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Light emitted from laser-driven atoms often has squeezed quadrature Huctuations reBecting the
phase dependence of the atomic source excited into a coherent superposition by the driving 6eld.
In this paper, we study the maximum squeezing in the emitted light fields from three-level atoms,
paying particular attention to the role of atomic coherences in governing the optimum squeezing
which is possible. Some phase-dependent nonlinear optical processes have the potential for substan-
tial quantum noise reduction at useful intensities: for example, four-wave mixing involving atomic
systems has already been used to generate quadrature-squeezed light. The theoretical description of
such a source is generally complicated with damping processes, coherent and incoherent pumping,
and so on, all needing to be taken into account. Fully quantum treatments are available, but the ba-
sic physics of the process is often difficult to grasp in the necessarily complicated analysis. Although
less important from the point of view of efficient practical sources of squeezed light, studying the
generation of squeezed light in simpler systems such as two- or three-level atoms interacting with one
or two modes (as in Jaynes-Cummings models) or in spontaneous emission or resonance fiuorescence
gives greater insight into the fundamentals of the squeezing process. In particular, the relationship
between the atomic coherences and the degree of squeezing in the generated 6elds can be explored.
We study the maximum (optimized) squeezing that can be obtained in the emitted fields from the
irreversible decay from three-level atoms for any choice of initial conditions, excitations, and decay
process, for all quadrature components, and for all possible configurations (V, A, and "ladder" sys-
tems). We show that for V and A systems, optimum squeezing is actually associated with a two-level
state (in a suitable basis) involving a single one-photon coherence, but for ladder systems the state
for maximum noise reduction is not equivalent to a two-level system and involves a single two-photon
coherence and no intermediate state population. We pay particular attention to whether the total
6eld is in a minimum uncertainty state and the nature of the atomic state associated with maximum
squeezing, especially whether it is a mixed or pure state. In the case where the initial free 6eld has
a zero amplitude at the detector and the source atoms are con6ned to a region small compared to
the wavelength (Dicke source) we show that the squeezing in the total field is given in terms of the
squeezing in the source 6eld and hence related to atomic populations and atomic one-photon and
two-photon coherences for the case of three-level atom. Previously unconsidered source-free field
interferences terms are shown to be zero. The choice of quadrature phase and frequency is optimized
to minimize the source 6eld normally ordered variance. We then minimize further with respect to
the choice of atomic density matrix elements subject to the constraints that the density matrix is
Hermitean, positive, and has a trace equal to unity. In all cases we find that the optimum squeezing
is produced when the source field is in a minimum uncertainty state.

PACS number(s): 42.50.Dv

I. iNTRODUCTION

The squeezing properties of the electromagnetic (em)
Geld are defined in terms of its quadrature compo-
nents measured at a particular frequency and phase [1].
Squeezing occurs when the variance of a quadrature com-
ponent of the electric field becomes less than that for the
vacuum state, and this situation signifies a nonclassical
state of the field. In general this variance will be time de-
pendent, though with a suitable choice of the quadrature
frequency a stationary contribution to the variance can
occur and any high frequency oscillating terms could be
averaged away. Apart from its significance as a nonclassi-
cal realization of the em field, squeezed light fields exem-
pIify situations of phase-dependent quantum Quctuations

or noise and have potential applications in high preci-
sion interferometry, optical communications, and atomic
spectroscopy [1].

The experimental realization of squeezed states of light
may be accomplished using a variety of phase-dependent
nonlinear optical processes [1]. Some (including para-
metric amplifiers [1,2], second harmonic generation [1,3],
and four-wave mixing [1,4]) can involve nonresonant in-
teractions between quantized light fields and atomic sys-
tems. Others (including two-photon correlated emission
lasers [1(c),5] and Rydberg atom lasers driven by coher-
ent fields [l(c),6]) can involve interactions closer to res-
onance. All involve the atomic systems being subjected
to phase-dependent excitation mechanisms resulting in
the generation of squeezing in the light Gelds to which
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the atoms are coupled. Nonzero atomic coherences will

signify the phase dependences generated in the atomic
system along with the phase-dependent features of the
Geld that characterize squeezing.

The theoretical description of the type of system de-
scribed above is generally complicated with damping pro-
cesses, coherent and incoherent pumping process, and so
on having to be taken into account. In all of the above
cases fully quantum mechanical treatments are of course
available, as, for example, in four-wave mixing when the
fields are close to resonance and spontaneous emission
effects need to be included [7]. However, the physics of
the atomic systems involved is often lost in the details;
indeed for the nonresonant processes the atoms are ef-
fectively described in terms of nonlinear optical suscepti-
bilities. Although less important &om the point of view
of experimentally generating squeezed light, studying the
generation of squeezed light in simpler systems such as
a two-level atom or a three-level atom interacting with
single-mode cavity fields, two-mode cavity fields (as in
Jaynes-Cummings models), or coupled to empty multi-
mode fields (as in spontaneous emission and resonance
fluorescence) is significant in terms of giving greater in-
sight into the fundamentals of the squeezing generation
process. In particular the relation between the atomic
coherence properties and the amount of squeezing can
be studied.

A large number of studies of such simple systems have
been carried out [1] for the reversibte single- or two-mode
field cases (Jaynes-Cummings models) where the squeez-

ing can be related to the phase-dependent initial state
of the atom(s) and the field. In these models coupled
Heisenberg equations of motion for the cavity electric
field operators and the atomic transition operators can
be derived. There is no simple relationship between the
electric field and atomic operators at the same time and
so the squeezing cannot be related in a simple way to the
atomic coherences.

Squeezing can, however, be obtained in a variety of sit-
uations including (i) an excited two-level atom coupled
in a single-mode cavity in a coherent state [8(a)], (ii) a
two-level atom excited coherently and coupled to a single-
mode cavity in a vacuum state [8(b)], (iii) a three-level
cascade atom with the outer states excited coherently
coupled to a two-mode cavity in a vacuuin state [8(b)],
(iv) a pair of two-level atoms in a multiatom (atomic)
squeezed state coupled to a single-mode cavity in a vac-
uum state [8(c)], (v) many two-level atoms coupled to
a single mode cavity with a variety of initial conditions
(atoms in a coherent state with the cavity in the vacuiim
state, atoms all in the excited state with the cavity in the
coherent state, and atoms all in the ground state with the
cavity in a coherent state) [8(d)—8(f)], and so on.

Other studies of simple systems have been carried out
[1(c)]for the irrever3ible multimode field cases. Here the
total electric Geld at large distances can be expressed
as the sum of a free field and a source-field [9]. The
source-Geld can be related to the atomic transition op-
erators at suitable retarded times. On the basis that
the source-Geld efFects can be separated from the &ee-
Geld effects and that the latter Geld does not contribute

to squeezing, properties of the total field relate to the
atomic coherences and populations of the source atoms
at the retarded time. The atomic coherences and popula-
tions could be in a steady state as in resonance scattering
experiments with a constant exciting Geld or they could
be changing as in experiments where coherences are ini-
tially produced by a pulsed light Geld and allowed to
spontaneously decay.

Squeezing in the resonance scattering case for a two-
level system was predicted by Walls and Zoller [10]. Res-
onance scattering squeezing for the cases of a pair of two-
level atoms also occurs [11(a),11(b)]as it does for the case
of many two-level atoms [12]. Three-level A systems in
a somewhat unsymmetrical configuration produce steady
state squeezing [13(a)] in resonance fiuorescence, though
only transient squeezing in a symmetrical configuration
with a nonoptimized choice of quadrature components
[13(b)]. With recent developments in the study of reso-
nance Quorescence &om single laser-cooled trapped ions,
it may be possible to study the squeezing &om such sim-

ple sources using heterodyne detection of the Huorescence

[14(a),14(b)].
Pertinent to applications of squeezed li'ght is the

amount of squeezing that can be achieved. For per-
fect squeezing in a quadrature component the Heisen-
berg uncertainty principle demands that the variance in
the other quadrature component becomes infinite. Col-
lett and Walls [15] show that for critical point conditions
in several nonlinear optical processes (optical bistabil-
ity, parametric oscillation, and second harmonic genera-
tion) perfect squeezing is theoretically possible. Quan-
tum electrodynamic bounds on squeezing have also been
determined [16]. Squeezing at the 70%%uo level (—5.2 dB)
has been achieved [17] experimentally in purely optical
systems.

For the simpler systems of interest here involving the
irreversible behavior of two-level and three-level atoms
our aim will be to find out the maximum squeezing that
could be achieved in the total electric field for alt times
and for all choices of the quadrature frequency and phase
and to determine the nature of the atomic state asso-
ciated with maximum squeezing. In particular, is the
atomic state pure or mixeL? Also does the source field
correspond to a minimum uncertainty state? Naturally
for any specific process the amount of squeezing and its
time dependence will depend on the detailed dynamics
involved in the process and an optical Bloch equation
treatment would be needed to Gnd the best squeezing in
a specific process. For example, light emitted in reso-
nance fiuorescence from a two-level atom [10] can pro-
duce steady state squeezing which is largest for exact
resonance when the Rabi &equency is equal to the up-
per level spontaneous decay rate divided by i? 6, and in
this situation the atom is not in a pure state. However,
the squeezing so obtained is not the largest it can be
for light emitted from a two-level atom [ll(b)]. Barnett
and Knight [18] show that the maximum squeezing ac-
tually occurs for a pure atomic state whose Bloch vector
is at 120 &om the orientation of the pure excited state.
No such analysis has yet been carried out for three-level
atoms and this paper therefore deals with such three-level
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cases.
As will be emphasized in this paper the determination

of the optimum squeezing does not involve a considera-
tion of detailed dynamics, but can be obtained from a
consideration of the atomic density matrix elements that
determine the variance of the quadrature components at
the retarded time for this irreversible case. As we will
see there are constraints on the matrix elements of the
atomic density operator p that follow &om consideration
of the Hermiticity, unit trace, and positiveness of p (de-
tails are given in Appendix B).Again we emphasize that
the optimum squeezing found is the best that could ever
occur in any choice of process, quadrature &equency and
phase, and indeed observation time. Such an amount of
squeezing may not be achieved in any particular process
and if it did it could correspond to a negative oscilla-
tion of a time-dependent variance. Having obtained the
optimum squeezing it would then be of interest to ex-
amine specific processes (such as resonance fiuorescence
from driven three-level systems) to see if this optiinum
can be reached, especially at steady state and/or with
time averaged observation conditions.

In this paper we study the optimum squeezing obtained
for three-level systems in the A, V, and ladder con6gu-
rations. We will relate the squeezing in the total elec-
tric Geld as specified in terms of the normally ordered
variance of the quadrature components to the equivalent
variance for the source field and hence to atomic popu-
lations, atomic one-photon coherences, and atomic two-

photon coherences for the three-level atom. The choice
of quadrature phase, quadrature frequency, and observa-
tion time here will be optimized to minimize the source
field normally ordered variance. We then minimize fur-
ther with respect to the choice of atomic density matrix
elements subject to the aforementioned constraints. For
the A and V configurations we first show that a change of
atomic basis establishes the equivalence of the three-level
system to a two-level system plus an uninvolved third
level. The optimum squeezing can then be obtained an-

alytically using the method of Lagrange undetermined
multipliers. The ladder configuration cannot be reduced
to a two-level case (or indeed a pair of two-level cases)
and the optimum squeezing is obtained via numerical
methods. For all three systems we find that the source
field is in a minimum uncertainty state.

The concept of squeezing in the total electric 6eld and
its criterion in terms of the normally ordered variance of
the quadrature component is briefIy reviewed in Sec. II.
The relationship of squeezing in the total 6eld to squeez-
ing in the source field does aot seem to have been ex-
amined in detail elsewhere, unlike for the case of the
spectrum where it has been shown [19,20] that the two-
time correlation function for the total electric field at an
asymptotically placed detector is givea. by the two-time
correlation function of the source 6eld, provided the ini-
tial (driving) field. involves classical field amplitudes that
are zero at the detector. Here the normalized variance
of the total electric 6eld quadrature component is first
shown to be the sum of equivalent variances for the &ee
6eld and for the source field together with interference
terms between the source 6eld and the free 6eld, which

II. THEORY OF SQUEEZING
FOR MULTIATOM SOURCES

A. General squeezing expressions

The electric field operator E for the quantum em field
can be written in terms of quadrature components E~
and Ep = as [1]

E (R, t) = Ey cos (&ut —k R + P)

+Ep sin ((ut —k R+ P) . (2.1)

The quadrature component of the electric field Ey at &e-
quency ~, wave vector k, and phase P is given in terms
of the positive, negative components E+ as [1]

Ep ——E+e'~ + E e (2.2)

depend on the quadrature phase. For the case where
the total 6eld involves classical field amplitudes that are
zero at an asymptotically placed detector, we show that
the normally ordered variance of the free-Geld quadra-
ture component together with most of the interference
terms can be set to zero. The elimination of the final
two (phase-dependent) interference terms requires a con-
sideration of certain free-field —source-field commutators
(details are in Appendix A) simila." to those considered
in other contexts [20—22].

In general the commutators are nonzero, but for the
equal time situation of interest they can be shown to be
zero for the case where the source atoms are located in
a region whose dimension is small compared to the res-
onant wavelength (Dicke atom source). The single-atom
system under study here is such a source. For such Dicke
atom sources the final interference terms are then zero
and the major result that the normally ordered variance
for the total 6eld equals the equivalent variance for the
source field is demonstrated. Thus optimizing the source
6eld squeezing also optimizes the total Geld squeezing.
Expressions used for the study of the source field for the
three-level atom case are obtained. A short review of
source-6eld squeezing and criteria for a minimum uncer-
tainty state in the source field is also given in Sec. II,
along with the expressions for the optimum value of the
normally ordered variance of the source-field quadrature
component for all choices of quadrature phase, &equency,
and wave vector.

Section III deals with the speci6c three-level atom
source in A, V, and ladder con6gurations. Following the
description of one-photon and two-photon coherences in
terms of the original and modified atomic basis states,
five distinct types of squeezing for three-level sources are
distinguished, including the important cases of two-level
and three-level squeezing. Speci6c expressions in the nor-
mally ordered and nonordered variances of the source-
6eld quadrature components are given and the results of
optimizing the choice of atomic state for all three configu-
rations are presented. The details are given in Appendix
C. Results are summarized in Sec. IV.
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where

( = art —k . R+ P. (2 3)

The normally ordered variance of the quadrature com-

ponent Ey is defined by

For convenience we will generally interpret E+, Ey, etc.
as specific vectorial components along»~it vector e, un-
less the vectorial nature of the quantity is specifically
indicated. The operators E+, etc. are Heisenberg field
operators at position R at time t.

The positive and negative &equency components can
be written in terms of the modes A for the quantum em
field as and is related te the variance (d Es via

(2.13)

E+ = ) fg(R)ag (2.4) AE@ —— . AE~. + +,E (2.14)

where
1

g2e V)

(2.5)

(2.6)

since it is constructed &om the variance by putting all
creation operator terms such as E to the left of all an-
nihilation operator terms such as E+.

Since the commutator E+,E for the total field op-
A ess

erators E+,E is a positive c number

and where mode A has wave vector kz, frequency erg, and
polarization vector ep. The annihilation and creation
operators az and at& obey the usual Bose commutation
rules

E+ E— ) fe fen ) 0

with fg = e f~ (R), it follows that

(2.15)

cLp
& +& = op& ~

r
(2 7) E+,E = E+,E = ~ ~'. 2.16

It is well known that simultaneous precise measure-
ments of the two quadrature components cannot occur
as they satisfy the commutation rule

Hence the criterion for squeezing is that the normally
ordered variance must be negative

W

Ep Ep ——2i E+,E (2.s) : AE~. & 0. (2.17)
and a Heisenberg uncertainty principle result for the vari-

ances LE&, LE& is satis e

dE' dE' & E+ E- (2.9)

The multimode coherent state
~
a)

~ai t a2, . . . , ap t. . .) is an eigenstate for E+ with associ-
ated classical field t (R)

The case where equality occurs in (2.9) is that of a
so-called minimum uncertainty state (MUS) for the total
electric field E Here the va.riances b,02 and the mean

0 are de ned as

with

E+ ~a) = f (R) ~a),

f(R) =) ap fp(R).

(2.1s)

(2.19)

0 =Tr OWO

(2.1o)

(2.11)

For such a multimode coherent state with W (0) =
~
a) (a

~

it is easy to show that the normally ordered variance in

any quadrature component LE&, . AE& .. is zero, so

that

LE' ( E+ E (2.12)

where W (0) is the initial density operator for the quan-
tum em Beld and its sources and the trace is taken over
their quantum states.

The quadrature component Ey of the total em field
is said to be Squeezed relative to the other quadrature

ees

component Ey if the variance LE&2 is smaller than
that for the MUS, that is,

AE~ —— E+,E

(2.2o}

(rhse) ( (rhse)
coherent

which is another criterion for a squeezed state.

(2.21)

Thus a squeezed state has a variance less than that for
any coherent state, including the vacuum state
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At this point we introduce the concept of optimum

squeezing. This means that the variance AE& of one

quadrature component Ey is to be as small as it can be
taking into account all possible choices of the quadrature
components (P, ~, k) and all possible choices of the state

P

W (0) for the field and its sources. Since the variance

AE& satisfies 2.14, with E+, E given by the

positive result (2.16), it follows that the optimum squeez-

ing requires us to find the situation where: AE& . is

as negative as possible. In this case the variance AE@
will be smaller than that for coherent state by the largest
possible amount. This situation is referred to as that of
maximum squeezing also.

The previous discussion applies to the general case of
the quantum em field irrespective of any particular state
the field and its sources might be in and for all types of
sources of the field. Next we consider the specific case of
interest, where the Geld sources are atomic systems.

B. Squeezing for the Held with multiatom sources

duced via the Power-Zienau transformation [23] (equal
to the old electric displacement) and, as it is the opera-
tor involved in any subsequent theory of photodetection
of the field, it is this new electric field and its squeezing
properties that we will continue to focus on. The free
field has the same time dependence that would apply if
there were no atomic systems present.

The above expressions are valid for all R,t. In the usual
case where we detect the field at a large distance from
the source atoms, the asymptotic form of Ep is important
and for t & ~R —Rg~ /c with R large, we have

(2.25)

showing the inverse distance dependence at large R = ~R~

and the dependence on the dipole acceleration.
The electric dipole operator for the A atom can be

written as the sum of an upward component d& and a
downward component d& as

The combined system of the quantum em Geld and
the atomic systems may be described via the multipo-
lar Hamiltonian [23] and the interaction between field
and atoms given to a good approximation by the elec-
tric dipole term. The total electric field operator E can
then be expressed without further approximation as the
sum of a free field term-E~ and a source field term-Es
[9,20,22]

ci~= d~+8~ (2.26)

d~= A ci'~ = d,~ (2.27)

where with atomic states ~i),
~ j) whose energies are Ru;,

hen~, etc. and i )j signifies u; & u~

where

E = EF+Eg, (2.22)
The A, = ~i) (j~ are atomic transition operators and

d, i = (i~ d~
~j) are dipole elements. Approximating d~

by its free evolution expression gives the familiar form
for Es at large distances

E~ = ) fp (R) ap (0) e ' "'+ H.c.

1

= ) i
~ ~

eqe*("" "' aq (0) + H.c. (2.23)
q2epV)

Es = $ (R —RA)4xcoc

~R R&l

Es=Vx Vx )4m ep
A

xO/ t—/R —Rg[l
)

(2.24)

For the source field the sum in (2.24) is over different
atoms A whose yosition is at R~ and whose electric
dipole operator d~ - 0 is the usual Heaviside function,
zero for negative argument and unity for positive argu-
ment. No arbitrary assumptions on boundary conditions
are actually required to produce the above retarded form
for the source field, where the Geld at R,t depends on the
dipole operator d~ at the retarded time t —~R —R~] /c.
The total electric field E is the new electric field pro-

(2.28)

E+ = ) f„(R)a„(O).-'-"
A

(2.29)

For the source-field terms we find that, provided the typ-
ical atomic transition &equencies w, ~ ~0 are large com-

The positive and negative frequency components of
E are defined by (2.4) and (2.5). Solving the Heisen-

berg equations of motion for ap, a& along with the use
of Laplace transform methods and standard mode sum-
mation methods that enabled the result (2.22) to be ob-

tained also enables expressions for EF,E& to be derived.
For the free-field terms
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pared to the decay rates, to a good approximation

Ez+ = t7 x V x )47reo - !R—R~[

IR-R
!x8! t—

c
(2.31)

t) (R —Rx
i

i)j
((R —Rx

)
x Ax

[
t —' ') d. nt

l IR —R~!

(2.34)

The component along a unit vector e which is perpen-
dicular to R —R~ is easily obtained as [9]

d+! t
A 1 ~ A

E
c

!R-R!
A

(2.32)

Es+ = ~.E+ =
n2tt d. . dA ~t

IR—R*l)1 ) i '&''j'
( c

4' 6'pc !R—R~!i)jA

(2.35)

E , ) (R —Rx)
i&JA

( ~f

R RJ x tax ('t I

— *I
) d

!R—R~! )
(2.33)

ttttt A

Similar asymptotic expressions for E&+, E& can be ob-
tained

dtt

Es =e.Es =
n2 tt d ip

~

t IR—R*l
)1 ) w v ~ U

4' cpc !R—Rgi~)qA

(2.36)

These expressions are to be used in the treatment which
follows of the fields produced by three-level atoms.

The squeezing in the total field can be considered in
terms of substituting EF + Es for E+ in the expres-
sion for the quadrature components, variances, etc. , with

E&&,Eyp given in (2.2) but with E+ replaced by E& or

EF+. The normally ordered variance of the total field is
given as

: AE~. —— . AE~F . +:AEys: + EFEs + EsEF —2 EF Es

+ EFEs + Es EF —2 E Es

+2 EFEs + Es EF — EF Es — EF Es (2.37)

W (0) = Pdi (0) PI" (0), (2.38)

Thus the normally ordered variance equals the sum of
the normally ordered variances for the free Beld and for
the source field together with possible interference terms
involving both the free field and the source field. These
interference terms are phase dependent. The following

question then arises: under what conditions can the nor-

mally ordered variance for the total field be equated to
the normally ordered variance for the source-field atoms?
A similar situation occurs for the spectrum of the em
field, where the usual practice is to replace the total elec-
tric field by the source field in the two-time correlation
functions that determine the spectrum [19,20]. In prac-
tice the atomic systems are driven by fields which would
have classical electric fields that are zero at the position
R of any photodetectors and ultimately this enables us
to eliminate most of the interference and the free field
terms here, as it does for the spectrum. A further condi-
tion such as Dicke atom sources is required, however, to
eliminate the remainder of the interference terms.

The density operator W(0) can be written as

I

where pdi (0) is the initial density operator for the atoms
and pz (0) for the field. The initial field densify operator
can be expressed in terms of the Glauber-Sudarshan P
representation as

Then

pp (0) = f d n P(n, n') ~n) (n~~ (2.39)

Expx (0) = f d'n P(n, n') dx (R,t) (n) (n),

px (0)E = f d n P( , *n)(nn) ( )d (R,nt), x
where

E~ (R,t) = ) ape ' " e. fi(R) . (2.40)
A

The situation of the driving fields being zero at the de-
tector is expressed as follows: for important n in phase
space [where P (a, a') is significant] the corresponding
classical fields fy (R,t) are zero at the detector.

This condition enables most of the terms in (2.37) to
be set to zero. First, the normally ordered variance for
the free field is zero. For some typical terms
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EF ——TrEF pA 0 pF 0

d 'n P(n, n*) Tr E+ in) (ni pA(0) = d'n P(n, n') EF (R,t) Tr[in) (ni pA(0)] = 0,

E+ = dnPa, n*FF RtTr 0 0 pA0

EFEF —Tr EF EF pF 0 pA 0

= Tr EF+ pF (0) EF pA (0)

da P Q. ,
a' Tr EF+a a EFpA 0

du P Q. , o,
* fF R, t EF R)t Tr o. a pA 0 =0.

(2.4l)

(2.42)

(2.43)

Hence

: AE&F: = 0. (2.44)

Second, many of the interference terms are zero. For some typical terms

EgEF ——Tr EgEF pF 0 pA 0

o. P a)o.* Tr EsEF a a pA 0

da P ~, n* EF Rt Tr E~+ (2.45)

EF Es =Tr EF Es pF p

= Tr E& pF (0) EF pA (0)

da Pa)a' Tr E~ a n EFpA0

da P a)a' E'F R, t Tr E~ n a pA 0 =0. (2.46)

Hence

Es+EF+ = EFE = E E+ = E—E+

(2.47)

where we will take Ri ——R2 ——R (asymptotic) and ti
= t2 ——t, where t ) iR —

RAi /c for all atoms present.
Under the same approximation as before that the atomic
transition &equencies are large compared to decay rates

we find (see Appendix A)

For the normally ordered variance we now have

: AE@ -. —— -. AE~~ .. + EFE~+ e '~

+ E~ EF e (2.48)

1
Q= —) V'2 X V'2 X

4X~ORA2
AB

(XViX iViX K
i4xePRBi )

(2.51)

To proceed further we need to consider the commuta-
tor

where

C = EF (Ri, ti), Es, (R2, t2)

Es. (R2, t2), EF (R2) t2)

(2.49)

(2.50)

K = dB (tl —TB1),dA (t2 —7A2) 8(ti —TB1)

X8(t2 TA2)8((t2 7A2) (tl TB1))

dB(ti + ~Bi), dA(t2 —TA2) 8(ti + 7Bi)

X8(t2 —TA2)8((t2 —TA2) —(t, + 7Bi)) (2.52)
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and the time delays and distances are defined by

&»= IR, —R&l =~», (2.53)

RB1 = )Ri —RB) = c7B1 (2.54)

K = d~ (t —~gi) 2 d~ (t —7-g2) 0 (~~i —7.g2) 2 (2.55)

the second terms being zero due to the Heaviside func-
tions 8 (—T» —T~i) and two of the Heaviside functions
in the first term being equal to unity.

For many of the situations of interest all the atoms will
be confined in a region close to the origin and small com-
pared to the transition wavelength Ao ——2mc/fgfo. Thus
the conditions of the Dicke model will apply and we re-
strict ourselves to the case

IR» —R»I « &0. (2.56)

As d& (t),d& (t) have typical oscillation &equencies mo,
the difference in phase ~o (T~2 —7gyi) between the two
factors in K is small compared to 2z. Hence with a
common delay T= 7g2 = 7I3y

K = d~(t —7) id~ (t —7) 8(T'ai —%as). (2.57)

For the terms where the atoms are difFerent (A g B) the
commutator is zero, since d&(0) commutes with d&(0).
For the terms where the atoms are the same (A = B), the
dipole operators are the same and hence will commute.
For a Dicke atom source we therefore find

E~(R,t), Es (R,t) = Es (R,t), E~(R,t) = 0,

A similar result has been obtained by Cresser [20] for the
case of a single atom situated at the origin.

For our purposes the case of interest is where tq ——t2 ——

t and where ti ) '7~i, t2 ) 7g2 for all atoms and where
we will take Ri ——R2 ——R. For this case K is given by

: EE&s . ( 0. thermore optimized squeezing for

the total field occurs when the normally ordered vari-
ance for the source field is as negative as possible, and
this will be the basis of our optimization approach. As
it is the total field that is detected it is important to
have established that the minixnization of the normally

ordered variance: AE&s .. for the source field will in

fact optimize the squeezing in the total field.
With regard to a MUS in the total field we require

AE2 ZE2 = E+ E

=( bE~ (2.63)
coherent state&

Substituting for (itgas) frotn ( 2.62) we see tbat for a
MUS we require

AEys:: AEy ——,s: +

x
~ (: itEess:)+ (:drEes ;s:) ~

= 0 -(2-64)

Since the normally ordered source-field variances are pro-

portionai to (gt) and since (dEes is positive, it does
coh

not seem possible that the optimization process could
produce normally ordered variances such that (2.63) is

satisfied, the first terms being proportional to (&) and

the second to (&) . Hence optimization will not produce
a MUS for the total field.

C. Squeesing for the source Beld

It is of some interest to consider the source field Es as a
field in its own right. The commutator for the quadrature
components E&» E& s satisfies

so that

(2.5S)
sss

Eys~ Ey——;s ——2i Es ~Es (2.65)

and

E+E+ E+E+ 0 (2.59) so that the variances satisfy the Heisenberg uncertainty
principle result

Es Ez —— Es,Es (2.60) +E~ —,s + Es+ E (2.66)

: az~: =:ZE~s: (2.61)

Thus the normally ordered variance in the total field
is given by the normally ordered variance for the source
field

with the equal sign applying for a MUS for the source
field.

The quadrature component E&s for the source field
would be said to be squeezed in relation to the quadrature
component E& s

and the variance for the total field is given by
Eys Es+ Es (2.67)

Ey — - &Ebs .
coherent state

It is seen that squeezing in the total field requires
With the normally ordered variance given similarly to
(2.13) as
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DEALS:
= Es+ Es+ e

i('')-(')'i "
+2 ((Es Ee )

—(Es ) (Es+)), (2.66)

we have, similar to before,

ys = .. &Ebs: + Es+ Es (2.69)

In the case of the source field, the commutator Es, Es
is a Hermitian operator and not a positive c number as
in the case of the total Geld. Its expectation value can
be positive or negative depending on the quantum state.

For the case of atomic sources all confined to a region
small compared to the transition wavelength, we can use
results (2.35) and (2.36) together with the common delay
time r = IR —R&I /c and common distance
B to obtain, for the commutator,

Es, Es ——(1/4meec R). ) ) ur; e d;~ ur & e d~q
A ijIe

xS(i, j, k) A~ (t —r), (2.70)

where

+1 i ( j k
—1, i)j, k&j. (2.71)

Thus the expectation value of the commutator will de-
pend on single-atom populations and coherences. For a
single two-level atom with upper and lower state popula-
tions p22 and pqq, respectively, the expectation value of
the commutators is d(pii - p22), where d is positive.

For the case where the expectation value is positive

Eys = :. &Ebs: — Es+ Es (2.75)

Hence in view of (2.73) and (2.74), squeezing in E&&

relative to E& s requires: AE&s .'to be negative.
2

These results are in accord with those of previous authors

[8(b),10,24]. In terms of the notation of Barnett [24]

AmE~S BEE@——.s Dm2Est'- ~ t ~ Es
2

and (: dds:) -4 (:(284ss .), so that there is an inter-

change of the convention for normal and antinormal or-
dering.

We do, however, find that the source field can be a
MUS. From (2.66) and (2.69) we require, for a MUS,

:&Ebs: . &E~ =, s: + Es+, Es

x:BED,s: +:ZE4,--;s: =0 276

As both terms are proportional to (&) a MUS is possi-
ble.

tion value is negative one can still have the quadrature
component Eys squeezed with respect to the quadrature

component E& s, even though in these circumstances
2

the total field is not squeezed. This distinction between
squeezing in the source field and squeezing in the total
field is an important one.

The criterion for the source field to be squeezed in
the case where the expectation value is negative is for

the antinormatly ordered variance: AE&s .. to be neg-

ative [8(b),10,24], where the antinorinally ordered vari-

ance is given by an expression similar to (2.68), but with
yh ess

Es Es replaced by Es Es, and in this case

Es Es = Es Es (2.72)

D. Optimizing the squeezing
with respect to quadrature phase

and from (2.61) we find that squeezing in the total field

~

~

~

~: QE& . ( 0 requires: QE&s . ( G. From 2.69 and

(2.72) it follows that

The normally ordered variance of the source field can
be written in units of a suitable normalizing constant K
(to be chosen later) as

Eys Es+ Es (2.73)
~ ~Eys:

2it + 6 —2ig+ pK2 (2.77)
ea

so that the quadrature component Eys for the source field
is squeezed with respect to the quadrature component

&4-=, s-
If the expectation value is negative

where

o =
~

(Es+') —(Es+) ~

iKs (2.78)

E E —— E E (2 74) and

then we cannot have squeezing in the total field, since

6'orn (2.66) and ( 2.74) the inequality (:dEee '. ) & 6
eq

implies that AE&s is negative, which is impossible.

For the case of the two-level atom we thus require that
the population is not to be inverted if squeezing in the
total field is to occur. For the case where the expecta-

E = ((' ':)—(' )(':))~' (2.79)

Eys 2i(6+ a 2ig+ p+-
K2 (2.80)

From (2.69) the variance of the source field can be written
in units of K as
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where the expectation value of the commutator is
parametrized as

2 &

K2 (2.81)

The normally ordered variance for the source field can
be optimized with respect to the choice of quadrature
component P, quadrature frequency &u, and observation
time t. All these quantities appear only in the quantity

( = ~t —k. R+ P. Minixnizing the normally ordered

variance: AE&& . with respect to we obtain
(b)

= —2 Io.l+ P, (2.82)

with the choice

(2.83)

For the same ( the normally ordered variances for the
other quadrature component is (( ~ ( —2)

(c)

FIG. 1. Three-level systems: (a) A, (b) V, and (c) ladder
and allowed transitions.

K2
) opt/

= 21~i+& (2.84)

(3.2)
From (2.80) and (2.82) the expression for the variance

of the optimum quadrature component of the source field
1s I3') = &13 Il) + t-"33 I3) (3.3)

(2.85)

To obtain a MUS for the source field we require for this
optimum choice of quadrature phase that n,P,p satisfy

—4n +2 p=0. (2.86)

III. SQUEEZING FOR SINGLE
THREE-LEVEL ATOMS

We now consider the specific source consisting of a sin-
gle three-level atom located at R = 0.

A. Description of the three-level atom states

Il') = &» ll) + t-"» 13), (3 1)

The A, V, and ladder configurations, with allowed elec-
tric dipole transitions indicated, are illustrated in Fig. 1.
States Il) and I3) have opposite parity to state I2) .

For the A and V con6gurations, if new orthogonal
states Il'), I2'), l3') are introduced via the transformations

then the same electric dipole transitions would occur as
for the original states and with particular atomic transi-
tions still associated with the same allowed electric dipole
processes within the rotating wave approximation. Thus
in the A case Il) + I2) and Il') + l2') transitions will
involve the absorption of a photon for both original and
new states whereas in the V case the emission of a photon
would be involved for these transitions.

For the ladder case no new states introduced as in
(3.1)—(3.3) are possible that would have the same allowed
dipole and rotating wave approximation processes as for
the original. For example, the original I3) ~ I2) tran-
sition involves the emission of a photon. However, for
states as in (3.1) —(3.3) I3') ~ I2') would involve partly
the emissiorx (the I3) & I2) component) and partly the
absorption (the Il) ~ I2) component) of a photon. Thus,
while we may choose to describe the three-level atom
in the A and V configuration cases with new orthogonal
states in which the original Il) and I3) states are replaced
by states Il') and I3'), this new description is not useful
for the ladder con6guration.

The transformations (3.1)—(3.3) will be applied be-
low to sixnplify the discussion of optimnm squeezing in
A and V systems. In this application the coefficients
will be chosen in accordance with the relative contribu-
tions the ll) -+ I2) and I3) & I2) transitions make to
the source 6eld. It is therefore unrelated to any speci6c
process the three-level system may be subjected to, such
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as the effect of external laser fields. Zransformations of
the form (3.1) —(3.3) are also useful in the description
of specific processes. For example, in the case of a A
system driven by two classical laser Gelds, one of fre-
quency u and phase P coupled to the ~1) -+ ~2) transi-
tion and the other of frequency us and phase Pi, coupled
to the ~3) -+ ~2) transition, the simple phase rotation
given by cii ——exp [i(u t + p )], csi ——0, and cis ——0,
css ——exp [i(erst + Ps)] leads to the new density matrix el-
ements satisfying Bloch equations with time-independent
coefficients. Furthermore, when the system is at two-
photon resonance (uri + sr~ = u2 + uri, ) the overall trans-
formation given by cii ——( exp [i (~ t + p )] /(, csi ——

(s exp (i (ui,t + Ps)] /(, csi —— —(s exp [i (went + Pi, )] /(
(where (,(s, are the two Rabi frequencies and (
[(( + (&)] ~ ) gives new density matrix elements satis-
fying Bloch equations which show that the state ~3') is
decoupled from the other states ~1') and ~2').

This is an example of a dressed atom picture [25] trans-
formation, applied to the case of classical fields. For
atoms interacting with quantum fields the situation is
more complicated since the "source" now involves these
quantum fields and the dressed atom picture will involve
combinations of products of atomic states with Fock
states of the driving fields. In applications of (3.1)—
(3.3) to describing specific processes, the aim is to find
a transformation that in efFect diagonalizes part of the
Hamiltonian.

In all cases we will refer to the atomic density matrix el-
ements as follows. The one photon at-omic coherences are
p~2, p2~, p23)p32, the two-photon atomic coherences are
pi3)psi) and the populations are pii, p22, p33. For the A

and V configurations the same terminology is used for the
atomic density matrix elements involving the new states
~1'),]2'), ~3'). The appropriateness of this terminology
describing atomic density matrix elements as n-photon
atomic coherences follows from an examination of the re-
sponse of two- and three-level atoms prepared in phase-
dependent initial states and considered as detectors of
the em field. For a two-level atom detector Barnett and
Pegg [26] show that the detector response associates the
one-photon atomic coherences with the one-photon cor-

relation functions for the Geld E+ t . For a three-level

atom detector Dalton and Knight [27] show that the de-
tector response associates the two-photon atomic coher-
ences with two-photon correlation functions for the field
E' tg E" t2 s, r =+, —.
The possible states of the atomic system are specified

by the atomic density matrix and the 6ve distinct types
of state are illustrated in Fig. 2. Note that as the state
may change with time, a state with two-photon coherence
could become a state with a single one-photon coherence.
For the A and V configurations the new atomic density
matrix elements can be easily related to the old atomic
density matrix elements using (3.1) —(3.3).

We find that (a) the neu1 turbo photon coherences-
pi3, p3& are linear combinations of the old two-photon
coherences pq3, p3q aad the old 4,8 populations pzi, p33,
(b) the new one photon coherence-s pi2, p21, p23, p32 are
linear combinations of the old one-photon coherences

Atomic State with:

State

A Single One Photon

Coherence

Atomic Density Matrix

( ~ 4 0' re 0 0
~ ~ 0 or 0 ~ ~

(0 0 4 i 0 4 ~,

Type of

Squeezing

Two l evel

Occurs for

I

i

;. Pair of One

' Photon

Coherence s

' ~ ~ Oi

~ ~ ~

0 4 ~

Two Level Pair A, V, :-

Two Photon

C oherence
' ~ 0 ~

0 4 ()~

~ (i 4'

Three Level

D Two Photon

Coherence

and Single One

Photon Coherence

E General Coherence

i' ~ ~ ~ ' ~ 0 ~ '
or l o'o Level-

s ~ 0 () ~ ~

', ~ {) ~),~ ~ ~, Three l..evel

A, V.:-

[
~ ~ ~

( ~ ~ ~

General A, V, :-

I

FIG. 2. The distinct states and types of squeezing for
three-level systems. A solid dot indicates a nonzero atomic
density matrix element.

B. Squeezing expressions for light
from three-level atoms

For the three configurations involved the contributions
to the positive &equency component of the source-field
expressions for E& can be obtained from (2.35) and these
are listed in Table I. The retarded time t —R/c is implicit
in the transition operators, where we have written

TABLE I. Contributions to electric field Es.
A V Ladder

K(&A32 + sA12) K(cA23 + sA21) K(cA23 + sA12)

pi2, p2i, p23, ps2., (c) the neu1 1,8 popuLations pii pss are
linear combinations of the old 1,8 populations pqq, p33 and
the old turbo Photon coher-encee Pis, Psi, and (d) the neu1

2 population p22 is the same as the old 2 population p22.
As will be seen below, the phase dependence of the

variance of the source-field quadrature component de-
pends in general on both one-photon coherences (all three
cases) and on two-photon coherences (ladder case only).
Various types of source-field squeezing can be distin-
guished depending on which new coherences are nonzero
for the source-field state in question. These are shown in
Fig. 2, along with the corresponding atomic states.



50 OPTIMUM FIELD SQUEEZING FROM ATOMIC SOURCES: 2657

A

~,', (2 d e 3)

V

~;2(3 d. e 2)

Ladder

~32 (3 d e 2)

~;, (2d ei) ~,', (I d .e 2) ~,', (2 d e I)

TABLE II. The quantities A3 and Az.
AE&Zs

P22 + c P33 + 8 Pll + cs (P13 + P31)

2
(cP23 + sP21) e + ( P32 + sP12) e

(3.io)

(b) the V configuration

E = A3+ Ai 4+eoC B,

K = ~2 ((u2p)//(4zeoc R),

(3.4)

(3.5) (3.ii)

LEy~s:
= 2[c Pss + cs (Pis + Psi) + 3 Pii]

[(cp32 + sp12)e

+( P23 + SP21) ]

c = 1,/ gl,'+ 1'„ (3.8) (~i;,
& = P22+ c Pss+ 3'P»+ cs(Pis+ Psi)

s = 1,/ 1/l~~+ lf, (3.7)

— (cP32 + sP12) e' + (cP23 + sP21) e

(3.i2)

( p)= —(A +A, ).
1

2 3 (3.8)

Zys:
2P22 (cp23 + SP21) e

~ -2
+ (Gps2+Spi2)e ' (3.9)

The quantities Ai, A3 are given in terms of electric dipole
matrix elements and atomic transition frequencies in Ta-
ble II. (~2@) is the root mean square average of the
dipole matrix element times the square of the transi-
tion frequency. The atomic states can be chosen to
make the dipole matrix elements and hence the quan-
tities Ai, A3, s, c, K all real.

The source-field operators Es and their squares are
then expressed in terms of atomic transition and popu-
lation operators. As only one-time atomic operators are
involved, evaluation of the expressions Tr [A(t)W(0)] will

then yield results in terms of the matrix elements p,2 of
the atomic density operator p. Results for the various
expectation values of source Beld operators are given in
Table III.

The normally ordered and total variances in the
quadrature component E~s are given by

(a) the A configuration

and (c) the ladder configuration

Zys:
2 (c p33 + s p22)

( P32 + sP21) e + ( P23 + sP12)

+cs (p„es*~ i p„e "~), (3.i3)

(ss,,
& P22+C P33+8 PyI

-[(cp32+ sP21)e' + (cP23+ sP12)e
'

]

+Sc (psie + Pise ) . (3.i4)

The quadrature phase dependence of the
variance depends on the one-photon atomic coherences

pisip21 )P32)P23 in all cases, but on the two-photon atomic
coherences pis, psi only in the ladder case. The result
for the optimized choice of normally ordered variance for

Eys can be obtained from (2.82) and that for the corre-

sponding normally ordered variance E~ s from (2.84).
The variance is given by (2.85). The quantities a,P,p can
be read off from (3.9)—(3.14).

The atomic density matrix is parametrized (see Ap-
pendix B) in terms of the quantities P1, P2, P3 (popula-

TABLE III. Expectation values of electric Beld operators.

(~"& (~ '&
K~ K~

(4& (E.)
K K

(~S ~+&
K~

([~'.s j&

CP23 + 8P21

P22
G' (pss —P22)

+S (Pl 1 P22)
+Gs (Pls + psl)

V

CP32 + sPi2

G P33 + 3 Pl 1 + GS (P13 + P31)

G (P22 P38)
+S (P22 Pll) GS (P13 + P31)

Ladder

SCP3X

cP32 + sP2i
2 2

C P33+ 8 P22

(
2 2X 2 2

C —8 )P22 —C P33+8 Pyy
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tions) and Sl, S2, Ss~i S4, Ss, Ssqi (coherences) as so that

P1 —,
' (s, —is, ) —,

' (s. —is, ) P12 = SP12+ CP32

[PVj =
2 (S, + iS2) P2 2 (Ss —iS4)

l
P21 —SP21 + CP23) (3.24)

( 2 (Ss+iSs) 2 (Ss+iS4) P3

(3.i5) I
P22 = P22) (3.25)

These parameters are not independent since the density
operator must be Hermitean, have a trace of unity, and be
a positive operator. For the case of a three-level system
this leads to constraints (see Appendix B)

P11 —S P11 + SCP13 + SCP31 + C P33)
2 (3.26)

and the normally ordered and total variances are given
by, for the A configuration,

P], P2, P3, S] S6 are re»,

Trp= P, +P2+P3 ——1,

(3.16)

(3.17)

Eys:
P22 (P21 + P12 ) (3.27)

T.p' = p,'+ p,'+ p,'+ —(s,'+ s,'+ + s,') ( i,
2

(3.i8)

AEy~s:
t2 2i( (2 —2i(

P21 P12

+2 (P22 P21P12) & (3.28)

lpl = Plp2ps +1 (Ss + S4) P2 (Ss + Ss)

Ps (Sl +——S2) + —[Ss (Siss —S2S4]
1 2 2 1

+Ss (S1S4+S2ss)) & o. (3.i9)

The constraints (3.18) and (3.19) are equivalent to the
constraints (Bll) and (B12), which are necessary if the
density operator is to be positive. The special forms
of the constraints (3.18) and (3.19) apply to a three-
level system. Equations (3.16) and (3.17) ensure that
the eigenvalues of P" (Al, A2, and As) are real and satisfy
A] + A2 + A3 —1~ To ensure that p is positive we then
require the eigenvalues to be & 0. Equation (3.18) en-
sures that A21 + A2 + As ( 1, while (3.19) ensures that
A 1A2 A3 + 0 There is no possibility that three real num-

bers add up to one, are less than one in magnitude, and
have a positive product without them all being between
0 and l.

P22 + Pll (P21e + P12e ) ' (3 29)

e

AEQUI

e

Pll (P12 + P21 ) (3.30)

~ ~Eys:
I2 2ig l2 —2i(

+2 (Pll P12P21) 1 (3.31)

AE@s
= P22 + Pli (P12e + P21e )

This is the same as for a two-level atom with l2') as the
upper state and ll') the lower state. For the V configu-
ration

C. Optimired squeering in A and V con6gurations

li') = sli)+cl3), (3.2o)

(3.21)

13') = —cli)+ s 13) (3.22)

It is convenient to change to new orthogonal bases of
the form given by (3.1) —(3.3) and to write the normally
ordered variances in terms of the new density matrix ele-
ments identifying combinations of the old density matrix
elements that occurred in the original expressions (3.9)—
(3.12) for the variances as new density matrix elements.
For both A and V cases the new states ll') and l3') are

This is the same as for a two-level atom with li') as the
upper state and l2') the lower state. The equivalence
of expressions for the variances to those for a two-level
atom with states

l
1'), l2'), and l3') that occurs for A and

V systems does not imply that all squeezing is automat-
ically two level (see Fig. 2). Other coherences such as

p23 or p13 could still be nonzero and thereby play a role
in the dynamics.

The details of the optimization for the squeezing in the
case of A and V configurations is given in Appendix C.
After setting all the other parameters to zero, the equa-
tions of constraints are written in terms of P1 P2 Sy S2.
Identifying the quantities a,P,p of (2.78), (2.79), and
(2.81), optimizing with respect to the choice of P,ur, t us-
ing (2.82), and then using the Lagrange method of unde-
termined multipliers, we arrive at the optimized choice
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TABLE IV. Parameter values for optimum squeezing (c = s = ~ for the ladder case).

A

V

P,' P' (s,"+s,") S3

0

0

S4

0

Ss
0

0 0

S6

0 3
16
3
16

Ladder

P1 Pg P3 S1 S2 Ss S4 (Sss + Sss)

0 0 0 ie
8

of Pi', P&,Si,S2. The quantities o.,P,p can then be calcu-
lated.

The values of the parameters Pi,Pz, . . . ,Ss and the
quantities a,P,p for the situation of optimized squeez-
ing in the A and V configuration cases are given in Table
IV. The results for the variances are given in Table V.

For the A configuration it is found that the source field
is squeezed for the optimum value of the normally ordered
variance which is given by

(3.33)

or

in spite of the apparent situation of general coherence if
the original basis set is used to describe the atomic state.

The condition (2.86) is satisfied and hence in the case
of the A system the source field is in a MUS. The positive
value of p confirms condition (2.72) that the population
is not inverted and is in accord with (2.73) that squeez-
ing is found in the source field (3.33). Equation (2.62)
shows that the total electric field is squeezed. The nor-
mally ordered variance for the other quadrature compo-
nent Ey s of the source field and the variance for Eys
itself are given in Table V.

For the V configuration it is found that the source field
is also squeezed with the corresponding atomic state a
pure state. In this case

: b, E&~& . ———0.50 x (ursa)/4z'sec R . (3.34)
&P& 4' Kz (3.37)

The atomic state involved is a pure state and is associated
with a state vector given in terms of both the new and
original atomic states as

The corresponding atomic state vector is

12') + e" [I') (3.35)
14) = 11')+ e" I2') (3.38)

12) +
4

A3+ 3
QAzi+ Ai

, (
( QAzi+ Ass

(3.36)

where e js arbitrary. This result corresponds to that of
Barnett and Knight [18] for a two-level atom: the Bloch
vector is oriented at 120' from the orientation of the up-
per state. The value of the normally ordered variance
also corresponds to previous results. In terms of the new
basis set the atomic state is one w'ith a single one-photon
coherence pi2 ——pz'i and the situation can be described
as that of two level squeezing T-he oth. er state ~3') does
not become involved. This eHective two-level behavior is

+4 (gA'+ A,' gA', + A',

'
12) (3.39)

where again 8 is arbitrary. The atomic state is again
one with a single one-photon coherence prz ——pz't and
the situation one of ttoo level squeezing. All that difFers
from the A case is that the upper and lower states are
relabeled.

In the case of V system (2.86) is satisfied and the source
field is again a MUS. The positive value of p confirms
condition ( 2.72) and in accord with (2.73) that squeezing
is found in the source field (3.37). The total electric field

is squeezed and the normally ordered variance for E~

A

V
Ladder

TABLE V. Variances for optimum squeezing (c = s = ~ for the ladder case).

((:«, ;s.)/lf') „
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and the variance for Egg itself are given in Table V.
For both A and V cases and for the special case where

both transitions contribute equally (c = s = 1/y 2) the

new state ~1') is (]1)+ ~3)) /~2. The uninvolved state is

(-11)+ 13)) /~2.

Geld is a MUS. The positive value of p confirms condition
(2.72) and in accord with (2.73) that squeezing is found
in the source field (3.40). Equation (2.62) shows that the
total field is squeezed. The normally ordered variance for
the other quadrature component Ey g and the variance

for E~~ itself are given in Table V.

D. Optimized squeering in ladder con6guration

In this case no convenient change of basis is available
and we merely optimize the normally ordered variance
using the parametrization of the atomic density matrix
elements and the equations of constraint given by Eqs.
(3.13) and (3.16)—(3.19) using numerical methods. The
details of the optimization in the ladder configuration
case are given in Appendix C. The quantities a,P,p of
(2.78), (2.79), and (2.81) are first identified and opti-
mization with respect to the choice of P,u, t, carried out
using (2.82). Numerical methods [28] are used to estab-
lish that some of the parameters for the minimum are
zero and the remainder are then determined using La-
grange undetermined multipliers. The calculations were
restricted to the case c = s = ~, where both transitions
contribute equally.

The values of the parameters Pq, P2, . . . , 86 and the
quantities a,P,p for the situation of optimum squeezing
in the ladder configuration cases are given in Table IV.
The results for the variances are given in Table V.

The optimum value for the normally ordered variance
was found to correspond to a squeezed state and is given

by

K2 ).„4,

1
K2 —2) —0.20

2

~

c = s =-, (3.40)

The atomic state involved is a pure state and associated
with a state vector

I
1+ ll»+

1 f 1 ) 1 ( 1

2 ( 2g 2 ( 2j

- 2

((:AE~s .)), = —0.41 x (~ y)/4mepc R . (3.41)

IV. SUMMARY AND CONCLUSIONS

Squeezing in the total electric field from a multiatom
source has been treated confirming that the criterion
for squeezing in the total field is that the normally or-
dered variance of the quadrature component of the source
field is negative, subject to the conditions that the ini-
tial (driving) field has zero classical amplitude at the
detector and the source atoms are located in a regime
small compared to the transition wavelength (Dicke atom
source). Previously unexamined interference terms be-
tween the free field and the source field are shown to
vanish. The concept of optimum squeezing has been in-
troduced and expressions for the normally ordered vari-
ance of the source-field quadrature component found for
the optimized choice of quadrature phase, frequency, and
wave vector.

An examination of squeezing in the total electric field
from a single three-level source has been carried out. Five
difFering types of squeezing have been distinguished for
such systems, based on an examination of the various
one-photon and two-photon atomic coherences involved.
It is found that squeezing occurs for the A, V, and lad-
der configurations and that a minimum value for the nor-
mally ordered variance of the quadrature component can
be obtained which corresponds to the maximum squeez-
ing that could ever be observed in three-level atoms un-

dergoing irreversible decay, irrespective of the choice of
quadrature component, quadrature &equency, observa-
tion time, and specific process in which the three-level
atom is involved. The corresponding atomic state is al-
ways a pure state and the source field is in a minimum un-

certainty state. For the A and V configurations, however,
the three-level atom is equivalent to a two-level system
plus a noninvolved third level and the state for optimum
squeezing is one with single one-photon atomic coherence
and no two-photon atomic coherences. A and V config-
urations thus involve two-level squeezing. For the ladder
configuration, on the other hand, the state is one with a
two-photon atomic coherence and no one-photon atomic
coherences or intermediate level population. Ladder con-
figurations thus involve three-level squeezing.

(3 42)
v2)

where 8 is arbitrary. This state is one with a two-photon
coherence pq3

——p~~ and the situation can be described
as one of three-level squeezing. For this state the middle
level population and all the one-photon atomic coher-
ences are zero. A similar state occurs at long times for a
ladder system in a squeezed reservoir [29].

The condition (2.86) is satisfied and hence the source
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APPENDIX A: FREE-FIELD—SOURCE-FIELD
COMMUTATORS

Consider the commutator

( 1C=) V2x
~

V2x
4xepRA2

x E» (R„»»),d» (»—» »»») d (»» —»»»)), (A6)

C = E~ (Rg, tg), Es (R2, t2)

where the free 6eld term is

(Al) where we note that V2 does not operate on E+&(Rq, tq).
Now &om the multipolar Hamxltoman and zn the elec-

tric dipole approximation

E~ (Rg, tg) = ) fp (Rg) ap (0) e ' "" (A2) »»» ~ —ckg R~ "A
e '" teq dg

2epV U
Acg

) ~ ikg Rq (0)
—s~gtq

2E'0 V

and the source field term is

1 . L)P " k R= —ianna~ +—
2epV

Formally solving leads to

(A7)

with

Es (R2, t2) = ) EsA (R2, t2),
A

(A4)
—iurgt 1 ~ ™&—ikg RA —iseult

h 2epV

and

t 1 dA (t2 —F2)
EsA (R2, t2) = V2 x V2 x

4«p

X8 (t2 —rA2) (A5)

Now

t
x Ct'e' "' dA(t').

2epV

(A8)

(A9)

RA2 = ~R2 —RA~, TA2 = RA2/c.

Substituting for the source field term we find that
Substituting from (A8) into expression for E+(R,t) and
changing t to t2 —7A2 we find that

E+(R t —7. ) =) i e e'"~' a (0)e ' ~" "*i+) —
~

" ~e
.i f fuu

2e,V)P

x ' &~" "'~e dt'e'~~'1 't"
IJ

0
(A10)

Multiply each side of (A10) by &
e*""' eq, integrate over R, and use

dsRe —ikg Reikw R
V

~
~ ~

~ (A11)

thus we obtain for aq(0)

i . fhu),
'

i " a (0) = e* "~" "'~— d R e *"" ep E+ (R t2 —7A2) ——)2e0V V ' 5 (2epV)

X~
—ekp R~e dt' e' " d~(t').

0

After this the &ee-6eld term can be written

(A12)

E+(R) tg)=& eg — d Re'"" ' e E+(Rt2 —~ )e' ""
( ~ ) 4 &Aa

eikg. (Rq —R~)e i»»»pter — ttti eius t'e d (tl)~
~

(A13)

which involves the total 6eld E+ and the dipole operator d~.
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Substituting E&(RI, t1) into the expression for the commutator we find that

C= V x V x
1 . 1

2 2 e~— d3R ikg (Rg —R) i~g (tg —t1 —T~2)

4~eoBd12 V

Xd(t2 TA2)[CIA E (R f2 TA2) d~(f2 YA2)))

+) V2x V2x
1 (' i ) . Acus) e e A'( 1 B)e A

4~«~» & ~)

x 8(t2 —rd12) tjt' e' " [ep dII(t'), d&(t2 —1d12)] (A14)

The first term is

i P eye'k"'Rag (0)
E+ (R, t2 —rgz) will
Hence

zero, since as E+(R, 0)
commutes with d& (0), then

A

commute with dz (t2 —r») . S„2csiI1 ((d1 re I )~

~

d8p sin Hpe' " (A20)

We choose the z axis for k~ along RI —RII. The pq
integral yields 2z. The 8g integral can be obtained as

r ( —i)C=) Vzx
~
V2x

4m& p R~2 E 2«)
1

X dtd —) etkg (Rt —Rs)
0 v

where

RISHI = ]RI —RII ~, rI31 = RIII/c.

Also dkq = d~q/c so that

(A21)

Now

1p). =

xe' " ' " odpep[ep der(t'), d&(tz —rd(z)]

x8(t2 —r»)] . (A15)

', /d'k, ) =,f J do~k', dk, )
pol pol

(A16)

C=) Vz x V2x VI x V', x
47K E'0 BA2 4mePRIII

AB

(' —il
x

i

—
i

dt'
( 7l') p

x dodge "& ) sin((dprIII)
0

and with

) e~ e& der (t') = —k~ X k~ x«dII (t')
pol

A

x [dII(t ) ~ d&(t2 rd12)] 8 (t2 —F2) (A22)

we then have

1= ——2k' x kp x dII (t'), (A17)
k~2

Designating the Laplace transform of the dipole opera-
tor d(t) as D(s) and using the inverse Laplace transform
formula

) d (td) ikg (Rt —Rs)

pol

dII (t') = . ds e' DII (s),
27' X c

(A23)

= —V1 x VI x e'"" ' R ldII (t') . (A18)
k~

Hence we obtain

( t) t& ~» 1C= V x V, x
I I

tjt'
47reoR~2 (2eo) o (27I)

x k~ sin8p d&p dypdkp

icing(t' —tg)V x (V x ikP (Rg —R~)
Q2

CK3

aug (t' tq)—
E~) o o

x s111 ((der~1) dII (t')

( —il
En. ) 2tri . o

X sin (odgr~I) DII (s) e" .

i~„(t'—t, )
0

(A24)

the quantity in the inner large square brackets in (A22)
1S

x [dII (t ) & ddt (t2 —r»)]8(t2 —rdt2) } (A19)
Performing the t' integration we 6nd
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—1 1 OO thing (tg T—At tl—+TB1 )I = ds Wg DB(s)
27/ 2%x c 0 s +itdpj

e
—~g (ty &gg ) &~g (tg &gg ty &g].)

e(t~ —~~2) e
xe

(s+ i(up)

X 8(t2 TAQ)
e ttalA (tl +VB1 )

(a + i(ul)

(s + i(up)

(A25)

Now

DB (a) = D+B (s) + DB (a) (A26)

and D+B (a) is only large near a = + itdp whereas DB (s) is
only large near s = —i~p. Due to the (s+ itd~) term the

I

td~ integral is large near tdg = +ia, so for the DB+ (s) term
this is near u~ = —~p, which is outside the range 0 —oo
for the values of u~. On the other hand, the DB (s) term
gives significant contributions near co~ ——+ ~0, which is
inside the range. Assuming that ~0 is large compared to
the decay rate, the DB (s) contribution can be ignored
and

I =
i i . da kul, DB(s) ( .),(—Il
( 2tt' j 2trt ~ p

(A27)

where ( ) is the term in large curly brackets in Eq.
(A25). With DB (s) only being significant for a near
—iurp and the ~p integral only large near or~ = up we can
then arbitrarily extend the ~p integral to —oo with little
error to give

I 00 ( lid'(t't —T~t tt+Ta—l) e '4~%(tl &Bl)
ds d „DB(a)(2z & 2vri, ( (uz —is) (urq —is)

e t&A(tl+&81) )
xes(tg —~~g) +

(ldp —ts)

The ~q integrals are evaluated using contour integration. For all terms in (A28) the pole
the upper half plane and we find that

e~~i (t~ —~~~ —t~ —~~~)

((ul —ia)

(A28)

is at up ——is =i 9 —y in

I = — da D (a) (8(t, —T„,—t, + TB,)e-'("- »-"+»)e'("- ») —8(T, —t, )e'("-~»)B

&(tQ &AQ tl &81) &(tQ tAQ) + g( g 5 +(t1+&Bl ) 7
y
—7By —gee

From the inverse Laplace transforms

(A29)

I = —(dB (tl —7B1)8((t2 TA2) (t1 TB1))8(tl TB1) —
dB (tl —TB1)8 (TB1 —tl) 8(tl —TB1)

—dB(tl + TB1)8((t2 —TA2) —(tl + TB1))8(tl + TB1) + dB(tl + TB1)8( TBl tl)8—(tl + TB1)). (Aso)

The second and fourth terms are zero.
Finally from (A22) the commutator is

C = E~(R1)tl)) Eq (R2) t2)

1= —) V'2x V2x
AB 4X~ORA2

where

IVlxiVlx Ki
4z eo+Bl )

(A3I)

K = [dB(tl —'TB1)
& dA(t2 TA2)]8(tl —TB1)8(t2 —TA2)8((t2 TA2) —(tl —TB1))

—[dB(tl + TB1),dA('t2 —TA2)]8(tl + TB1)8(t2 TA2)8((t2 —TA2) (tl + TBl)) ~ (A32)

The result may be compared to that given by Creaser [20)
for the case of a single atom at R = 0. TX'P = lq ) p;;=I, (B2)

APPENDIX B: GENERAL PROPERTIES
OF DENSITY OPERATORS

and (c) p is positive. Thus for any state ~g)

) &0. (B3)
The density operator p for any quant»m system can

also be de6ned by its matrix elements p;~ for a suitable
orthogonal basis (i [j) = b;~, where p;~ = (i [ p ~

j). The
three basic conditions that the density operator must sat-
isfy are that (a) p is Hermitean

P=P ~ P~j =Pg~~
"t

(b) p has unit trace

It is useful to consider the eigenvalues A, and normal-
ized eigenvectors ~@;) of p

piA;) = A; [A;),

p = ) A; [A;) (A;i .

(B4)

The density matrix elements can be written in terms of
parameters P;, s;~, d;~ as
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Pa 2 (312 1d12) 2 (313 1'd13)

2 (312 + 1d12) P2 —,' ( 23 —1d23)

[pl =
2 (313 + 1d13) 2 (323 + 1'd23) P3 (86)

From the three basic conditions it is then easy to show

that necessary and sufficient conditions for (Bl)—(83) to
hold are as follows [the conditions (i) and (ii) are alter-
native]: (a)

(817)

(818)

(i) A; are real, (87) and

(ii) P;(populations), S;~ and d;i(coherences) are real;
7t.'p = 1. (819)

(i) ) A, =l,

(88)

(89)

If we deal with a system consisting of two parts we

often wish to describe one subsystem S by a reduced
density operator p. Assuming that W is the density op-
erator for the combined system, with orthogonal states
as products ~A) ~i) (where ~A) are the orthogonal states
(A

~
B) = b~~ for the other subsystem R), the reduced

density operator is given by

(ii) ) P, =l; (810) p = Tr~W,

or in matrix elements

(820)

(i) A; are positive, (811) p~& = .W~';~&
A

(821)

(ii) the determinant of [p] and all principle minors are
positive

Pl 2 (812 —Xd12)
—,' (312 + 1d12)

It is easily shown that if W is a density operator satisfy-
ing (Bl)—(83), then p is also a density operator satisfying
these (and all the other) conditions.

Often we wish to change to another orthogonal basis
set via

Other results also follow: (d)

(812)
l~) = ).&*-Ii) (822)

(i) 1&A;&0, (813) In terms of the. new basis states the density matrix ele-
ments are given as

(ii) Trp =) A, &1, (814) p'.p = (~ IplP) (823)

(u1) P1 + P2 + + —(312+d12+ 313+d13+ .) & 1,
2

(815)

p'.p = ).&,*.pv&~p (824)

(e)

(@ ~ p ~ @) & 1 (~g) normalized to unity) . (816)

APPENDIX C: DETAILS OF OPTIMIZED
SQUEEZING CALCULATIONS

1. Case of A and V con6gurations

One possible situation is to have all the eigenvalues of
p equal to zero, except one which is unity. In this case
the system is in a pure state such that

Parametrizing the atomic density matrix in terms of
new variables P1, P2, P3, S1, ..., Ss as in Eq. (3.15), the
constraints take the same form as (3.16)—( 3.19). The
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normally ordered variances (3.28) and (3.31) now only
involve Pl or P2, S1,S2 so that we may set the other
parameters to zero

BE
, = —2S,' —mS,' = 0,
1

(C15)

P,'=0, (c1) BF
B~,

———2S2 —m92 = 0.
2

(C16)

S, —S, S, 9, 0 (C2)

in order to determine the situation of optimum squeezing.
Using (3.33) and (3.34) the equations of constraint re-

duce to
0 = 1+m(P' —P'), (C17)

Solving for & from (C13) and substituting into (C]4)
we get

Trp = P1 + P2 = G = 1,
while (C14) and (C16) give

(C3)
Sl=S2=0 (C1s)

Trpz = P12+ P22+ —(S12+ S,") = H & 1.
2

(C4) and/or

The third equation of constraint ~p~ & 0 involves a left
hand side which is identically zero.

For the two cases we have, for the parameters n,P,p of
(2.78), (2.79) and (2.81),

m = —2. (C19)

The solution (C18) cannot lead to squeezing as (Cll)
shows f to be positive. The solution (C19) together with
(C17), (C3), and (C4) gives

= —/2
A = —P21)

P (P22 P21P12) &

/ /

P11 P22

for the A configuration and

/2
A = —P12)

(c5)

(C6)

(cs)

/ 1
P2 = —,

4

4

7f = ——2H.
4

(C20)

(c21)

(C22)

P 2 (Pll P12P21) & (c9)

/

P22 P11) (C10)

for the V configuration, so that after optimizing the
choice of &t&, u, t we have from (2.82)

The smallest value for f corresponds to choosing the
largest value possible for H which is unity, corresponding
to a pure state.

The quantities a, P, and p can be obtained from (C5)—
(C7) in the A case.

The details of the calculation for the V configuration
are similar. The quantities n, P, and p are obtained from
(cs)-(c10).

((:~s;, :))
K2

)
= 2P' —(S,"+ S,"), (C11) 2. Case of ladder con8guration

For the ladder case

((:~i,*, :))
K2 )., p

= 2P1 —(Sl + S2 ), (C12)

for the A and V configurations, respectively.
The Lagrange method of undetermined multipliers in-

volves consideration of the function E = f —/G —mH,
where E, m are undetermined multipliers. For the A case
the method gives

2
A —SCP31 (CP32 + SP21) (C23)

Lc s j P22 c P33+ s P11~

2 24 2 2 (c25)

P 2 c P33 + s P22 (cp32 + sP21) (cp23 + spl2)

(C24)

BE
BP1,

= —E —m2P,'=0,

BF
BP', =2 —f —m2P,'=0,

(C13)

(c14)

The minimization was carried out n»merically using a
sequential quadrature programming algorithm [28] in
which the search direction involves the solution of a
quadratic equation. The method first determines a point
that satisfies the constraints. From that point an inter-
active search for the minimum point is made. Each iter-
ation step includes (a) the solution of a quadratic equa-
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tion involving derivatives of the function to be minimized
snd (b) s line search with an augmented Lagrangian
merit function involving the equations of constraint and
a quasi-Newton update of the approximate Hessian of the
function; the Hessian is zero at the minimum point. Cal-
culations were restricted to the special case where both

transitions contribute equally c = s = I/V2. The nu-
merical approach first established that the minimum was
for zero values of P2y S»& S2) S3) and S4. The values
for P», P3, S5, and S6 are then established analytically
using Lagrangian undetermined multipliers. The values
of a,P,p are calculated from (C23)—(C25).
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