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Quantum-optical master equations: An interaction picture
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Quantum-optical master equations —exempli6ed by the Jaynes-Cummings model with
damping —are turned into numerical partial differential equations of first order for phase-space
functions, which are generalizations of the Wigner function and its relatives. The time dependence
of these phase-space functions originates solely in the atom-photon interaction; all other time de-
pendences, in particular the dissipative contribution of the photon damping, are accounted for by
the time-dependent operator bases to which the phase-space functions refer. The judicious choice of
operator basis also effects the absence of second-order derivatives in the partial differential equation.
Our first-order equations are hyperbolic and can be integrated conveniently along their character-
istics. As an illustrative application we study how the Jaynes-Cummings revivals are affected by
photon damping. We show how to handle squeezed reservoirs and how to apply the method to laser
cooling.

PACS number(s): 42.50.—p

I. INTRODUCTION

In recent years, we have been witnessing renewed inter-
est in methods by which quantum-optical master equa-
tions are treated numerically. This interest was trig-
gered by a common dissatisfaction with the standard ap-
proaches that use either rather large number-state matri-
ces or rather inconvenient coupled Fokker-Planck equa-
tions. One new method renounces a direct solution of the
master equation in favor of simulating the actual density
operator by an ensemble of wave functions that follow
a pseudounitary evolution and suffer state reductions at
random instants [1]. Another new development employs
the so-called "damping bases" for an algebraic frontal
attack on the master equation [2]; the damping bases di-
agonalize the nonunitary, dissipative part of the master
equation and so provide for a substantial simplification
as compared to the formulation in terms of number-state
matrices.

In the present contribution, we introduce an ap-
proach that combines the damping-bases strategy with
the Fokker-Planck formalism, with the intention to utilize
the advantages of both while avoiding their drawbacks.
We find a set of first-order partial difFerential equations
for phase-space functions that are generalizations of the
familiar ones the Wigner function, Glauber's Q and
P functions, and the like. Second-order derivatives are
absent, in marked contrast to the Fokker-Planck equa-
tions. This is achieved by employing time-dependent op-
erator bases in the definition of our phase-space func-
tions. Except for the atom-photon interaction, all dy-
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II. NONINTERACTING SYSTEMS

A. Photons

We describe the method in the exemplary context of a
single photon mode; the generalization to more than one
kind of photons is immediate. The photon state is spec-
ified by the density operator p(t) = p(at, a, t) which is a
function of the dynamical variables at and a (the "ladder
operators"). Its evolution is governed by the quantum
master equation

&& p = l:~h p = i sr [p, a a] + z [a, p] + z' [p, a]
0

A——(v + 1) (atap —2apat + pata)
2

——v (aat p —2at pa + paa ) .t
2

(2.1)

The symbol u denotes the natural frequency of the pho-
ton mode; A is the rate with which the state would re-

namical changes are accounted for by this time depen-
dence of the basis. Consequently, our phase-space func-
tions evolve only as a result of the interaction. In other
words, we are proposing a luxurious interaction picture.

Here is a brief outline of the paper. The ground is pre-
pared in Sec. II where we take a look at explicit operator
solutions for noninteracting systems. Then, in Sec. III,
our first-order partial differential equations are derived
and discussed. The numerical methods being used are
presented in Sec. IV. Section V reports an application
to Jaynes-Cummings revivals in the presence of photon
damping. We close with a summary. Two appendices
deal with extensions of the formalism; in Appendix A we
show how to handle squeezed reservoirs; in Appendix B
we report the equations of motion relevant for the treat-
ment of laser cooling.
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lax toward its thermal equilibrium state (characterized
by v, the number of thermal photons) if there were no
"injected signal" whose strength is measured by the nu-

merical function z(t) For the sake of simplicity, we shall
be content with dynamics of this restricted form; in Ap-
pendix A we show how to deal with squeezed reservoirs
and phase-sensitive unitary contributions.

The fundamental observation is this. Operators of the
structure

B(r(t), n*(t), n'(t)) (2.2)

1 & 1 g (

( )
. exp] —

( )
a —n'(t) a —n (t)

are solutions of the master equation (2.1) provided that
the numerical functions K(t), n'(t), and n'(t) obey

d r= —A(r ——v —1),
dt

—n' = (ia —-'A) n'+z*,
dt

dt
—n =(—i~ —-A)n+z,1

2

(2.3)

and

[at, B] = r. '(at —n*)B,
[B,a] = r. 'B(a —n'),

[B -"]=--'- B(.--') ---'(" --')B-' (2.5)

as well as

a~aB —2aBa~ + Ba~a

= 2r, (1 —r) B —2r. (1 —r)(at —n') B(a —n')

+r (at —n*)Bn'+ r n*B(a —n'),

aa~B —2a~Ba + Baa~
= 2B —2r (at —n*)B(a —n')

r(at —n') Bn' ——r n*8(a —n') . (2.6)

whereby n'(t) need not equal the complex conjugate of
n'(t), although this is the usual situation. [Of course,
z*(t) must always be the complex conjugate of z(t).] As
usual, the pair of colons in (2.2) indicates normal order-

ing, all a~ operators to the left of all factors of a. Our
assertion, viz. that B of (2.2) with (2.3) solves (2.1), is
demonstrated with the aid of the identities

0 dK—B = —K r.B —(a —n*)B(a —n )
Ot dt

I

i(at —n*)8 + r B(a —n'), (2.4)
dt dt

p(o) = fo(at, a")B(ro, at, a"),2' (2.8)

I

where the phase-space function fo(at, a") is given by [3]

fo(at, a") = tr{p(0)B(1 —Ko, at, a")) . (2.9)

For any fixed value of a", fo(at, a") is an analytic func-
I

tion of its complex variable a; likewise, fo is analytic
in a". We are employing the notational convention in-
troduced by Dirac who denotes eigenvalues by attaching
primes to the symbols of the corresponding operators.
Thus, in writing at and a" we emphasize that these
complex numbers are essentially eigenvalues of a~ and
a, respectively.

In general terms, the differential 17(at, a") in (2.8)
symbolizes the injunction to integrate the complex vari-

I

ables a~ and a" over orthogonal contours. Since this
generality is of little use in the present context, we shall
only employ the standard parametrization

4. I

a' =a"* =q —i@=re
17(at, a") = 2' dq = 2 dr r d(I2, (2.10)

p(t) =
t

fo(at, a') B(r(t), n'(t), n'(t)),

(2.11)
where r(0) = Ko, n*(0) = at, and n'(0) = a' are the

I

initial values supplementing Eqs. (2.3). Since a'* = at
holds, we have n'*(0) = n*(0) so that Eqs. (2.3) imply
n'*(t) = n" (t), and we shall drop the prime on n accord-
ingly. Thus

where the cartesian phase-space variables p and q range
from —oo to +oo, whereas the polar radius r = gp2 + q2

is limited to positive values and the polar angle y cov-
ers any interval of length 22r. With (2.10), a" equals the

I

complex conjugate of a~, as already indicated; therefore,
we shall write a' rather than a" &om here on. As a fur-
ther consequence of the parametrization (2.10), Eq. (2.8)

I

associates a real phase-space function fo(at, a') with the
Hermitean p(0).

Before proceeding we note that the trace in (2.9) is
certainly well defined for 0 & vo & 2. In particular,

fo(at, a') is the Wigner function of p(0) when Ko ——

fo(at, a ) becomes the Q function in the limit ro —i 0; if
it exists, the P function is available for ro ~ 1 [4].

Upon combining the observation, that B of (2.2) solves
the master equation (2.1), with Eq. (2.8) we find the
general solution of (2.1):

These are systematically derived by repeated applica-
tions of the elementary rules

OI' OI"
[aF]=Z, (2.7)

valid for any operator function F(at, a). Further, we re-
call that the initial state p(0) = p(t = 0) can be written
as a linear superposition of 8's according to

* (t) iwt At/2—
t

+ dtt iw(t —t') —A(t —t')/2 ~ (tl)

n'(t) = n(t) = e ' 'e '/ a'
t

iw(t t ) —A(t —t )/—2—
(t&)

(2.12)
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and

~(t) = ~ —(~ —~p) e (2.13)

with

= r.(t + oo) = v + 1. (2.i4)

For the following it is essential that the time de-
pendence is wholly contained in the operator basis
B(rc(t), o.'(t), n(t)); the phase-space function fo(at, a')
does not evolve.

Expectation values can then be calculated as phase-
space integrals. Elementary examples are

tr(p(t)) = ' f (a, a') = tr jp(0)),
17(at, a')

tr(atp(t)) = ' a'(t)fs(at, a'),17(at, a')

17(at, a')
tr (ap(t)) = '

n(t) fp(at, a'),

tr (a ap(t)) = ' [n'(t)a(t) + ~(t) —1]
17(at, a')

x f, (at', a').

(2.i5)

Some remarks concerning the connection between the
time-dependent operator basis of (2.2) and the damping
basis of [2] are in order. In its dependence on n' and n,
B(r,n', n) is a generating function for the elements p~ )

of the damping basis. The explicit relation is

B(~,n*, ~) = ) ) b~")p~"), (2.16)

with

n! ( r.

(n+k)! (~

xI.„ i
o.~(~) &

(K —K~)
(2.17)

For the exemplary discussion of the atomic degree of
&eedom we shall be content with simple circumstances,
too. Therefore, we deal with a single two-level atom only.
Now p{t) = p{o.+, rr, t) denotes the state of this atom;
it is a function of the dynamical variables o.+ and o

for k & 0. If there is no injected signal, z(t) = 0 in (2.12),
then the argument of the generalized Laguerre polyno-
mial is time independent, and b„ is proportional to
exp[ —ikut —(n+ ~k~/2)t], as it must be. For further de-
tails concerning the damping basis we refer the reader to
Ref. [2).

B. Atoms

.0
gg p = ~at p = &

2 [p~ oz]

B——(1 —s) (o+o' p —2o' prr+ + po'+o' )8
B——s (o o+p —2o+po.+ po o.+)8
2C —B

(p —~.p~. ) . (2.i9)

Here, 0 is the natural frequency of the atomic transition;
B is the rate at which (2 (1+o,)), the population of the
upper atomic level, relaxes toward its equilibrium value s
(limited to the range 0 & s & 1); and C is the rate
at which the polarization (o+) decays. The restriction
C & B/2 applies.

The four time-dependent operators

b1 ——

b2 ——

bs ——

b4 ——

—,
' + —,'(2s —1)o, ,

1 —Bt
Z

1 —iQt —Ct
2e e 0+,

iAt -ct bf
2 3t (2.20)

p(t) = ).f b (t).
j=1

(2.21)

The constant coeflicients fq, . . . , f4 are determined by

fg ——tr(p(0)) = 1,
fz tr (p(0) (o 2s+ I))
fs ——-', tr(p(0)o

f =-t((o)+)=f . (2.22)

Note that b1 and b2 are Hermitean, whereas b3 and b4 are
Hermitean conjugates of each other; accordingly, fq (= 1)
and f2 are real, and fs is the complex conjugate of f4
The basic expectation values are here

tr(p(t)) = f = tr(p(0)),
tr (p(t) o, ) = (2s —1)f~ + e ' f2,
tr(p(t)o ) = 2e ' e fs,
tr(p{t)o+) = 2e' e f4. (2.23)

Clearly, Eqs. (2.20), (2.21), (2.22), and (2.23) are the
analogs of (2.2), {2.11), (2.9), and (2.15), respectively.
Again we emphasize that the time dependence in (2.21)
is entirely in the basis operators b1 . . . b4, not in the
coeKcients fq, . . . f4

are the fundamental solutions of (2.19). They include the
steady state of (2.19), bq, which is actually constant in
time. We write the general solution of (2.19) as a linear
superposition of b1, . . . , b4..

o~ = o. +io„= (o~) (2.18) C. Photons and atoms

where o, o„, and also o, = {o'+o —rr o+) /4 are
analogs of Pauli's spin operators. As the quantum master
equation for the evolution of p(t) we take

If we new consider a single photon mode and a two-
level atom jointly without any interaction at the mo-
ment —the total state p(t) = p{at, a, o+, o, t) obeys
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0
Ot
—p = Cphp+ 8 ~p. (2.24)

'D(at, a') ) Bf,
2x Bt

( ))-f
The general solution is obtained by merging (2.21) with
(2.11) into

p(t) =

(2.25)

fq (a, a) = tr(p(0) B(1 —Ko, a, a') ),
f2(a, a') = tr( p(0) (o', —2s + 1) B(1 —Ko, a, a')),
fs(at, a') = 2tr(p(0)o B(1 —Ko, at, a')),
f4(at, a') = ztr(p(0)o'+B(1 —ro, at, a')), (2.26)

According to Eqs. (2.9) and (2.22) the four time-
independent phase-space functions are related to the ini-
tial state p(0) by

(3.3)

bgo = 2(1 —s)e '"'e 'b4 (3.4)

for the identification of the factors multiplying bi, . . . , b4
on the right-hand side of (3.3). This produces

Indeed, the phase-space functions fq, . . . , f4 change only
as a result of the interaction. In this sense, we have
formulated a genuine interaction picture for the quantum
master equation (3.1). This effort is rewarded with a set
of first-order differential equations for the f~'s, which we
derive next.

To turn the operator equation (3.3) into numerical
statements about the f~'s, one must express l:;„,b~. B in
terms of the basic products b~B themselves. This is
achieved in a few steps. First, we utilize relations like

tr (ato p(t))

B a, a'
= 2e '"'e ' ' n*(t) fs(at, a')

27'
(2.27)

may serve as an illustration.

where the trace "tr" is over both the photon and the
atom degrees of freedom.

Equations (2.15) and (2.23) tell us how to compute
expectation values. The example

—iOt —Ct

~At —Ct

)(B t tB)f2'
(' ")(B-B )f,

27r
(3 5)

and corresponding equations for Bf2/Ot, Bfs/Ot, and
Of4/Ot Second, . the extra factors of a and a" are elimi-
nated with the aid of identities like

III. INTERACTING SYSTEMS

A. Equations of motion

We are now prepared to introduce an interaction be-
tween the two-level atom and the single photon mode.
The master equation (2.24) is supplemented by an inter-
action term,

atB =
~

n'+~
~

B =
~

n +~e"'e"'~',
~
B,

~n) ( ~ )
aB= ~n —(1 —K) ~B

Bn* )
=

~

n —(1 —r.)e ' 'e"'~',
~

B.
Oat' (3.6)

Finally, partial integrations produce equivalent replace-
ments as exemplified by

t9

Bt
—p= lpgp+l gp+l' gp (3.1)

BB Bf44-+B
Bat' Bat' (3.7)

for which we choose the Jaynes-Cummings coupling

8;„&p = —2g[p, a a ]
—2g'[p, au+] . (3.2)

The coupling strength g(t) may be a rather arbitrary
complex function of time; its magnitude is the instanta-
neous Rabi frequency.

We write the general solution of (3.1) in the form (2.25)
except that we now allow for a time dependence in the

I

phase-space functions f~ = f~(at, a', t) to account for
the atom-photon interaction. Inasmuch as the factors
bz (t)B(m(t), n'(t), n(t)) take care of the Z&h and E~q con-
tributions to Bp/Ot, the time dependence of the f~'s has
to re8ect the eÃect of l.;„t,

( )
l9 f ~(~t )

Ba' Oa~'
(3.8)

where f(at, a', t) is the four-entry column

(3.9)

and the 4 x 4 matrices G( ), G( ), and 8 are given by
~t

The resulting equations of motion are compactly pre-
sented as
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G(a)

f o o

0 0
0 0

l G(a) G(a)
41 42

o o

0 0

G( ) G(31 32

(."(,,) 0)
G(a)

23
0 0
o o)
oG())

24'0 0
o o )

(3.10)

( fi
f2—t(p f

& "f4)
f2
f4

(f;)
which is more 6tting here. This leads us to

—f = G(")—f+ G(~) f+ Hf,
O- O- O

Ot Or O(p

with

(3.i5)

(3.16)

with

(a) (a )Gi3 =Gi4
(a) (a')

G23 = G24

(a) (at)
G41 G31

(a) (a')
G42 G32

-iAt (A/2-C)t

ia t (—A/2+B C)t (I— J &

—ige ' e( / + ) (1 —a —tt+ 2att),
i ge iEte(A—/2 B+C)t—(1 2', ) (3 11)

( 0 0 0 0
0 0 H23 H24

H3, H32 0 0
lH4g H42 0 0 )

(3.12)

with

iOt (B—C)t
24 23 ig e e n

H3] —H4~
——(1 —2a)ig'e' 'e 'a,

H = H* = —i *e'"'e-( — )'n
42 ——2g e e Q.

(3.i3)

Please note that the matrices G( ), G( ), and H haveat

many null entries. In particular, there are no 8f4/Ba' and
no Bfs/Bat terms in (3.8), and the equation for Bfq/Bt
does not contain an inhomogeneous contribution.

For the numerical treatment of (3.1) the polar coor-
dinates of (2.10) are particularly useful. We rewrite the
derivatives in (3.1) in accordance with

8, , (8 i BI
Ba' 2 (Br r Bp)8, (8 i 8&

, = —,
'e*~

Bat' ' (Br r 8(p)
' (3.14)

and switch from f(at, a', t) to the column f(r, &p, t), de-
6ned by

where 6 = 0—u denotes the detuning between the atom
and the photon, as well as

G(~) (G(o') + G(~))
2

G(~) ' (G(o') G.(o))
2r

(3.i7)

/'o

0
2r 0

l0

0 G(a)

G(a)
23

0 0
0 0

~(-) )
(at)
24
0
o )

(3.18)

( o
0+

31l.* H„

0
0

e '~H32
e'~H42

0
e'~H23

0
0

0
e '+H24

0
0

t
Z(t) = dt' e' e / z(t')

0
(3.2o)

measures the effect of the injected signal. Then

Hsq ——(1 —2a)ig'(t)e' e ( / ) r + e '~Z(t)

(3.21)

for example, shows that H is independent of p, too, un-
less Z(t) g 0. In other words, the injected signal intro-
duces a y dependence into H; no injected signal —no &p

dependence.
We exhibit the p dependence of H by decomposing it

according to

Incidentally, we remark that (3.16) is hyperbolic if
0 & K & 1, as will become clear in the next section where
we Gnd the eigenvalues of G(").

Please note that the matrices G(") and rG(~) neither
depend on y nor on r. The p dependence of H be-
comes more transparent as soon as we combine (2.12)
with (2.10) to arrive at

n(t) = e ' e / e'~ r + e '"Z(t), (3.19)

where

+ ig'(t)Z(t)e*+ e A / e

( o 0 0 0
0 0 0 2e(

(1 2a)ect e
—(B—c)t () 0

o o o o )

—ig(t)Z*(t)e ' 'e '/ e'~

= H(o) + e
—'v Z(+) + e'v Z( —)

( o 0
0 0
0 0

)eCt e
—(B—C)t

0 0
2e(B—c)t 0

0 0

o)
(3.22)
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where the nonvanishing matrix elements of H( ) are

(o) —(o) ~ (~)013 =&14 2r

from noting that f is periodic in y by construction. When
inserting its Fourier series,

„(0) —(o) ~(~) ~ . ~~] (A/2 B+~)]
24 = —G23 —2ZgC P P2T"

II(ol (1 2 )- *,Zt (A/2 t:)t
31 41

f(r ~ t) = ). f~(r, t)e'"',
k= —~

into (3.16) we find

(3.25)

iAt —(4/2+I3 —/)g
32 — 42 — &g r. (3.24)

—fx = G~"l —fg + (ikG~sl + Hapl) ft,
Ot

+Z'+ fA:+, + Z(-) (3.26)

In G(~) and H( ) we encounter matrix elements that
are proportional to 1/r. At first sight, these appear to
cause a problem at r = 0. A closer look, however, will
convince us that these terms are harmless. We proceed

where neighboring k values are coupled to each other only
when there is an injected signal. The critical terms are
contained in the second summand on the right-hand side.
Explicitly they are

0

1 0 0
2p kG(&)' yG(~')

31 32

l I G" I G( )
41 42

(1+k)GI, ' (1 —k)G', ,' l
(1+k)G (1 —k)G

0 0

0 0

f f~i )
ft,2

fas
lA )

(3.27)

The analyticity of the original f~ (at, a', t) in both at and
a' implies that the power series of ft,~(r, t) starts with
pl~I for j = 1 and j = 2, pl~+11 for j —3 and pl 11 for

j = 4 [recall the extra factors of e'~ and e '~ in (3.15)].
Consequently, either there is a power of r available in

ft,~, or the factors k, k+ l,and k —1 supply the necessary
cancellation. Indeed, the 1/r terms are not problematic.

While we are at it, let us mention that all the functions

ft,i (r, t) are even or odd in r Specifical.ly,

f (- t) =(-1)"f ( t)

fa2( r t) ( 1) fk2(r t),
ft 2( r, t) = —(——1)"ft s(r, t),
ft,4( r, t) = (

—1)"ft 4(r—, t)—, (3.28)

which can be regarded either as another consequence of
I

the analytic properties of the fz (at, a', t) functions, or as
following &om the invariance of the polar parametriza-
tion in (2.10) under the replacements r -+ r, p —i y+x-.
So we can extend the r range to negative values in a quite
natural way. This is of some importance for the numeri-
cal treatment.

B. Characteristics

The time-dependent 4 x 4 matrix G~"l of (3.17) can be
diagonalized, provided 0 & K(t) & 1,

/000 0

RG() 00 0 0
00v 0looo- j

R—:VR, (3.29)

where the nonzero eigenvalues +v(t) are given by

v(t) = lg(t) le"'/' K(t) (1 —K(t)) (3.30)

~(t) (1 —~(t))= lg(t)l/K —r.p
K —r(t)

which —quite remarkably —does not involve any of
the atomic parameters 0, I3, C, and 8, nor the natural
frequency a of the photon mode. For 0 & r(t) & 1, v(t)
is positive, and all eigenvalues of G(') are real. As stated
above, in this regime (3.16) is hyperbolic. The matrix R,

(1 —s —r.)

e ' 'g/lgl

t.e iAte At/2v/ge— —

iAte At/2v/— —

* 'g*/lgl

i At At/2—
.ql q

—A/2 (g J

(3.31)
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consists of the eigenrows of Gi l. Up to elementary trans-
formations, R is unique. We note that the expressions

g/~g~ and v/g remain meaningful for g ~ 0, provided the
complex phase of g behaves reasonably in this limit.

The diagonalization (3.29) enables us to decouple the
derivatives in (3.26). This produces

0.8

0.6

(B B t

~

——V—
~
xs = (ik4+ M)xi,

qBt Br
&

+Y~+~x,+, + Y~-~x„„

where the transformed quantities are

(3.32)

0.4—

0.2

0 I I I I I I I I I ~ I I I I I I I I I I I I I I I I

0.4 0.6 0.8 1 1.2 1.4 1.6

M = RHi'lR-'+ R-',R
t

(3.33)
0.6—

0.5—

Y~+~ = RZ~+~R (3.34)
0.4

0.3

Again, different k values are not coupled, unless there is
an injected signal.

Rather than (3.26) we can transform (3.16) to find the
corresponding equation of motion for

0.2—

0.1

x(r, (p, t) = ) xs(r, t)e'"~.
A:=—oo

It reads

(B B) B
~

——V—~x=4 x+Mx
qBt Br ) Bp

+e '+Y~+~x+ e'~Y x.

(3.35)

(3.36)

0 I I I I I i a i a I I I I I I I I I I I I I I I I ~ ~ I I I I I 1 I I I I I

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

FIG. 1. The characteristics in a plane with fixed yo, going
through the point (tp = O, rp = l, pp), are plotted. They
start with ep ——0 and end with e = 1 (left-hand side) or
tc = 2 (right-hand side), respectively. The top graph could
be continued to t ~ oo in contrast to the bottom graph, where
the characteristics end at At = —in(1/2) = 0.69. . . .

Since the matrices Gi"l and Gi~l cannot be diagonal-
ized simultaneously without destroying the unit matrix
multiplying B/Bt, we have to be content with the partial
diagonalization achieved in (3.36).

The curves

(7 rp pp) (two-fold),

(r, rp —f, dr' v (r'), (pp),

(r, rp + f& dr v(r ) &1 happ)

(3.37)

in the three-dimensional w, r, y space are called
(bi)characteristics. Please note that the shape of these
characteristics does not depend on the starting point
(0, rp, po) . For illustration, typical characteristics are
drawn in Fig. 1.

The differential operators on the left-hand sides of
(3.32) and (3.36) can be regarded as differentiations with
respect to ~ along the characteristics. Consequently, the
partial differential equation can be integrated along these
curves similar to an ordinary differential equation. This
is the main advantage of our approach over the common

one that leads to coupled second-order equations of the
Fokker-Planck type.

In the theory of partial difFerential equations [5] the
term "characteristic" originally denotes rather an entire
hypersurface in the definition space than a single curve.
The specific meaning of these surfaces is that a general
initial value problem (Cauchy problem) is improperly
posed if the initial values are given on a characteristic,
because the underlying partial difFerential equation re-
lates the values on a characteristic surface to each other;
it does not determine neighboring values outside the sur-
face. This can be easily seen for Eqs. (3.32) and (3.36).

IV. NUMERICAL METHODS

Explicit finite-difference methods for a direct numeri-
cal integration of (3.32) or (3.36) are not satisfactory with
respect to their stability. Integration along the charac-
teristics (3.37), as anticipated above, is to be preferred.
In contrast to a true ordinary differential equation, so-
lutions with different initial conditions are coupled be-
cause several characteristics intersect. If the values of
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xg are given in r direction on a grid with fixed spac-
ing, the width of the time steps has to be adjusted,
so that the characteristics connect grid points at dif-
ferent times. For the integration we use either a two-
step predictor-corrector scheme, see Fig. 2, or a gener-
alized four-step Runge-Kutta scheme with intermediate
integration points lying on intersections of characteris-
tics through other grid points, see Fig. 3. The two-step
predictor-corrector scheme with j corrector steps is given
by

n2 P21
n3 P31 P32
n4 P41 P42 P43

7l Y2 73 74

(4.2)

with

A generalized four-step lunge-Kutta scheme can be
described by the table

x„(t+ h) = x1,(t) + hy(x1, (t)),

x„' t+h) =x& t +h„+„y(»(t))+ y(x(„'(t + I ))
2

with y symbolizing the right-hand side of (3.32). The
integration along the characteristics is not indicated ex-
plicitly. The size h, of the time step is determined by the
course of the characteristics (cf. Fig. 2). Two or three
corrector steps are most favorable.

xg(t+ 6) = x1(t) + h(p1y1+p2y2+ p3y3+ f4y4) (4.3)

y1 ——y(t, xA, ),
y2 y(t + n2I1 xk + t1P21yl) (4.4)

y3 = y(t+ n3~ xk+ h[P31yl+P32y2])

y4 = y(& + n4~, xl. + &[P41yl + P42y2 + P43y3]) ~

We use the unique table

P(4a —3a+P)
2a(l —2a)

1 1 —P42 P43

6aP —2n —2P+1
12cxP

P(P-a)
2a(1—2a)

(1—a) (a—4P 2+5P —2)
2a(P —a) (6ap —4a —4P+3)

2P —i
12a(P —a) (1—a)

(1—P)(1—a)(1—2a)
P(P —a) (6aP —4a —4P+3)

1—2CK

»P(P —a)(1—P)
6aP —4a —4P+3
12(1—a)(1—P)

(4.5)

with

)

n g 1/2,

6nP —4n —4P + 3 $ 0,

(4 6)

that approximates the solution of (3.32) up to fourth or-
der with arbitrary n and P. The coefBcients n and P
as well as h are determined by the course of the charac-
teristics (cf. Fig. 3). These are calculated by numerical
integration of the ordinary difFerential equations

with the aid of the classical four-step Runge-Kutta
scheme. The restrictions for n and P in (4.6) have no
practical importance, because slightly curved character-
istics, compared to the size of 6, lead to values of n —3
and P= 3.

If v ) 0, the parameter r(t) will reach r. = 1 at a cer-
tain time and then leave the region of hyperbolicity. Fur-
thermore, the numerical properties of the schemes used
are most favorable for r(t) around r. = 2. For these rea-
sons it could become necessary to restart the dynamics

dt 1 1

dr v(t) g~g(t) ~2e~'v(t) [1 —K(t)]
(4.7)

]4t] ~ ~

h

1](
p

FIG. 2. Integration along characteristics with constant yo
using a two-step scheme is indicated. The step size in t direc-
tion is adjusted with respect to the course of the characteris-
tics.

FIG. 3. Several grid points are involved in one integration
step along the characteristics using a four-step Runge-Kutta
scheme. In t direction two intermediate grids are required.
The corresponding time steps are given in units of the total
step size h.
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at some time tR with a new initial value for r Then the
phase-space function «(a', at, tR) with tcq ——K(tR) has to

I

be transformed into a new initial function xz(a', a, tR)
with tc2 ( Ic~ .In the standard parametrization (2.10)
this is achieved by

10

PN

xz(a, a, tR)

x(a, a, tR)
'D(a", a')

2'
1

exp
I I~(tR) —a

1

)~g —K2Ky —K2

a simple Gaussian integral transform.

V. JAYNES-CUMMINGS REVIVALS

(4.8)

n 4
CS

C5 2—

-2
0

Al

10 20 30 40
gt

50

In this section, we study the influence of damping on
the so called Jaynes-Cummings revivals using the method
developed above. If there is no injected signal z(t), it is
sufhcient to assume the superposition

FIG. 5. On the time scale of the revivals a weak damping
of A/g = 0.001 mainly leads to a slight decay of the mean
photon number. The initial @ parameter of the phase-space
functions is ~o ——0.4, a value only a little less than the one
corresponding to the Wigner function.

pF — dao
I «) (&o I2F p

(5.1)

of coherent states Iao) with cxo = Toe'~' for the ini-
tial state of the field. This is equivalent to disregarding
the off-diagonal elements of some Iao)(aoI expanded in
a Fock basis. This simplification is possible because of
the decoupling in (3.26) for Z + = 0. The full informa-
tion about the atomic inversion and the photon number
is contained in fo, the k g 0 terms are not needed.

All results shown in Figs. 4—8 refer to the case of zero
temperature (v = 0) and no explicit atomic damping

(8 = O, C = 0). The amplitude of the coherent initial
state of the field is ro ——3, while the atom is in its ground-
state initially. The coupling constant g is taken to be
constant. The phase-space functions are discretized in r
direction on the interval [0; 5] with a step size of Ar =
0.0025.

Figure 4 shows the undamped revivals for comparison.
In Figs. 5—8 the ratio A/g is increased by factors of 10
in three steps from A/g = 10 to A/g = 1. For the
very weak damping of A/g = 10 s the revivals are essen-
tially unaffected, the main effect being a slow decay of
the mean photon number. For A/g = 10, we observe
a much faster decay of the photon number; the revivals
are still there but with a markedly reduced amplitude. A

10

8~ PN

10

AI

Al

-2
0 10 20 30 40

gt
50

10 20 30 40

FIG. 4. As a reference, the pure Jaynes-Cummings dynam-
ics without damping (A = 0) is plotted. The calculation was
performed using the Wigner function (m = —). Here and in
Figs. 5—8, curve PN shows the photon number (ata), and
curve AI the atomic inversion (a ).

FIG. 6. A damping of A/g = 0.01 causes a strong reduction
of the amplitude of the revivals in addition to the decay of
the photon number. The atomic inversion is still oscillating
around values near zero.
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10
]

4

2

Al

f

t

1

!

!!

-2
10 20 30

FIG. 7. With a damping of A/g = 0.1 revivals are no longer
visible. In addition to the decay of the photon number, a
decay of the atomic inversion can be seen.

damping of A/g = 10 ~ destroys the revivals completely;
only the few initial Rabi oscillations survive. Finally, for
the strong damping of A/g = 1, the mean photon num-
ber decreases monotonically and no longer exhibits Rabi
oscillations at all; these are still present in the atomic
inversion though. Please note the different time ranges
in Figs. 5—8.

In addition to the numerical results reported in Figs. 5--

8, we have calculated some of the long-time plots given
by Eiselt and Risken [6] and found no disagreement [7].

VI. SUMMARY

We have used the explicit dynamical operator solutions
for a damped photon mode and a damped (or pumped)
two-level atom to introduce a genuine interaction picture
for the 3aynes-Cummings model with dissipation. The
numerical phase-space functions that parametrize the
time-dependent density operator are appropriate general-
izations of the familiar Wigner function and its relatives.
These phase-space functions obey a hyperbolic first-order
partial differential equation; their time-dependence orig-
inates solely in the atom-photon coupling whose strength
is measured by the Rabi frequency. The numerical treat-
ment is based upon integrations along the characteristics
of the hyperbolic equation of motion. The generaliza-
tions to more than one photon mode or atoms with more
than two levels are immediate.

As an application we have looked at Jaynes-Cummings
revivals in the presence of photon damping. We find
that even for a relatively short photon lifetime (about
30 periods of the vacuum Rabi oscillation in Fig. 6) the
first revival is still noticeable. Further applications of the
interaction-picture formalism to laser cooling and atom
diffraction are hinted at in Appendix B. Results will be
reported in due course.
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APPENDIX A: SQUEEZED RESERVOIRS

10

Photon master equations that are generalizations of
(2.1) appear in some problems. An example is given by
Eq. (1) of Ref. [8] which has the form

D——(a p —2apa + pa )
2

2

2
(at p 2at pat + pat )2

(A1)

with Z~b as in (2.1). In the jargon of quantum optics,

TABLE I. Identification of the parameters used in this pa-
per with those of Ref. [8].

gt
10

FIG. 8. The quite strong damping of A/p = & makes the
initial Rabi oscillations of the photon number disappear, too.
Both the photon number and the atomic inversion reach their
stationary values quickly.

This paper
Av

A(v + I)

Ref. [8]
a Re [p +x + pbb~2]

7 + o Re [pbb+i + p ~2]
-'np, 60 (Zg + l:2)

n —v+ -'a Im [(p —pbb)&i + (pbb —p")&2]
—,'np, Co (6, —C2)
X8 (Pb Cl + P b+2)
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the terms proportional to D and D' describe a "squeezed
reservoir, " those proportional to d and d' are colloqui-
ally associated with "injected coherence. " The restriction
]D] & Agv(v+ 1) applies; otherwise, (Al) would not
conserve the positivity of p. For the record, Table I re-
ports the relation between the parameters in Ref. [8] and

the ones used here.
The formalism presented in the present paper can be

extended and then used to handle (Al) as well. The ex-
tension consists of introducing another parameter, A(t),
into the fundamental solution (2.2). This generalization
reads

B(I(;(t),A(t), n*(t), n'(t))
1 ( 1 A t, ~ t, , A*

: exp
~

—(at —n*)' —r(at —n*)(a —n') + —(a —n')
(r2 —A'A 2 2

(A2)

which equals (2.2) for A:—0. The time dependences of K, A, A', n, and n* are here determined by

„ tr A'I
K

dt
( Ae

((A+2 ) 2d 0 ) fA'I
d* —A d K

0 2d' —(A —2i(u) ) ( A

( -D-d )
A(v+ 1)
D' —d—* )

and

d (n' l & —(A/2 —i(d) d* ) f n' ) f z' )
dt (n ) ( d —(A/2+zu))) (n ) (z) 'I+I (A4)

which replace Eqs. (2.3). Rather than Eqs. (2.11) and
(2.9) we now have more generally

p(') = /
' fo(" .')~(.(~)»(~) *(~), '(~))

i
&oP =

&2 [P, P ]+ 4~[P ~+~-]

r——(o.+(r p+ pa+(r )8

+— dk'N(k')e '" 'cr po+e*" '
4

(B2)

and

fo (at, a") = tr(p(0) B(1 —eo, —Ao, at, a")), (A6)

with ro ——K(0), A() ——A(0), at = n*(0), and a" = n(0).
All other equations have to be modified accordingly. We
note that the trace in (A6) is certainly well defined if the
inequalities 0 & ro &

2
—

~Ao~ are obeyed.

accounts for the free unitary evolution and the nonuni-
tary spontaneous transition to the ground state, and

Zi p = ——ge' [p, o cos(kz)] ——g'e '
[p, o+ cos(kz)]

2 2

APPENDIX B: LASER COOLINC

0—p = l.op+ l.gp,Bt (Bl)

where

The interaction-picture formalism can also be applied
to quantum master equations of quite a different struc-
ture. Consider, for instance, the one-dimensional laser-
cooling model recently used by Mplmer, Castin, and Dal-
ibard [9] for a comparison of the "Monte Carlo wave-
function method" with a direct numerical integration.
Here, the state p(p, z, (r+, o, t) is a function both of the
dynamical variables o+, 0. for the internal two-level de-
gree of keedom and of the momentum p and position z,
which are the dynamical variables for the center-of-mass
motion along the z axis.

The master equation is

(B3)

represents the unitary coupling to the standing laser
wave. Except for notational changes, this is the mas-
ter equation of Ref. [9]. In (B2) and (B3), m is the mass
of the atom; hQ is the energetic separation of the atomic
levels; I' is the rate at which spontaneous transitions oc-
cur; k and ~ specify the spatial and temporal periodicity
of the laser wave; g is the (complex) coupling strength;
and the numerical function

dk'
sk [1+(k'/k)'] for k" & k',

dk'N(k') = & (B4)
or k'2 & k2

is the probability to find the z component of the momen-
tum of the spontaneously emitted photon in the range
&k'. . .h(k'+ dk'). Incidentally, we note that the master
equation (Bl) with (B2) and (B3) appears also in the
context of atom diffraction by a standing light wave [10];
the major difference is an essential time dependence of g,
whereas g is constant in the context of laser cooling.

For g = 0, the fundamental solutions of (Bl) are
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1 i
pi(»K t) = —expl —(s+ hKt/m) p —iKz

I

r4 qh

x e 'o+o + u(s, K, t)o o+

wherein the initial phase-space functions f~(s, K, t = 0)
are given by expectation values at t = 0,

f, (s, K, 0) = tr([p, (s, K, 0)]tp(0)) .

With (87) the master equation (Bl) appears as
1 i

p2 (s, K, t) = —exp
I

—(s + hKt/m) p —i Kz
I

cr o+,
4 (h

1 i
p (s, K, t) = —exp

I

—(s + hKt/m) p —i Kz
I

(O
I

——&o
I p(t) =

)
dsdK ~.Of,

~-at '

ds dK

2
(89)

1 i
p4( ,sKt) = —exp

I

—(s + hKt/m) p —iKz
I2 (h

—I' t/2 iAt (85)

Upon expressing 81p~ in terms of the p~'s themselves,
one finds the differential equations obeyed by the f~'s.
When we combine the f~'s into a four-entry column f, as
in (3.9), this equation of motion reads

where the distance s and the wave number z are numer-
ical parameters that are real but otherwise unrestricted,
and the real function

t

u(s, K, t) = dt'I'e (86)
0

x dk'X k' exp ik' s+ h~t' m

—f(s, K, t) = E +)(s, Kt)f (8 —hkt/m, K + k, t)

+E (s, Kt t)f (s + hkt/m, K —k, t) .

(810)

The nonzero entries of the 4 x 4 matrices

Gfs dK
4

p(t) = f ) ft( , t)pts( s, t), ss
2=1

(87)

is an integral transform of N(k').
For the general solution of (81) we thus make the

ansatz

are

E(+)

( 0

0
E(+)

31
(E( )

0 E(+)
13

E(+)
23

E(+) p32
E(+) p42

g(+) )
E(+)

24

0

0

(811)

E(k) E(+)) E + (E(+)) —'D& /2'

@(6) (@(+))p t ib t[ It' t/—2 pis—+ I' t/2 +is
( t)]2"

@(+) —(@(+))*= -ge '+t[e "t/2e+*8 —e '/2e+* u(s p hkt/m, K + k, t)],2" (812)

where 4 = 0 —~ is the detuning between the laser and
the atomic transition, and

interesting ones are (p) (t) and (p2) (t). They are available
as the n = 1,2 cases of

k
8(s, K, t)—:—(s + hKt/m)

2
(813)

is a s, K, , and t dependent phase.
As soon as the f~ 's have been computed in accordance

with (810) and (88), time-dependent expectation values
can be evaluated. With respect to laser cooling, the most

/ O)"
(p")(t) =

I
th —

IBs)
x([e '+u(»K t)]fi(»K t)+f2(»K t)}l =o

~=0
(814)

valid for n =- 0, 1, 2, . . .; this involves
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u(s, K = O, t)

3 sin(ks) cos(ks)+
2 ks (ks)z

sin(ks)
(ks)s

(B15) (EIs + Ezs )I s=o = (EI4 + E&4 ) I
s=o = 0 (B16)

The sum e + u(s = 0, K = O, t) = 1 is time indepen-
dent; in conjunction with

this property ensures that the trace of p(t) is conserved,
as it must be.
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