(32)

with the wave number

We find

1{a)= /"
M

mar Er,U'
+

2 ~R

E,
x 1 ——+ —ln 2

U U V

6'Rm

V

(38)

and

2/3
3 I0'qy(r) = ksgn(r —ry) — dr'kq(r')
2

(34)

Assuming Er, /eR » m /U and ln(2/Ei, /V ) « U,
we can simplify (38) to give

We denote the normalization constant by c. Equa-
tion (32) is a uniform WKB approximation which is also
valid in the vicinity of the classical turning points for
small and large r, denoted by r and r~, respectively.
They are defined by kq(r~) = 0 for m g 0 and by r = 0
and kq(r+) = 0 for m = 0. The WKB approximation
is valid provided the energy of the state is considerably
larger than the ground state energy and provided the de
Broglie wavelength is smaller than the decay length of
the evanescent field. The WEB quantization condition
on the phase integral L(E) is

"+
L(E) = dr'kq(r') = n+ —

l
7r, n = 0, 1, 2, . . . ,2)

(s5)

L(E) U
~R

(39)

c ~ k$ Tp p] ~ (40)

We will use both of these results in the next section to
calculate the loss rates from the confined eigenstate.

Another application of this approximation is to derive
an analytical estimate of the normalization constant c.
From Fig. 5 it can be seen that up to a small error we
can neglect the exponentially decaying parts of the wave
function beyond the classical turning points, replace the
slowly modulated part of the wave function by its average
over one period, and use the preceding approximation for
the resulting integral. We find

which determines E by ensuring that the approximate
solutions (32) match in the overlap region, where both
are valid. A picture of a typical wave function is shown
in Fig. 5. The quantity e in (32) excludes a small re-
gion around the classical turning points, where one or the
other of the two lines in the approximation (32) breaks
down (the uniform WKB solution can only handle a sin-

gle turning point).
There is no analytical expression for the indefinite in-

tegral in (34), but we can find a good approximation by
making use of the short range of the Stark-shift potential
Vj and the long range of the centrifugal barrier. Let rz be
a point below which the potential Vq(r) can be neglected
[for example, r~ = pq(1 —2/U) = 0.9pq]. If we neglect the
exponential part in Vq(r) for r & r~ and approximate the
centrifugal barrier by the constant value 52m /2Mpf for
r ) r„, then the resulting integral is analytically soluble
and depends only very weakly on the choice of r„.

We can use this approximation to derive an analyti-
cal expression for the phase integral. It is convenient to
introduce the quantity

IV. LOSS MECHANISMS

A. Spontaneous emission

A system governed by the non-Hermitian Hamiltonian

H. =a--nr
2

(41)

where both II and I' are Hermitian, does not conserve
the norm of the state vector ly(t)}. It is easy to show
that

In this section we will derive approximate analytical
expressions for the three loss mechanisms identified in
the preceding section. We assume that these loss rates
are sufficiently small that they can be investigated sepa-
rately. The Casimir-Polder interaction of the atom with
the wall of the fiber is considered in Sec. IVD.

eR = h U /2Mp~. (s6)
d

d, (~(t}l~(t) } = —h(~) II'lx(t) } (42)
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which corresponds to a loss of probability with rate
(x(t) li'l~(t)).

In our particular case, lg(t = 0)) is a stationary state
o.q of the atom in the adiabatic state nq. The sponta-
neous emission loss rate is therefore given by

P1

«lo(r) I'I'»(r).
0

In the following we will denote the height of the potential
barrier Vi Eq. (28) at the wall by V „= M„tfrI2/4.
Employing the same approximation we used in deriving
(38), we find that

B. Tunneling

In the case of small tunneling probability, the tunneling
loss rate is given by [21]

IT=e
I

h,
,s ( i91 'l

(48)

Here I, is the phase integral [Eq. (35)] and 0
J' ' drki(r) is the tunneling integral. The exponential

factor represents the tunneling probability per bounce
and the term in large parentheses gives the number of
refIections per unit time. Using the approximations de-
scribed in Sec. III we find

(44) 26'
hU

exp —2 g
R eR (Vmax)

(49)

with

K(z) =xl —z
I

dy
I&(y)I"""

g4 ) I1 —e~l

x Ai ([s4zf (y)] ~ ). (46)

A plot of the function K(z) is shown in Fig. 6. For

QEi, /eR )) 1 it converges to unity. The energy of the
ground state can be estimated from that of a particle
confined inside a circle to be z = QEi, /e~ = 2.4/U [10].
Since the WEB approximation for the wave functions
is only valid for energies considerably larger than the
ground state energy, a lower bound for the validity of
(45) is z = 10/U.

The expression (45) with K = 1 is identical to the loss
rate for a classical particle moving with energy EI, in the
potential

V(r) = hb, ire
" ')~ 'rl /4+ FPm /2Mr

and experiencing a local loss rate (27).

(47)
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FIG. 6. Plot of the function K(x), Eq. (46). For small z
the WKB approximation is not valid (dashed line), although
formally K(z) can still be evaluated.

~h~~e f(z) = Jo dygll —eiII. This allows us to write

(43) for well bound states [i.e. In(pi)l « ln(r+)I2] in
the form

K 2 E
Lp —— K EI, ~g

with

y(z) = v* 1——1 —arctan ——1
z x (50)

An important property of the tunneling loss rate is its
exponential behavior as a function of Ei,/V „. In most
cases of interest, the potential height V „is much larger
than the recoil energy, which leads to a large factor in the
exponent and therefore to a very sharp onset of tunneling.
Due to this exponential behavior compared to the linear
behavior of spontaneous emission losses with energy, the
switching &om one to the other being the dominant loss
is decisive.

C. Nonadiabatic transitions

+( &&)/»
I

I 2 Bl
2 i U Br) (51)

if we neglect the small coupling (of order ld /(do + « 1)
to the other two adiabatic potentials. The conditions for
V" being a small perturbation of the adiabatic Hamil-
tonian for the ground state are therefore

7f

hA, g 2'
2m~

R

A: g
E 2

We are able to use a WKB approximation for the wave
function in the second adiabatic potential V2(r)

The Grst step in the calculation of the nonadiabatic
losses is the expansion of V" in the small parameter
rl, Eq. (26). From this expansion we deduce conditions
which have to be fulfilled to consider V" a small per-
turbation. Using Fermi's golden rule to calculate the
transition rate to the attracted adiabatic state n2, we
can estimate the loss rate.

In our case, we want to calculate the transition rate
from the confined state (cr i, 0, 0, 0) to the other adiabatic
states, which are either attracted or not afFected by the
evanescent light Geld. Therefore we only need to know
the components V" with v = 1. The expansion of V"&

in the small parameter g up to order g is found after
some calculation to posses only a component
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'my (
a.2(r, P) = cos l dr'k2(r') ——

4)

where c = ~M/7rh, k2(r) = [2MlE —V2(r)l/h2]x~, and
r" denotes the classical turning point in the potential
V2. Due to the assumption q/2 « 1, this is a rapidly
oscillating function of r.

Since the nonadiabatic loss rate is given by L„
(2x/5) l(f lV2i li) l, where li) is the confined initial state
and

l f) is the attracted final state, we are interested in
the quantity l(flV2ili)l. A well-known inequality from
elementary calculus allows us to exchange the absolute
value with the integration

OO 2'
l(flV2ilx)l = dr r dP nz(r', P)V2xnx(r', P)

0 0

dr'2xr' V2i
I I &2r nael r

0 rl rl
(54)

Note that since V2i does not depend on the angle P, the
state aq couples only to states a2 with the same angular
momentum m. The function under the 6rst integral re-
sembles a slowly modulated cosine and therefore most of
the contributions cancel each other. On the other hand,
the second integrand is always positive and different half
waves do not cancel each other, but add up. Therefore
we expect the second integral to be a gross overestimate.
The rapid oscillations of a2(r') allow us to replace this
function by its average value. To derive an upper bound
for the remaining integral we use the fact that a deriva-
tive of nx(r')/~r' with respect to r' is on the order of
kxcxx/~r' Therefor. e we can replace Vzxax(r')/v r' by
its upper bound

R 9 Plky
Ln~ && 6.5

5 4 U2k 2
(56)

If we compare this loss rate with the loss due to sponta-
neous emission, we 6nd

« 1.6g2
Lp ~ Mg (57)

As will be discussed in Sec. V, this shows that the non-
adiabatic transitions are negligible in comparison with
the spontaneous emission for rj/2 « 1.

D. Casimir-Polder forces

In this subsection we give a semiquantitative discus-
sion of the interaction between the atom and the wall of

»xxx(r') rI xx~„~ ~, &y~
& 2piki l l~xmaxl

(55)

The quantity lnx l
can be estimated from (32) and

(40)to be 1/gm pi, since Ai(z) & 1/~sr. Also the 1 in the
large parentheses in (55) can be neglected in comparison
to the second terxn (for all but the lowest few states). We
hence find the upper bound to be

the hollow fiber, which we have neglected so far. This
Casimir-Polder (CP) force lowers the effective potential
barrier seen by the atom. Hence it will move the trade-
ofF between tunneling and spontaneous emission losses
toward a higher Stark-shift barrier and lower detunings.
The CP force becomes signi6cant at distances from the
wall where the evanescent 6eld becomes strong. Its origin
is the modi6cation of the polarization and spectral densi-
ties of the quantized electromagnetic field vacuum due to
the presence of the dielectric waveguide. This modifica-
tion leads to a spatially varying Lamb shift and hence to
a force [19]. Since the calculation of this Casimir-Polder
force for our geometry is extremely involved, we restrict
ourselves to a simple estimate.

For a spherical ground state atom between parallel
metallic plates, the position-dependent Lamb shift is
given by [22,23]

) vr]d, g l' 2 cosh(vr(r/px)

6sp(2 pi) s
o sinh(x()

x arctan
l l, (58)
((A l
(4px)

'

where the suxn runs over all excited states, d,s is the
dipole matrix element between the ground and excited
states, and 2pi is the separation of the metallic plates.
This force has been measured experimentally [22].

In our case Eq. (58) overestixnates the force between
the atoms and the wall for two reasons. First, the walls
are not metallic but purely dielectric, so the xnodification
of the electromagnetic fields is less than in the metallic
case. We account for this efFect by introducing an addi-
tional factor [24]

(nF —1)/(n~+ 1) = 0.38

into Eq. (58). Second, we have a circular geometry. It is
reasonable to expect a decrease of the CP force analogous
to the decrease of the van der Waals force (which is a
limiting case of the former) an atom experiences &om
its mirror image, which is farther away for the curved
mirror. Since no estimate of this eKect exists so far, we
will neglect it.

The CP potential, calculated from (58) and including
the factor (59), is plotted as a function of the radius in
Fig. 7 for cesium and sodiuxn. The resulting force is at-
tractive and diverges as the atom approaches the surface.
Therefore, the total potential for the atomic motion, i.e.,
the Stark-shift potential plus the CP potential, is signif-
icantly lowered and becomes attractive close to the wall.
In the case of sodium, a potential barrier of 2000eR is
reduced to about 800~R and a potential barrier of 2006R
is decreased to about 30eR. For potential heights below
about 30eR no repulsive barrier is left. In the follow-
ing section we will 6nd that some of this reduced barrier
height can be recovered by decreasing the detuning, at
the expense of increased spontaneous emission.

With the addition of the CP potential the integrals
for the spontaneous emission loss rate L,~, Eq. (43), and
tunneling loss rate LT, Eq. (48), must be evaluated nu-
merically.
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FIG. 7. Casimir-Polder force for Cs and Na, calculated us-

ing Eqs. (58) and (59).

V. DISCUSSION

FIG. 8. Optimal il [Rabi frequency over effective detuning
Eq. (26)] vs maximum loss rate. The solid curves ignore the
Casimir-Polder effect. The dashed curves include a modified
potential barrier according to Eqs. (58) and (59). The fiber
has the parameters of Table I and guides 10 mW of power.

We now use the preceding theory to discuss the fea-
sibility of hollow fiber atomic waveguides. We will not
address the issue of how to efficiently launch light and
atoms into them. Rather we shall estimate the range of
transverse atomic kinetic energies that might reasonably
be guided through meter length straight fibers.

As discussed in Sec. IV, guidance is limited by three
loss mechanisms: spontaneous emission, tunneling to the
waveguide's walls, and nonadiabatic transitions to un-
confined states. Close to resonance the confining force is
stronger so tunneling is reduced; however, spontaneous
emission is increased. Hence the atom-laser detuning can
be chosen to optimize the combined losses due to spon-
taneous emission and tunneling. The detunings are then
usually sufBciently high that nonadiabatic transitions are
negligible.

In the following we determine the conditions for opti-
mal guidance of either Na or Cs atoms. We consider a
hollow fiber having the parameters of Table I. We also fix
the laser power guided by the optical fiber to be 10 mW.
This is chosen as a reasonably achievable value. The cor-
responding maximum evanescent electric field is given by
E . ~10~. The remaining &ee parameter is the atom laser)
detuning 6, which we represent using the dimensionless
ratio (26) ri = 2dEo/hb, ,ir. For a fixed total loss rate
we shall find the value of g that maximizes the confined
transverse kinetic energy.

We assume that the nonadiabatic loss rate is negligible,
which can be verified at the end of the calculation. The
total loss rate is the sum of the spontaneous emission
loss rate L,p, Eq. (45), and the tunneling loss rate Lz,
Eq. (49). For a fixed total loss rate L ~mLQ+L p& thse

transverse kinetic energy EI, can be found as a function of
g. The optimal g giving the maximum transverse kinetic
energy EI, can then be found.

The results are presented in Figs. 8 and 9. The
solid lines ignore the Casimir-Polder potential while the
dashed lines include it, following Sec. IVD. Figure 8
shows the value of g which maximizes the confined trans-
verse kinetic energy for a fixed value of the total loss rate.
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/
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L „[s']
FIG. 9. Maximum guided energy vs maximum loss rate.

The solid curves ignore the Casimir-Polder efFect. The
dashed curves include a modified potential barrier according
to Eqs. (58) and (59). The fiber has the parameters of Table I
and guides 10 mW of power.

Figure 9 shows the associated maximum confined trans-
verse kinetic energy EI, „. We plot the ratio of EI,
to e~ [Eq. (36)]. This is because eR is approximately
the recoil energy and hence gauges the difBculty of laser
cooling the transverse atomic velocity.

Figure 8 shows that the minimum achievable loss rate
for Cs is several orders of magnitude smaller than for
Na. This is a result of the larger dipole moment and
lower spontaneous emission rate for Cs; see Table II. The
much higher ratio of maximum confined energy to recoiil
energy for Cs in Fig. 9 is additionally a result of its lower
recoil velocity, due to its higher mass and lower transition
&equency.

From Fig. 9 the smallest value of QEi, /eR is about 0.5
and we are therefore justified in using the approximation
K —1 in evaluating the spontaneous emission loss rate
(45). The inequalities used to derive the tunneling loss
rate (49) are also fulfilled, provided that the angular mo-
mentum quantum number m is not too large (cf. the end
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TABLE II. Atomic parameters for cesium and sodium.

Elemeat

Cs
Na

M
(kg)

2.29x10
3.82 x 10

(nm)

589

(C m')
2.5 x 10
2.0x 10

(MHz)
2x x 5

2m x 10

of Sec. III). Finally the adiabatic loss rate is negligible
since the largest value for the upper bound Eq. (57) is
L„ /L, p «6x10 z, found for the largest maximum loss
rate of Na.

We have obtained formulas for the loss rates per unit
time L . The transmission loss R through a length l of
fiber is then inversely proportional to the velocity of the
~t~~~ through the fiber v~~. R = K „/vj~. We consider
two extreme cases for v~~. the uncooled case v~~

= 1000 ms, corresponding to an uncooled atomic beam, and a
cooled case v~~

= 1 ms, corresponding to cooling near
the (Na) Doppler limit. Assuming a 1 m length of fiber,
transmission losses will be below 10% for a total loss rate
L & O. lv~~. For the uncooled case this becomes L & 100
s i, which according to Fig. 9 gives a maximum confined
transverse kinetic energy of Ei, /e~ —900 for Cs and
Ei, /ep —40 for Na, each corresponding to a trans-
verse atomic velocity of about 10 cms i and 20 cms
respectively. For the cooled case the inequality becomes
L & 0.1 s, which according to Fig. 9 gives a maximum
confined transverse kinetic energy of E& /eR = 7 for
Cs and is probably impossible to fulfill with Na. This is
because its low speed keeps it in the fiber for a second
and the evanescent field is too weak to confine it while
keeping the spontaneous emission rate sufficiently low.

The required parameters for the uncooled case are real-
ized by an atomic beam with a divergence angle of +0.1—
0.2 mrad. This is a figure which can be reached by using
laser cooling for the transverse directions [25]. Since the
fiber can start in one vacuum chamber and end in an-
other, any guided atoms should be readily detectable.
With a bent or sufficiently long fiber the ballistic back-
ground should be negligible [10]. We have not consid-
ered coherent propagation in bent fibers. A heuristic
discussion of incoherent propagation in a bent fiber (ne-
glecting the infiuence of spontaneous emission) is given in
Ref. [10]. In a bent fiber the longitudinal and transverse
motions are no longer decoupled. Consequently, atoms
with a certain longitudinal velocity will be guided along
the fiber only if its bending radius is large enough. The
minimum bending radius can be readily estimated to be
R; —pi(2v~I/v~m~), which gives 1000 m for Cs and
170 m for Na in the uncooled case and 10 cm for cooled
Cs.

If guidance occurred only via a single transverse atomic
wave fuactioa, thea atomic coherence could potentially
be preserved. In practice this is likely to be difficult to
achieve. The situation is analogous to propagation of
light in conventional optical fibers. Single-mode prop-
agation maintains coherence, while multimode propaga-
tion does not. Naively this is because in the xnultimode
case the light can take diferent paths through the fiber,
with different phase lengths. Atomic coherence is also de-

termined by the atomic energy dispersion. Unlike light,
monochromatic sources of atoms are not yet available.
Hence achieving coherent propagation with a significant
atomic aux will be difficult.

In conclusion we have shown that achievable evanes-
cent fields in hollow optical fibers can be used to guide
atoms with realistic transitions. If a suitable atomic
source were available this could be done while maintain-
ing the de Broglie wave coherence. Applications to large
area atomic interferometry might then be considered.
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APPENDIX

In this appendix we give the conditions that have to
be fulfilled in order to solve Maxwell's equations for the
piecewise constant refractive index profile (1). We have
to guarantee the continuity of Hand the ta'ngential com-
ponent of the electric field Et, as well as the normal com-
ponent of the dielectric displacement vector son E„Us-.
ing (3) we find that this is equivalent to demanding the
continuity of h„h~, h„, e„e~, and n e„Makin.g use
of the relation between the transverse and longitudinal
components (4) and the ansatz (5) as well as its magnetic
counterpart, we can easily show that it suffices to demand
the continuity of h„hd„e„and e~ at both boundaries.
This leads to the following set of equations.

Continuity of h, at both boundaries implies

c5I„(U) = csJ„(X)+ c7Y„(X), (A1)

csK„(W) = cs J„{X)+ cq Y„(X). (A2)

Continuity of h4, implies

csJ„(X)+ c7p~ Y„(X)—csppI„(U)

—(npp&X[c2 J„'(X)+ csY„'(X)]
P& Po

—clpp UI„'(U) ), (A3)

cop~i J„(X)+ cypgi Y„(X)—csppK„(W)

—{nppciX[c2J„'(X') + csY„'(X)]
&Pi Po

—c4nc pp WK„'(W)}. (A4)

Continuity of e implies
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ciI (U) = c2J (X) + csY (X), (A5) c2pgi J~(X) + esp~i Y„(X)—c4pFK„(W)

c4K (W) = c2 J (X) + cs Y (X).

Continuity of e@ implies

c2pH J~(X) + cspH Y~(X) —c,pFI~(U)

—(cspFUI (U)
Zk Pp I

P 6p

—pHX[cs J„'(X)+ cqY'(X)]}, (A7)

ikP2 Pp—(cspFWK' (W)
Pvpi Eo

—p~iX[cs J„'(X)+ c7Y'(X)]}. (A8)

Here we used the abbreviations pH = k2 —P2 and

pp ~i = nF &&It
—P2. The tilde in some of the equa-

tions indicates that the argument of the various Bessel
functions has to be taken at the core-cladding interface,
e.g. , X = Xp2/pi.
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