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Many-body quantum Monte Carlo vive-function approach to the dissipative
atom-field interaction
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We develop a, many-body quantum Monte Carlo wave-function approach to analyze the dissipative
interaction of ultracold free atoms with the radiation field reservoir. A Markovian master equation
for the identical atoms that neglects the dipole-dipole interaction is derived within the framework
of quantum field theory. The effective Hamiltonian obtained by a decomposition of the master
equation explicitly depends on the quantum statistics.
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Laser cooling below the photon recoil limit has been
recently demonstrated [1] and one-dixnensional effective
temperatures as low as 100 nK have been measured [2].
At these ultracold temperatures, the therxnal de Broglie
wavelength of the atoms are on the order of the wave-
length of the optical fields or larger, and the wave nature
of the atoms become important. Atomic interferometers
that utilize the wave nature of single atoms have been
successfully demonstrated [3—5]. One of the objectives of
this new 6eld of atom optics, however, is the observation
of the effect of quantum statistics on the dynamics, and
particularly, the Bose-Einstein condensation of bosonic
atoms. The proper theoretical description of an ensemble
of ultracold atoms requires a quantum Geld-theoretical
approach, and such a theory has been developed by Svis-
tunov and Shlyapnikov [6], Politzer [7], and Lewenstein
and You [8]. Zhang and Walls [9] used a similar descrip-
tion in the context of coherent laser-atom interactions.

En this article, we develop a quantum Monte Carlo
wave-function (MCWF) approach [10—12] to the analysis
of an ensemble of ultracold identical atoms, interacting
with the radiation field reservoir. Following Zhang and
Walls [9], we describe the atoms using quantum density
Gelds, by extending the Schrodinger wave functions to
quantum 6eld operators. These 6eld operators satisfy
either the canonical commutation or anticommutation
relations, depending on the quantum statistical nature
of atoms being bosonic or fermionic. Using the second
quantized interaction Hamiltonian, we derive a Marko-
vian master equation describing the atomic dynamics.
We then decompose this master equation to obtain a set
of (angle-dependent) collapse operators (similar to the
case of single atom laser cooling theory [11]),and an ef-

fective Hamiltonian that explicitly depends on the quan-
tum statistics. The predictions of the theory include (1)
for bosonic atoms, an effective spontaneous emission rate
that is proportional to the product of the occupancy of
the Gnal atomic state and the single-atom decay rate;
and (2) for fermionic atoms, inhibition of spontaneous
emission into final atomic states that are already occu-

pied. The effective Hamiltonian that we obtain exhibits
features such as virtual transverse photon exchange be-
tween different atomic modes.

The recent interest in the stochastic wave function ap-
proach to dissipative processes in quantum optics is prin-
cipally due to the simpli6cation of the computational pro-
cedure for systems with many degrees of freedom [11,12].
Another feature is the physical insight provided by the
wave-function description of a single (open) quantum sys-
tem [10]. This work, together with the recent MCWF
analysis of electron-phonon interaction in semiconduc-
tors [13], extends the previous stochastic wave-function
methods to the analysis of dissipative many-body sys-
tems.

The stochastic wave-function theory for dissipative
many-atom systems that we develop neglects the dipole-
dipole interaction between the atoms and is based on the
Born-Markov approximation. The &ee-atom formalism
that we present below is otherwise general, and can be
easily extended to include interactions with a coherent
laser 6eld and a trap potential con6ning the atoms in real
space. Here, we consider the low temperature (the ther-
mal de Broglie wavelength A~ is much longer than the
resonant photon wavelength AL, ), low atomic density (JV)
case where A A&~ & 1 )& JVAL. In this lixnit, the interac-
tions arising from the composite nature of the atoms (i.e. ,
dipole-dipole coupling) can be neglected, even though the
many-body features remain pertinent.

We consider an ensemble of identical two-level atoms
where the excited-state ~e) couples to radiation field
modes and decays spontaneously to the ground state
]g) . The starting point of our analysis is the interac-
tion Hamiltonian of the radiation and atomic (quantum)
fields in the Schrodinger picture [9],

H;, = iI), gzixzi f dry)i(r)e '"'@,(r) + Hc. , (i)

where ag denotes the annihilation operator of the radi-
ation field mode k and g„(r) denotes the field operator
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that annihilates an atom with internal state iv) at posi-

tion r (v = g, e). @, is the coupling constant of the atoms

to the radiation Beld mode k. In contrast to Zhang and
Walls [9], we expand the atomic field operators in terms
of free propagation modes,

reservoir system, respectively. We make the Born ap-
proximation and obtain the equation of motion of the
reduced atomic density operator in the interaction pic-
ture,

&s(r) = ~ ):~pe*"
p

g, (r) = ) epe*p'.
V

(2) (4)

Here, gp (ep~) denotes the aiimhilation operator of a
ground (excited) state atom in mode p (p') and V is
the quantization volume. Substituting Eq. (2) in Eq. (1),
we obtain the atom-field interaction Hamiltonian in the
second quantized form,

H;~& ——ih) ~(ai,gp i,ep —ept jp gag).
k,p

The Hamiltonian of Eq. (3) can be used in the
Liouville —von Neumann equation to evaluate the time
evolution of the density operator of the atom-Beld sys-
tem. Following the derivation of Ref. [14], we will first
go to the interaction picture (ag -+ ai, e ' ";gp
g e '&'~+"&& e + e e '&'&+~'l') We assume that theP ~ P P
initial radiation field density operator commutes with the
free Hamiltonian, and that the reservoir is not affected
by the presence of the atoms. These assumptions imply
o~(t) = Tr~[p(t)] = o~(0), where cr~(t) and p(t) de-
note the density operator for the reservoir and the atom-

The first order term TrR[H~„&(t), p(0)] that comes
from the formal integration of the equation of mo-
tion for the density operator is identically zero, since
Tr~[0'R(0)H; &(t)] vanishes for the interaction Hamilto-
nian of Eq. (3).

Due to the dense ensemble of levels in the radiation
field reservoir, the reservoir operators have a characteris-
tic correlation time v, „,which is in general shorter than
the reciprocal atomic transition frequency ur, s = ~, —~s.
Provided that the atomic phase-space density is low
enough (to be specified), we can make the Markov ap-
proximation and replace o'(t') by &(t) in Eq. (4). For
simplicity, we are also going to set the radiation field
temperature to zero.

We now evaluate the time integral in Eq. (4). The
principal value terms could result in nontrivial energy
shifts and many-body coherences. Since our main goal
is to analyze dissipation, we discard these terms with
the assumption that they could in principle be included
in the (Hermitian) free atomic Hamiltonian (see below).
We then obtain

x ep, 9p —&0,—i p* () &p, —i p* () p &p —& (5)

We can use the b function in Eq. (5) to evaluate the photon-energy (iki = k) integral, which determines
the magnitude of the emitted photon momentum k(pz). For the atom-radiation Beld interaction (especially at
low temperatures) the atomic momentum dependence of the photon momentum is negligible and we can sim-

ply take k(pz) = k. We then identify the spontaneous photon-emission rate along a given direction (0) as
I'(0) = g& 2z'igs riizb(ep, i, —ep —u, s +»). We neglect the weak dependence of the spontaneous emission rate
on the atomic momentum that actually is an artifact of the approximate interaction Hamiltonian that we use [15].
Switching back to the Schrodinger picture, we obtain the many-body atomic master equation in the Born-Markov
approximation

Pa

= —[Ho, a.(t)] + —,
' ) I'(0) ) i 2g „-ep,o, (t)e, g

0 PliPm

—,',~„-ag,', ; . .(&) — .(&),'.~,. ~~,', ;,,i
~

Here, o, (t) and He denote the Schrodinger picture re-
duced density operator and the (free) atomic Hamilto-
nian, respectively. k is the photon wave vector emitted
along direction A. Ho may in general contain the prin-
cipal value terms arising from the reservoir interactions

as well as interactions with other sources, such as weak
coherent electromagnetic 6elds.

Equation (6) gives the master equation that describes
an ensemble of many-body quantum systems that un-
dergo dissipation due to their interaction with the radi-
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ation Geld reservoir and is the starting point for a quan-
tum MCWF description. Following Refs. [10,16], we de-
compose the master equation to obtain a set of collapse
operators that depend on the emitted (detected) photon
direction,

c, = ) gr(n)yt „.„
and an effective Hamiltonian

~ +
lA A t A

H, rr = Hp ——) C„Cg
0

= Ho ——) I'(0) ) et g, i jt „-ep'
n P~P

= Ho ——) I'(0) ) et, ep(hp p + qg" „-g, „-).' 0 p~p

(8)

Here, q is defined by the commutation relations that the
atoms satisfy [gz, gt]v = gz gt —qgtg~, i.e., q = +1
for bosons and —1 for fermions.

The effective Hamiltonian given by Eq. (8) along with
the collapse operators of Eq. (7) constitute the princi-
ple result of this paper: They show that the dissipative
dynamics of a many-atom system interacting with the
radiation Geld reservoir explicitly depends on the quan-
tum statistics that the atoms obey. More specifically, the
(imaginary) diagonal terms of the H,g that correspond
to the total decay rates are (1) enhanced by a factor pro-
portional to [1+(j &g s)] for bosons, and (2) reduced

p —k

by [1—(g -g~ &)] for fermions. The off-diagonal terms
p —k p

of Eq. (8) correspond to non-Hermitian virtual-photon
exchange between the atoms, and are also subject to en-
hanceinent (bosons) and reduction (fermions) due to the
final-state occupancies. This coupling term is similar to
the nonsecular terms arising in Fano-type systems, and
may lead to interference e8ects in Raman or Rayleigh
scattering experiments [17].

The fact that the radiative decay of bosons is stimu-
lated [7] by both the initial (superfiuorescence effect) and
final state occupancies (quantuxn statistical effect) limits
the applicability of the Markov approximation to rela-
tively low phase-space densities. An approximate validity
condition may be obtained by requiring that the net de-
cay rate be much smaller than the transition frequency:
I'(O)[1+ (g „-g &)] (e e~) && ur, ~. For typical atomic
transitions, the upper limit in the phase-space densities
introduced by this requirement is about 1 x 10, under
weak-excitation conditions ((e e~) && (g „g &)).p —k p

As indicated before, the Hermitian part of the effective
Hamiltonian Ho may in general include coherent-optical
interactions. From a practical point of view, any mea-
surement on the atomic ensemble would be done by prob-
ing the system using a (weak) laser beam. Provided that
the Rabi frequency of the laser-atom coupling is much
smaller than the transition frequency, the Born-Markov
approximation and hence the master equation of Eq. (6)

remain valid. If we neglect the principal value terms and
the dipole-dipole interactions, the form of Hp is

Hp ——h) [epgtgp + (ep + (u,s)et ep]

+ih) gl, (a~g „ep —e jp ), al, ) .
p

In Eq. (9), aL, (o&) denotes the annihilation (creation)
operator of the laser mode kL, , and gL, denotes the atom-
laser coupling constant. We reemphasize that only in the
low atomic density and weak laser excitation limit we can
neglect the dipole-dipole interactions.

The many-body stochastic wave-function approach
that we introduce here should simplify the numerical
simulations considerably. In a typical simulation, we
expand the many-body wave function using multimode
atomic-number states, where the maximum occupancy
of each mode is limited to the total number of atomsX: For M discretized momentum states, the eigen-
states of the noninteracting Hamiltonian that we use
are of the form ~ng p, ne, p, & ng, pq & ne, pq &

"
& ne, pM ) &

where

g p + Q p + + A p 1V, The interesting many-
body efI'ects can only be seen in systems with a large
state space, which for bosonic systems would have

(sM + N —1)!
N !(sM —1)!

coupled quantum states (s = 2 is the number of internal
atomic states). Due to our limited computational facil-
ities, we shall consider a hypothetical case where a few
atoms (N & 10) are interacting with the tailored radi-
ation field reservoir of a one-dimensional photonic band-
gap structure [18], which only permits spontaneous pho-
ton emission along two directions (6 z). A resonant co-
herent laser Geld propagating along z weakly couples the
two atomic states. We assume in addition that the initial
momentum distribution of the atoms are such that their
momentum standard deviation Ap satisfies Ap (& k.

In general, one would expect that the bosons would
have a stronger forward scattering rate [19] due to the
stimulation by the final state occupancy. For fermions
however, the opposite is true: The fact that the Gnal
states for forward scattering are mostly full makes back-
scattering more likely. In the simple one-dimensional case
that we are considering, the situation is somewhat differ-
ent: The dynamics of fermionic atoms are almost iden-
tical to independent atoms since the final state of the
forward scattering is necessarily empty and the forward
and backward scattering are therefore equally likely.

Figure 1 shows the results of our simulations for
bosonic atoms under weak resonant laser excitation
where gl, gnL, = 0.025I'. Here, nl, denotes the mean oc-
cupancy of the laser mode, I' = I'++I' denotes the total
(single-atom) spontaneous emission rate, and I'+ and I'
are the decay rates along +z and —x directions, respec-
tively (I'+ ——I" ). We see that as the atomic number N
is increased, the forward scattering becomes more favored
to the extent that for % & 5, practically all the scat-
tered photons are emitted along +z. For the assumed
exactly resonant laser case, however, an increase in the
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FIG. 1. The forward and backward scattering rates for
bosonic atoms as a function of the total number of atoms
under weak resonant laser excitation. Atoms are assumed to
occupy the lowest allowed energy state before the coherent
laser is turned on.

atomic number does not result in a considerable increase
in the total scattering rate, due to the increase in the
linewidth associated with the cooperative decay. The to-
tal many-atom (weak-field) scattering rate is about twice
as high as the single-atom rate, as would be predicted by
a perturbative approach based on the effective Hamilto-
nian. In these simulations, all the atoms are initially in
the lowest discrete momentum state and it is assumed

that only four momentum states are coupled by the in-
teractions.

The extension of the many-body MCWF method to fi-
nite radiation field temperatures is straightforward. For
bosonic atoms interacting with a thermal field with aver-
age occupancy nT at frequency cu,~, we obtain in steady
state (absorption equals emission),

I+ (epe~) 1+AT
(10)

provided that (gt &g ~) )) I . Therefore, once large
p —k P

phase-space densities are reached, the excited-state pop-
ulation is fixed by the radiation field temperature and is
independent of the total number of atoms. The result-
ing population distribution in internal atomic states is
nonthermal.

Many-body atomic physics with all the interesting
prospects for linear and nonlinear atom optics [20j is fast
becoming an active subfield of atomic and optical physics.
The ultralarge state space necessarily associated with the
interesting many-body effects make a wave-function ap-
proach indispensable. We believe that the simple many-
body quantum MCWF approach developed in this letter
will be very useful, especially if it is extended to include
dipole-dipole interactions.
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