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Dynamical restrictions to the squeezing achievable by means of a degenerate optical parametric
oscillator (OPO) are considered by quantum-statistical diagram techniques. We determine optimal

pumping conditions which maximize the degree of squeezing in the output signal of the OPO. The

maximal spectral squeezing in the OPO's output radiation is found to scale as ¹~~ where ¹ is

the number of photons in the pump mode.

PACS number(s): 42.50.Lc, 05.70.3k, 05.40.+j

I. INTRODUCTION

In this paper, we present corrections to the linearized
approximation to a degenerate optical parametric oscil-
lator (OPO) [1] obtained by quantum-statistical diagram
techniques. From the formal viewpoint, the "one-loop"
approach to the OPO which we follow was first outlined
by Zaidi [2] and used later by Mertens et at [3]. We. show
how the Dyson equations used in [2,3] may be formulated
directly in terms of the linear response functions [4] and
time-normal averages [5] characterizing the OPO. Un-
like the conventional Dyson equations in Perel-Keldish's
techniques [6], the equations found below in this paper
have a direct macrosopic interpretation. Not only does
this allow us to compute corrections to the linearized ap-
proximation to the OPO, but also, and probably even
more important, reveals their physical content and thus
allows us to denne the extent of their consistency and
applicability.

We show that the accuracy of the one-loop approxima-
tion to the OPO is restricted to a perturbative correction
to the linearized approximation. In turn, this simpli-
fies the problem to the extent that an analytical solution
becomes possible. This solution reveals completely new
physical details of the OPO's behavior close to threshold.

We find that the OPO's quantum properties deterio-
rate in the threshold region rather than become perfect.
The underlying physical mechanism is quite simple. The
ideal squeezing in the subharmonic radiation, character-
istic of the linearized theory, implies unrestricted growth
of the Buctuations in its antisqueezed quadrature. SufE-
ciently close to the threshold, the presence of this noise
(which is in efFect classical) becomes essential for the
OPO's quantum dynamics and results in a general dete-
rioration of the OPO's quantum properties. The optimal
pumping conditions are found exactly where this effect
of the critical fiuctuations becomes noticeable.

One might expect that this "critical repulsion" mech-
anism is quite general. The squeezing in one quadra-
ture is inevitably connected with growing Huctuations
in another quadrature. Thus the squeezing cannot be-
come ideal because the critical Buctuations would then
diverge and destroy the squeezing however small the non-

linearity. The maximum achievable squeezing should be
expected at a point where the squeezing and the destroy-
ing efFect of the fluctuations come to balance. These
considera, tions are likely to be useful for defining the op-
timal pumping conditions for other nonlinear quantum
systems.

IL QUANTUM DYNAMICAL THEORY OF
FLUCTUATIONS IN THE OPO

A. Dyson equations for the two-point quantum
averages

Consider a degenerate OPO [1], i.e., two coupled
modes with the resonance frequencies 2~i ——~2 and
widths pi and pz, where indices 1 and 2 correspond to
the subharmonic and fundamental, respectively. Their
nonlinear interaction is described by the effective Hamil-
tonian of the form

teee (t) = (2ee)
' f d(t e 't"+ "t'tee (2)

(k = 1, 2) be weak probe signals emitted by external
sources,

d (t) = (2eeee) '/dtte 't + "&etette

(i.e., 0 is a detuning). Under the above-mentioned
pumping conditions, the dynamical properties of the

where ak and ai„k = 1, 2, are the modes' annihila-
tion and creation operators. We assume that the OPQ
is pumped on the fundamental frequency, so that the
steady-state field amplitudes are (ak(t)) = eke
(slanted letters denote the Heisenberg field operators).
For simplicity, e is assumed to be real and positive.

The following e-number approach to this nonlinear op-
tical system will serve as a benchmark in our considera-
tion. Let
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OPO are described by the 2 x 2 matrices of the normal,
Kg, and anomalous, Kg, linear response functions:

field by

bc~ ——Dumbo. g + D*~bo.*~,

(4)

In the absence of the nonlinear medium, i.e., in the empty
resonator, bnri = K& h«, where K&& ——b( K&&&

(0)

b( (0+i'() is the diagonal matrix of the modes' free
retarded Green's functions. In the presence of the y( )

medium,

K„=K„") I+D„K„+D*„K&,

K. =K()* D„K„+D*„K„.
(7a)

(7b)

where Dg and Dg are the matrices of the normal and
anomalous linear dynamical susceptibilities of the y( )

medium. This results in the equations

h~, = K„"' (h«+ b'„"j,

where hogs is the induced polarization of the medium.
In turn, the induced polarization is expressed over the

Then, the statistical properties of the random electro-
magnetic field, ho. Ii, emitted by the OPO can be ex-

pressed by those of the effective self-noise sources bL &
in the medium, e.g. ,

(baIihaIi) = Knhc'„+ (K nhs' „(Kgb''„,) +K n&s' „
(banb'an, ) = Knbe'n+ (K nb'e'

n) Kn ben+(K n b,

'e' n, )

(8a)

(8b)

We stress that hs' describes the self noise pro-perties of the OPO, as opposed to the coherent external source hs in

the relations relevant to the linear response.
If the OPO s noise radiation was not in a quantum state, one could find q-number quantities characterizing the

OPO by simply expressing them in c-number terms: Kubo s fiuctuation-dissipation theorem [4] states that

—ih '())(t, —t2) a (t, ), a, (tg) = e

e(t —t )([ (t ) (t )]) =

dO —iA(t1 —t2) Kn

dO —.A(t, —t )Ke nml ~ (9b)

and the OPO's noise properties could be formally reexpressed in terms of the time-normal averages,

(a (tt)at(te)) = e * -"+' "* In* at+

(2.--(t.)o(t )) = -"-"--"I- -+

dB —iA(t1 —t2) GAml

dO —iA(t1 —t2) GOml )

(1Oa)

(1ob)

so that (bet.&hot'rit) = 2vrh(O —0')Gn and (ha&ho«, ) =
2~h(O+ 0')Gn.

Less obvious, relations (7) and (8) hold for the actual
quantitities Kp, Kp, G~, and Gp, characterizing the
OPO, provided that these quantitities are rede6ned in
q-number terms by (9) and (10). As is shown in the Ap-
pendix, with suitably de6ned susceptibilities and quan-
tum noise sources, relations (7) coincide with the Dyson
equations [10] for Kn and Kri, while (8) are solutions to
the Dyson equations for Gn and Gn [cf. (A23)—(A27)].
This is the manifestation of the general one-to-one corre-
spondence existing between QED and classical statistical
electrodynamics [7]. Its best known example is Glauber's
quantum coherence theory [5] which matches the classical
theory within formal replacement of the c-number Geld

averages by the respective time-normal q-number aver-
ages. Another example is the quantum input-output as
formulated by Gardiner and Collett [8] (see also Klyshko

[9]) where a classical characterization of a linear system
suKces to describe this system in a q-number approach.
In general, one should consider the system's statistical
response properties to fully match classical and quantum
approaches see the Appendix for technical details. The
system's quantum properties are thus connected exclu-
sively with the nonclassical nature of its "noise. "

Note that the choice of units in this paper is intended
to make these quantum-classical correspondences more
explicit. We use the mode operator normalization such
that [a, a~ ] = h. This corresponds to the mode Hamil-
tonian of the form u a~ a, unlike the standard choice

[a~, a~ ] = 1 and H = Ru a~ a . The Hamiltonian (1)
is also written without Planck's constant. As a result, h

then proves to be eliminated &om all the relations and
quantities that have a classical interpretation, being nat-
urally retained only in those which are inherently quan-
tum. For instance, the classical mode energy, ur ~P
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B. Linearised theory

In the linearized (loopless) approximation, one can
write the closed set of equations describing the linear
response near the subharmonic frequency [cf. (A41)],

KQgg ——KQ~~ 1 + dQKQgg + d QKQ
(o)

(0)g
KQ11 = K Qyy ~QKQ11 + ~—QKQ11

(iia)

(iib)

where d~ = m ]aq( K&&2 [cf. (A45)] and dg = ca& [cf.
(A43)] are the effective normal and anomalous linear dy-
namical susceptibilities of the y& ) medium near the sub-
harmonic &equency. "Loopless" expressions for the noise
sources result in the only nonzero average (b'c&zbc&, z) =
ih~a2 x 2vrb(O+O') [cf. (A32) and (A36)] (clearly this vi-

olates the classical inequality abcQ&+ bbrQ, &
& 0 .

The quantum Quctuations in the subharmonic are thus
expressed in terms of the linear response functions [cf.
(A40)],

(P is the c-number mode amplitude), turns out to be
written without Planck's constant, as opposed to the av-
erage number of photons in the mode, 5 ~~P ] . (When
comparing our relations with the literature, it may sim-
ply be assumed that h = 1.)

All equations used below are derived in the Appendix
by expressing the susceptibilities and quantum noise
sources as diagram series in terms of the linear re-
sponse functions and two-point time-normal averages [cf.
(A28)]. By retaining only the diagrams with no loops
one finds the well-known linearized approximation to the
OPO [1]. Adding of the one-loop diagrams results in an
approximation equivalent to that used in [2,3]. However,
we shall see that for the OPO the accuracy of the one-
loop Dyson equations is restricted to the first nonvanish-
ing nonlinear correction to the linearized approximation.
This accuracy is not improved by their self-consistent so-
lution.

A word of caution is necessary here. The restrictions
to the accuracy of the one-loop approach concern only its
applications to the OPO and is not relevant to its other
applications, in condensed matter physics, say. The one-
loop Dyson equations are a formal way to pick a subset of
diagrams. The question is whether this subset expresses
a coherent part of the system's physics, so that retaining
higher-order diagrams is not invalidated by the fact that
some lower-order diagrams are omitted. For the OPO
this turns out to be not the case: the "one-loop" Dyson
equations result, e.g. , in an incomplete set of the two-
loop diagrams being chosen as an approximation to the
noise source on the subharmonic [cf. (A36)]. What is
important is not that some of the two-loop diagrams are
omitted, but that for the OPO the omitted diagrams
cannot be expected to be smaller than the ones retained
[cf. the discussion following (A36)]. However, this does
not a8'ect their accuracy or inaccuracy in other problems.

For the OPO, the one-loop Dyson equations give good
results except in the region near the classical threshold.

~011 &~+o'2K011K—011 + c c. (12a)

Gnig ——chit'a2KnggK mg —xhra2 Ka~~K ~~~. (12b)

Equations (11) are easily solved:

1
egg ———[L (O)+ L+(O)], (i3a)

1
Kggg ———[L (O) —L+(O)].

2
(13b)

Here

L+(O) = O+i»
l I+&~+i„. p2A',

0+i72) (i4)

and the dimensionless "dressed" mode amplitudes Aq and
A2 and field phases are given by the relations

1
ag ——(Aq) '&g, ag ——~ ~a',

~
&2,

where

(i6)

The quantities a2 and ¹z——5 ~ ]a2] are, respectively,
the threshold amplitude and photon number in the fun-
damental (recall that e is assumed to be real and posi-
tive). The time-normal averages are found to be

Gngg = [S (O) —S+(O)],
8pg

G&» —— [S (O) + S+(O)],
8py

(17a)

(17b)

where S+(O) = 4&2pPL~(O)~ . Note that Planck's
constant is present only in the formulas for the time-
normal averages. [It is not present in the scale factor

1

(hQ) ~ = ~
~~ for the subharmonic field amplitude

and appears in its definition only because we express this
factor over the quantum parameter q.]

The output field statistics for the OPO can be solved
by correspondence rules [7,9], noticing that the mode am-

plitude aq is related to the mode energy urp]aq~ and
thus to the output power 2&]up]ay~ . The intrares-
onator time-normal averages of the subharmonic should

1
therefore be multiplied by (2pz~p) ' "per argument" to
turn them into the corresponding averages of the emitted
light. Adding the strong heterodyne field with phase y
and assuming that the full detection efBciency is unity,
the photocurrent spectrum is found to be

= 1+S (O) cos &p
—S+(O) sin y.

Clearly all this is in agreement with the results known in
the literature [1].
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C. "One-loop" approach

When considering corrections to the "linearized" re-
sults, we assume that the switching occurs between two
possible "above-threshold" steady-state solutions, so that
o.q

——G. We shall be looking for the corrections to the
below-threshold solution in the linearized approximation.
Physically, it implies a gedanken experiment with the
OPO starting &om zero pumping, the latter being in-

creased to reach the threshold region "&om below. " The
results are then extended up to a point where our ap-
proach is no longer valid. Note that initially this gives no
idea whether the OPO is considered "below" or "above"
the threshold (or even whether these words make sense).
Yet we shall see that our investigation is in essence con-
fined to the "below-threshold" OPO.

To simplify the treatment, we compute the diagram
loops (cf. the Appendix) with the linear response func-
tions and time-normal averages taken in the linearized
approximation. The accuracy of this approach will be
discussed below. Under this assumption, the one-loop
diagrams are confined to the nonlinear dynamical correc-
tion to the OPO's properties due to the beating of the
probe signal [cf. the definition of the linear response be-
fore (7)] with the subharmonic self-radiation. Formally,
it means that the quantity did is modified as [cf. (A42)]

dO'
dn = & Gn —n~iiKn~22&2'

2I'
+All GB11 ~Qq n+r (20)

where q = 42~&~. Since I' &( p2, we find that dii

r25QqK&&~2, which clearly coincides with the "above-
threshold" expression for this quantity in the linearized
approximation with cubi, ir ——hQq.

Thus, in our approximations the equations for the lin-

ear response functions of the subharrnonic coincide with
those in the linearized approximation within the for-

where Kng2 is the linear response function on the fun-

damental. Both Gnqq and Kn22 here are taken in the
linearized approximation. The rest of the above equa-
tions, including (12), are not affected. In other words,
the self-radiation of the OPO develops exactly as does
the external signal: the fact that it interacts with itself
has no effect on the result. This means that we have

only taken into account the first nonvanishing correction
in the intensity of the system s self-radiation.

First, if aq ——0, the linearized theory yields Kn22 ——

Kn22. Second, if the medium's nonlinearity is not too
high, Q» 1, the corrections sought are essential only
in the near-threshold region. Assuming that ~1

—A2~ &&

min(l, ~2) and Ai2 (& min(1, &~z), the behavior of the

system is dominated by the only pole of the response
function at 0 = i,I" = —ipi(1 ——A2 + A, ), I' « pi, p2

(the reason why this expression is formally written for

ni g 0 becomes clear below). By retaining only this
dominating pole term, one finds in the threshold region,

mal replacement A& m A& &
——q, while the relations

expressing the time-normal averages remain unaff'ected.

Then, we can simply take the "linearized" expressions
for these quantities written above (for ai g 0) and re-

place in them Az by q. In turn, this allows l and q to
be defined self-consistently as I' = pi(1 —A2 + q) and

A2
4Q(1 —A2 + q)

The equations for the response functions and time-
normal averages contain the pump only through
"dressed" field amplitudes ai and u2 (this allowed them
to be viewed as independent). Consider now the equation
for the steady-state field amplitude on the fundamental.

In the linearized approximation, it is A2 ——A2 —
2 [cf.

(A46) and (A47)], where the dimensionless "bare" field

amplitude A2 is defined as the value of A2 at K = 0,(o) .

i.e. , in the empty resonator under the same pumping
conditions. The phases of the bare and dressed fields
coincide. In the one-loop approximation, the difference

between A2 and A2 is due to the integral amplitude
of the anomalous correlations in the subharmonic, which
are "processed" into the coherent signal in the funda-
mental by the OPO's nonlinearity [cf. (A48)]. Since

f 2 Gtiii ——AQq, again this results in the replacement,

A~ ~ q, and the equation for the average amplitude on

the fundamental is found to be A2 ——A2 —). The phase(o)

conditions remain unaffected. This completes the set of
nonlinear equations expressing A2 and q by A2 . How-

ever, for practical purposes it is convenient to consider

Az and A2 as functions of the quantum "noise" parame-

ter q which leads to rational relations: A
4 q(l + q

) 1+ 4Qq
and A2 ——A2 + ). Both these are monotone functions(o)

of q.

III. RESULTS AND DISCUSSION

Let us first discuss the accuracy of our results. The
approximations used contain three successive steps: (i)
the one-loop approach, (ii) the assumption that the loops

may be computed with the "lines' taken in the linearized
approximation, and (iii) the condition

allowing for the "one-pole" self-consistent computational
scheme. It is easy to see that our approach as a whole is

consistent if 1 —A2 )) q or, equivalently,

1 —A~, 1 —A2 )), )) q. (22)
2

The important question is whether our approach im-

plies any loss in accuracy compared with that of the
"one-loop" Dyson equations themselves. Simple quali-
tative considerations show that this is not the case. It
is obvious that the expression for the leading pole of the
linear response functions, I' = pi(1 —A2+ q), is the trun-
cated expansion of this quantity over the powers of the
critical-noise parameter q, I' = pi(1 —A2 + gi, i ci,q").
To produce cg, the succeptibilities and noise sources in
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the Dyson equations should include all essential n-loop
diagrams for n ( k (assuming that the diagrams are ex-
pressed over the "dressed" lines and "bare" vertices; cf.
[10]). As is shown in the Appendix, the one-loop Dyson
equations miss already some essential two-loop diagrams,
i.e., these equations cannot produce cI, for k ) 1. It
means that our approximatioa exhausts their accuracy.
Direct evaluation of the "missed" diagrams presented in
the Appendix leads to the same conclusion.

Note, however, that all these considerations imply con-
dition (21). If this condition does not hold, the "one-
pole" approach breaks down, but the one-loop Dyson
equations themselves may remain valid.

We see that the "number-of-loops" expansion is not
the system-size expansion. In the threshold region, the
true large parameter of the problem is

P = (1 —Az) N2-
+1

(23)

(this parameter emerges also in the estimates of the
"missed" diagrams, cf. the Appendix). This is sub-
stantially different &om the system-size parameter N2 =

2
r

ln2l = »2. the condition Nz » 1 is necessary but

not sufBcient.
It may be expected that the results are still qualita-

tively correct up to the point where

1 —A2 ——q. (24)

For Q )& 1, this corresponds to 1—A2 ——q, and1
2(2Q) ~

1 —Az, . This turns out to be consistent with
4(2Q)-

[11], where the precise solution for the quantum state
of the subharmonic was obtained in the adiabatic limit

p2 &)». Following [11], the threshold region for the
OPO (characterized by the growth of the subharmonic

Huctuations) can be estimated to be at 1 —A2

this being in agreement with our results.
Note that in the antiadiabatic case, i.e., if

&
&& 1, we

Q1

must also assume that ~)),, so as to preserve
2(2Q) ~

the condition I' && p2.
The fact that the "one-loop" relations are formally

found by substituting q for A2r in the "linearized" re-
lations has a transparent physical interpretation. The
approximate values (20) of the time-normal averages de-
scribe a Geld in a classical state with well-defined square
of the amplitude, a2r, &

——hQA2r, & ——hQq. The sign of
the axnplitude is uncertain, and changes randomly with
the characteristic time I' . This noise is nothing but the
Quctuations in the subharmonic radiation's antisqueezed
quadrature. On the time scales 7- « I' it is indis-
tinguishable from the coherent subharmonic field with

1
o.r ——nr, s = + (hQq) ', this being exactly the result
found above (recall that p2 » I' was assumed). This
interpretation agrees also with the structure of the dia-
grams [cf. (A49)].

On the one hand, o.1 ——0, which is characteristic of

the below-threshold solution in the linearized approxi-
mation. On the other hand, a2r, & g 0, which is charac-
teristic of the above-threshold one. So, while remaining
below threshold [cf. (22)], we nevertheless see the seed of
the above-threshold solution —provided the subharxnonic
Buctuations are essential in the OPO s dynamics, it is un-
certain whether the OPO is "below" or "above" thresh-
old.

This emphasizes that for the OPO the very concept
of threshold is qualitative rather than quantitative. In
the present solution "&om below, " the threshold region
is defined by the growth of the subharmonic fiuctua-
tions. At the sarge time, this solution casts into doubt
the very possibility of a definition "&om above. " On
the one hand, the threshold region is naturally defined
as a region where critical Buctuations in the OPO are
essential. On the other hand, we found that the coher-
ent subharmonic steady-state amplitude is exactly the
critical subharmonic noise. It must be the case in the
"above-threshold" region as well, so that this region is
characterized by further growth of critical fluctuations in
the OPO rather than by their decrease. From this per-
spective, if the OPO is not "below" the threshold, i.e. ,
if the critical fiuctuations cannot be regarded as being
negligible, it is ipso facto "above" the threshold.

As far as the OPO's dynamics is concerned, the OPO's
self-radiation acts as a strong classical noise. Not sur-
prisingly, its presence degrades the quantum properties
of the OPO. For example, the subharmonic is no longer
in a minimum uncertainty state, for, whereas U(n) =
[1 —S+(n)] [1+S (n)] = 1, it is easy to see that

U(0) =
(1 + A2 + q) (1 —A2 + q)

The noise of the OPO affects substantially the uncer-

tainty of the state of the subharrnonic if 1 —Ai2 l &)

This does not contradict condition (22), i.e. ,
(4Q) '
the subharmonic already ceases to be in a miaimum-
uncertainty squeezed state in the domain of quantitative
validity of the results. For the "edge of applicability"
condition (24), U(0) 2(2Q) ~ && 1.

The squeezing spectrum in the output signal is given
by

—2

s+(n) =4A»,' n+i»
I
1+A, + '.

l

. (»)
l n+iq, ~

Depending oa the values of the parameters, the dynam-
ical corrections can either "Batten the bottom" of the
squeezing spectrum [Fig. 1(a)] or even give it the two-
minixna shape characteristic of the "above-threshold"

1

OPO ]Piff. 1(h)]. 0 an h h that 1 ~ & ( )
the two-minima shape is not achieved within the domain
of applicability of the results. The maximum squeezing
is observed then at 0 = 0 and is independent of the ratio

It is shown in Fig. 2 as a function of the pump-+1
ing for different values of Q. The span of the curves
is from the zero pumping to that corresponding to con-
dition (24). Figure 2 clearly indicates the existence of
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an optimal pumping allowing for a maximum squeezing
within the domain of the applicability of the results. It is
easy to find that this is achieved at the following values
of the parameters:

0 I I I I I I III

-10—

/11
/opt = , +0 q-)

(o)

S+(O).„=1—

8 (11
A2opt —1 + +O

~

(2q)-' 2(2q)-:
7

, +, +Oi —i,
(2Q)

-
4(2q)

- (q)
8

, + +Oi
4(2Q)s 8Q (qs )

(26a)

(26b)

(26c)

(26d)

CDc 30
N
Q)
Q)

D"
-40—

so)

Q = 10"

I I I I I I III-60
lO-~ 10-'

= 10"

103

Q =10

102
I I I I I I I I I I I II

10 ' 100

These results are valid if 2(2Q) ~ && 1, the condition being
well satisfied in practice.

Note that the optimal squeezing is located exactly
where the noise of the OPO starts to affect the quantum

10

.-12

.-15

.-17

.-22

. 5

U)

N

Q)

. 5
(D

10

.-16

.—18

.-20 N

Q)

, —22
CO

FIG. 1. Dependence of the shape of squeezing spectrum on
the pumping. Q = 10, pq ——1. (a) pq = 0.21; (b) pq ——0.11.

FIG. 2. Dependence of the maximum squeezing on the
pumping conditions.

uncertainty of the state of the subharmonic. Undoubt-
edly this is not just a coincidence. Both effects have the
same physical origin, namely, the dynamical effect of the
critical fluctuations in the OPO in the aear-threshold re-
gion.

1

If ~ & the dynamical corrections can give the

squeezing spectrum the two-minima shape [Fig. 1(b)];
cf. [3]. This happens if the parameters obey the con-

1
dition ~2 ( [2(1+A2)q]'. Recall that we are not al-

$1

lowed to make ~2 arbitrarily small because the condi-'71
tion p2 )) I' = p1(1 —Aq + q) must hold for our re-
sults to be consistent. Thus the predictions about the
shape of the squeezing spectrum are reliable in the band

of pumpings, ~ )) 1 —A2 p) 1 This con-
2(2Q) ~

tains also the above-mentioned condition, ~2 &&
2(2Q) '

which makes the results applicable. Assuming a slightly

stronger condition, ~ &&, , the "band of consis-
2(2Q) '

tency" covers the optimal-squeezing region as well. It is
thea easy to see that the squeezing spectrum takes on the
two-minima shape only for pumpings greater than opti-
mal [cf. Fig. 1(b)]. Indeed, the converse would require

1~ ( [2(1+A2 pt)q ~,]', the condition contradicted by+1
the assumed one. As such, the two-minima shape of the
spectrum appears only when the squeezing has already
been degraded by the critical fiuctuations in the OPO
and does not affect the estimate of the optimal squeez-
lIlg.

Our results reveal that some of the conclusions made
in [12] do not apply to the spectral properties of squeez-
ing. In that paper, general limitations to the squeezing
achievable by means of an optical parametric amplifier
were considered. It was shown that there exists a general

1

limit to the total squeezing which scales as N2 with the
number of photons in the pump mode N2. Assuming that

pl ——p2 and A2~pt A2 t 1 the maximum squeezing
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given by (26d) scales with N2 as 1 —S+(0) z& N2 '. So
1

the limit N2 is not applicable to the maximal apectrnl

squeezing.
Let us now compare our results with Ref. [3] where the

squeezing spectra were obtained by means of numerical
solution of the one-loop Dyson equations. The equations
used in [3] are formally equivalent to those on which our
approach is based, so that comparing our results with

[3] provides us with a direct check of our approxima-
tions. In Fig. 3 we present the squeezing spectra as given
by relation (25). The values of the parameters are cho-
sen so as to match exactly the corresponding Fig. 11(a)
in [3], namely, 72 ——O. lp1 and Az ——0.95. [There is
some confusion in [3jconcerniny the threshold parame-
ter defined as p = 2 . Since ~ is the bare amplitude

Q1 f2 Q2

of the fundamental, a2i l, and ~~i = o.z, in our terms

~(o)
p =, = A2 . However, its place in the Dyson

0!2

equations in [3] is consistent only with p = A2. We as-
sume p = Az. ] The results of [3] are also replotted in
Fig. 3. Curve c (Q = 1000, q = 0.003) exhibits obvious
quantitative agreement with the corresponding curve in

[3] even though the condition p2 )) I' is not very well
satisfied (p2 ——O. lpi and I' = 0.05pi). This shows that
condition (21) is not critical. Another two curves in Fig.
3, corresponding to q = 100 (q = 0.011) and q = 60

(q = 0.016), respectively, exhibit only qualitative agree-
ment with [3]. However, for these parameters condition
(22) does not strictly hold, and we are outside the validity
of our approach.

Obvious disagreement of our results with that found
by Zaidi [2] is probably due to the fact that instead of
the actual Dyson equation Zaidi used graphical relations
of unclear origin. Apparently, these are invalid because

of the overlapping of diagrams. In any case, the consis-
tency of the quantum-field-theoretical results presented
in [3] and in this paper with those found by a completely
different method in [11]leaves little doubt that the results
of Zaidi are erroneous.

In conclusion, it has been shown that close to the
threshold quantum properties of the degenerate OPO are
degraded by the Buctuations in the antisqueezed quadra-
ture of the subharmonic noise, the effect which is in
essence classical. In particular, this results in the ex-
istence of the optimal pu~ping conditions providing for
the maximum squeezing.
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APPENDIX: CAUSAL DIAGRAM TECHNIQUES
FOR NONLINEAR OPTICAL SYSTEMS

1. Quantum input-output approach

Let the time-normal ordering be defined for an arbi-
trary time-dependent operator O(x, t) as

(TNF(O)) = F(i—) T exp —i(i+lO
h(

x T+ exp —i(i lO
/=0

(A1)
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o
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FIG. 3. Squeezing spectra for Az ——0.95, p& ——1, and
= 0.1. (a) q = 60; (b) Q = 100; (c) q = 1000; (d)

linearized theory. The solid lines represent our results and
the dotted lines represent the results of [3].

where Ti is the Dyson time ordering, T is the reverse
ordering, T ( ) = {T+[( )t])t, the "products" are
"scalar" ones,

('z'O = f dz dh('z'(z, t)O(z, t), (A2)

H;, (t) = /d A( t) 1z( tz) +j ,(zzt)„,(A3)

and (. . .) i+& means taking the frequency-positive
and negative parts [Fourier transforms are f
f dtf(t) expi(ot and f(t) = (2m) 1 f d(df exp( —i(dt)].
(Al) is equivalent to the conventional definition [5] within
the approximation of slowly varying amplitudes. Its re-
finement beyond this approximation is justified by the
results below.

Let now A(x, t) be the Heisenberg field operator de-
fined in the presence of an external current j,„t(x, t), i.e.,
where the interaction Hamiltonian is of the form
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and where J(x, t) is the Heisenberg current operator
and x includes all field degrees of freedom. In the

notation used in [7], A = A. '" and J
J('" . Operators defined in the absence of

aexg ——0
the source bear no tilde, A. (x, t) = A (z, t) [j 0 and

J(z, t) = J (z, t)
~j 0. The following precise relation

holds with arbitrary c-number function ((z, t) [7],

T~ exp —i A = T exp ig A x T+ exp —ig+A

scopic conditions, this kind of description corresponds
to the input-output description of real devices [7], i.e. ,

(A4) provides the rigorous solution of the quantum input-
output problem [8,9,13]. Among the relations following
from (A4) one finds, e.g. , Kubo's fluctuation-dissipation
theorem for an electromagnetic system [4],

b A x, t

bj.„,(x', t')
j,„t ——0

(A4) = —ih 'e(t —t') ([A.(z, t), A(z', t')]) . (A6)

where

q+(z, t) = h 'j.„,(z, t) +t,'+l(z, t).

Thus the knowledge of the time-normal averages of the
field operator in the presence of an arbitrary external
source is equivalent to the conventional quantum descrip-
tion of a quantum electromagnetic system (see [7] for
the relations accounting for the currents). Under macro-

2. Causal diagram techniques

Viewed as a functional over the c-number functions

il+(z, t) and i) (x, t), the quantum average on the right of
(A4) is exactly the characteristic functional of the Perel-
Keldish-type [6] quantum field averages:

(T A. (z„t,)" A(z, t ) x T+A(z'„t', ) "A. (x'„, t„'))

n m b +" (T exp(ill A) x T+ exp( —ig+A. ))
baal (z„t,) bq (x, t ) br'+ (z'„t', ) by+ (z', t'

) „
Relation (A4) then rearranges Perel-Keldish's diagram series [6] so as to produce the quantum statistical "macroscopic-
response" functions,

(na, n) I I I IK ' (zi, ti, , z~, t~;zi, ti, , x„,t„) =
b" (T+A(z„t, ) A(z, t I)

bj.„t(x'„ t', ). . . bj.„t(z„', t„')
jext=o

(A8)

These functions obey natural causality conditions (n P 0)
[7]:

D(z, z', t —t') = —ih-' (0 iA(z, t)A(z', t')
~
0)

(A11b)

, ( ) I I I I yri txg)ty). . . )x~)t~)x~)t~). . . )x )t j

= 0 if t, ( t', for all r, s. (A9)

Consider first the propagator in this new diagram tech-
nique. Applied to a linear passive (i.e. , nonradiating)
system, relation (A4) yields

D~(z, z', r) = D„+, (x, x', ~) + D„+, (x', z, ~), (Aloa)

D(z, z', 7) = D„+~ (z, z', r) —D„+i (z', z, r), (Alob)—
where with A(x, t) being the free-field operator and ~0)
being the &ee-field vacuum

D~(z, z', t —t') = i h '(O ]T+A(z, t) A(x', t')
~

O—), -
(A11a)

are the constituents of the matrix propagator in Perel-
Keldish's techniques, and

D„(z,x', t —t') = —ih 0(t —t') [A(z, t), A(x', t')]

(A12)

is the linear response function of the linear system [cf.
(A6)]. As was shown in [7], D„t, is nothing but the re-
tarded Green's function of the classical (c-number) in-

homogeneous wave equation in the linear medium. So
propagator (A12) in this new diagram technique is a fully
classical quantity with natural causal properties. The
whole system's quantum properties are thus due exclu-
sively to its nonlinearity —by themselves, the free-field's
quantum properties are unobservable.

Instead of actually rearranging the Perel-Keldish's se-
ries, it is much easier to derive directly the techniques
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sought following the general relation existing between the
closed perturbation formulas and graphical approaches
[10]. Such a formula corresponding to Perel-Keldish's se-
ries was derived in [7]. After the transformation induced
by (A4), and being confined to the field averages, it takes

the form

T~exp —i A = exp 6 G y, a

where

(A13)

W

dzdz'dtdt' —i z)t Dret &&& ~t t i
I +2ext; & ~t

G(x, a ) = (T expi (
—xi+i +3, a) d x T eexpi (

—yi i —li a) d)

(A14)

{A15)

and J(z, t) is the current operator in the interaction picture.
Relation (A13) generates the diagram techniques sought with the propagator D„t and the "bare" vertices

(+1i le &+me m+eg& gi'''i+pii Pi) ~
b ( ) g ( )g (

i d) b (
i I

)
(A16)

K(2'x)
...0

~ o ~ e
oee

oooo~ oe
~oe ~ oe

~ ooooeooooooooeoooeooooooeeooQo
~ ~ o ~e ~o ~oe ~oo ~ o ~ o ~ "~

+ e ~ ~

(A17)

Here, the dotted lines and the point in which they are
connected denote the propagator D„q and the vertex
V~ ' ~, respectively. To make our graphical notation un-

ambiguous, we assume that the "inputs" of any graphical
object point to the left and the "outputs" point to the
right (note that this is opposite to the direction of the
"time fiow" in analytical expressions, a = D„tj, say).
When a diagram in the frequency domain is considered,
this convention applies to its structure before taking the
Fourier transform. The symmetry coefficients for the di-
agram will be shown explicitly [in (A17) it is equal to
one]. The curly brackets are intended to improve the
readibility of the formulas containing graphical objects

The overall factor for a diagram is real and confined to
the standard symmetry coefficient [10]; no complex fac-
tors characteristic of conventional quantum approaches
occur. Vertices (A16) obey the causality condition (A9),
cf. Ref. [7], appendix B. The structure of the diagrams is
also governed by causality: the "earlier" and "later" ends
of the propagator are always connected to the "outputs"
and "inputs" of the vertices, respectively. Since the dia-
gram lines correspond to causal propagating waves (this
replacing a rather murky concept of virtual photon), the
causality condition (A9) holds for individual diagrams,
a result which provides new insight into the quantum
properties of nonlinear electromagnetic systems. In par-
ticular, all diagrams containing a subdiagram with the
structure K~o "l are precisely equal to zero (cf. Perel's
cancellation rule [6]).

To illustrate the way in which the diagrams will be
drawn, consider, for example, the 6rst nonvanishing ap-
proximation to the response function %&2' ~,

(they can also be considered as mapping of the diagram
on the corresponding expression).

When the system's nonlinearity is described phe-
nomenologically by the effective "interaction" Hamilto-
nian H;„t(t), the above results apply with

W

lag(X, a) =ili f det 'R; e
—iigiei(x, e)+a(a, t)

{A18)

where 'R;„q is the symmetric representation of H; q(t),

H;„t(t) = sym('8;~g [A(z, t)]j. (A19)

3. Classical interpretation of the diagram series

The perturbation relation (A13) lacks Planck's con-
stant and therefore must have a classical analog [7]. As
a result, the fundamental property of the diagram se-
ries obtained is that they are representations of nonlinear
statistical c-number electrodynamics. Consider a classi-

Relation (A18) might also be helpful when deriving an ef-
fective field self-action from a microscopic atomic model.

Relation (A13) with ln G(g, a) given by (A18) may pro-
duce the diagrams where some of the lines start and finish
on the same vertex. In general, these diagrams are char-
acteristic of non-Markovian systems. Since the field self-
action described by an effective Hamiltonian is Marko-
vian, these diagrams should be ignored in the quasires-
onance approximation. Indeed, on the one hand, the
system's properties cannot depend on the small delay in-
troduced into D„t., on the other hand, this delay makes
the diagrams with "short-circuited" lines equal to zero.
Beyond the quasiresonant approximation, this problem
is outside the scope of this paper.



2636 LEV I. PLIMAK AND DAN F. WALLS

cal system consis ing ot' of the set of linear and non inear
d . Let the linear devices be characterized by t edevices.

|

rents in inear evicesd vices are not observed directly . Mi-
croscopically, the nonlinear statistical properties of t is
system may e e ermb d termined by the nonlinear statistica
susceptibilities V(

OO

TA 7l, . I I l gl'd', dz'„dt'„V " (z„t„.. . , z, t;z„t„.. . , „, „)((~'(*,t ) i'(*,t ))) =).—,
n=O

(( (* t )" ( t.))) (A20)

e an le brackets denote classical statistical averaging.where a(z, t) is the full random m' p'microsco ic Geld and dou e ang e rac e s en
of the statistical response functions K ' '

g'") relatin the
o the infiuenc of e t r l t ',„„ th tstatistical properties of the full field to the i uence o an ex e

a(* &) = f do'«'& a(o *' r-—&')(j (* ')'+j'' ( ar)oI (A21)

and

dz', dti dz'„dt'„K( '") (zi, ti, . . . , z, t; zi, ti, . . . , z„,t„(((* t) (* t )))=
n=O

&& 2 Xt (zi ti J
' ' ' 2 Xt iI) ~ I tl ) (A22)

and the macroscopic statistical response functions is the

can be checked that if the classical susceptibilities (A20)
were substituted for vertices (A16) in the causal iagram
series, these wou proh ld oduce precisely the classical macro-
scopic response functions (A22).

le &om the classical point of view, iagram
(A17) describes a noise radiation excited y a co eren
Geld initially emitted by an external sourource. The external
Geld propagates in the medium i(the leftmost line) and
creates a polariza ion o al

' t' f a noise nature (the vertex . n
~ ~ ~

turn, the noise e emiG ld 'tted by the noise polarization
propagates in the medium (the two rightmost lines).

Importantly, i ver ices i,
'f t' (A16) may be interpreted as

comes both'b'I' '
s (A20) the quantum system ecomes bot

m the re-formally and physically indistinguishable Rom e re-
1 t . The "quantum di8'erence"

therefore resides only in the impossibility to interpre

some of the quantum "susceptibilities" (A16) in classi-
1 t . This is always connected wit the

nonclassical nature of the system's noise properties —t e
t."s of the macroscopic quantum optical systems

can always e consi erb 'd red in classical terms. In ee, i is
~ ~ ~'

n t V( ' ) the classical interpretationconnected wit ver ex
o which is valid unconditionally. Note also that vertex
V( ' ~ fully accounts for the self-radiation of a linear heat
bath ("hot" or "squeezed" reservoirs).

4. Dyson equations for the one- and two-point
quantum statistical averages

Since t e esa is e
' '

s con-n t bl' h d diagram series themse ves con-
sist of the standard Feynman-type graphs,hs thew oeo
h 1 proaches to graphical techniques is applica-the usua approac

ble [10]. In particular, the following grap ica y
equations hold:

~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ a

~ ~ ~ ~ oooo +

~II ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ a a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+(=

(A23a)

(A23b)

~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

r

j~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~~ ~ ~ ao ~ ~ a ~ ~

a ~ ~ ~ ~ ~ ~ ~ aa ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ooQ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ a

(A23c)
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Here,

=K&"~zt = Art (A24)

is the average ("dressed") field,

1is the hnear response function (A6),

=K ' zt z't' —K ' xt~K '~(x't'
'I

= (T &(* t)&(* t )) —(&(* t)) (&(* t )) (A26)

is the connected (incoherent) part of the two-o e wo-point time-normal avera e. The do

D„g and --- o is the "b
g . e otted line denotes the causal propagator

Importantly, the only informative detail as

e fj. ld, ', e e in t e empt resonatoe e y or for the same pumping conditions.

point to the rinh o o h lft. Alloh d '1 f h' h
Iti to h kthtE (A23)'q. ( c) is satisfied by

e ignore .

(A27)

This is exactly relations (8) which hw 'c t us are very general.

Relations (A23) are nothing but the inhomog u e in omogeneous wave equations with the avera e olarizs wi e average polarization, linear

and noise-polarization source ~ ' . hin lines denote t:) '."- "-"'"'-"-"'"--
polarization a dd t'b'1't '

d
th fo 1 ti (A23 ) [o (A27)jc [or ( 27)' where the interpretation of th

e impossi e (yet these rela
'

tions may always be regarded as b
'

n o e noise source" in c assical statistical terms ma

e quantum "sources" ma b
ar e as eing structurally classical).

may

may e expressed as dia am
'

gr m series in terms of the quantities 424,n i ies ' ', A25), and (A26),

(A28a)

(A28b)

(A28c)

The diagrams showngr hown explicitly correspond to the
that V~"& = O.

n o e one-loop approximation to the three-wave m

The 1 p oe c assical interpretation o

o e - '
o e ee-wave mixing problem given

g q p . oop
oPO ith t lfpo db th onl'

Gnally turned i t
escribes the propagation of the noise excited by "po

of tli lf- oi th th " ob "m " 1. h 1oo (A ) d 'b nlic escri e nonlinear bea '
atings of the self-noise with itself.
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5. "Bare" diagrams for the degenerate OPO

The expression for the propagator can be found either by a purely classical consideration of a damped oscillator
or, which is actually easier, comparing relation (A12) with standard quantum approaches to the resonator modes.
Without the nonlinearity, the modes develop independently, so one has in fact two &ee lines: one for the fundamental
and one for the subharmonic. The Fourier transform of the lines sought is

Q » ~ e oooo@ ~ ~ ~ s Pe ~ ~ ~ ~ ~ ecto ~ ~ e Q
m, O 0+ ip

where the arrow shows the direction of the positive frequency cu, 0 = u —~ is the detuning and u and p, m = 1, 2,
are the modes &equencies and widths. For negative frequencies, the &ee propagator can be obtained using

+o ~ ~ ~ ~ ~ ~ o ~ ~ ~ o+etoe ~ e ~ i ~ ~ ~ ~ o
m, A 0 —ip

(A30)

which expresses the reality of D„q. The left-pointing end of the line is implied to be "earlier" and the right-pointing
to be "later"; cf. (A12) (recall that the way in which the diagrams are drawn reBects their causality structure before
Fourier transformation).

Relations (A16) and (A18) with II;„q given by (1) yield the following set of nonzero vertices in the frequency domain:

(a) the Vl ~-type vertices,

=
(

=-= = =-= =
(

=-= = ~x 2mb(B'+0" —n), (A31)

and (b) the V~2 ~-type vertices,

= ihK x 2vrb(O'+ 0" —0).
&,0" &,0"

2,0 1,0'
J 2,A 1,0'

J

(A32)

Here, the thin lines denote the arguments of the vertices and the arrows correspond to the positive &equencies; cf.
(A29 and (A30). In accordance with the general rule "inputs point to the left and outputs point to the right, " the
V{i 2 vertices have two arguments pointing to the left (to the past) and one to the right (to the future), and the
V~ ~ vertices have two arguments pointing to the future and one to the past, this reHecting their interpretation
as "quantum susceptibilities. " In the diagrams, left-pointing ends of the lines must be fitted to the right-pointing
arguments of the vertices and vice versa. Note that the observable quantum properties of the OPO are formally due

to the absence of vertices of the structure, thus preventing any classical interpretation of the assemblage

of the V~ ' ~ vertices.
The rule "complex conjugation inverts arrows" holds for vertices (A31), (A32) and thus for any graphical object

as a whole. This reBects the reality of the causal diagram techniques. To avoid confusion, note once again that the
arrows correspond to frequencies, not to detunings or causality structure of the diagrams.

As was already mentioned above, the units we use in this paper allow Planck's constant to be eliminated &om all
the relations which have a classical interpretation. In particular, the diagram line (A29) and the "nonlinear" vertices
(A31), which are in essence classical quantities, lack Planck s constant. At the same time, it naturally turns up in the
noise vertices (A32) which are inherently quantum objects.

B. Graphical equations for the degenerate OPO

Owing to the phase-definite pumping the problem is not time-uniform and Fourier transformation is thus performed
independently on each argument of the graphical objects comprising a diagram. The quantities defined by (9) and
(10) thus correspond to the following graphical objects in the frequency domain (l, m = 1, 2),

&n~i =

&o i= Q ) +Qrnl— (A34)

[recall that the arrows show frequencies; cf. (A29)j. As a rule, in the case where l = m = 1 these indices will be
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omitted.
Consider first the noise source on the subharmonic. It is convenient to return to the time representation for

the diagrams. Using relation (A27) and the expression for the noise source on the fundamental in the one-loop
approximation,

(A35)

one finds the "noise" source on the subharmonic to be

&+ c~( 2

2

(A36)

These are the two-loop diagrams picked by the one-loop Dyson equations. It is easy to check that some of the omitted
two-loop diagrams are of the same order of magnitude as the ones retained in (A36). Compare, for example, one of
the diagrams in (A36),

2

(A37)

with the following diagram omitted in the "one-loop" approximation:

2

2

(A38)

Diagram (A38) would be small compared to (A37) if the characteristic times of the subharmonic were small compared
to that of the fundamental. Not too close to the threshold, this is exactly opposite to the relation actually existing,
p2 )& I'. In the threshold region, it is natural to expect that the characteristic times for both modes will be the same,
resulting in (A37) and (A38) being of the same order of magnitude.

These considerations may be supported by directly computing diagrams (A37) and (A38). Under the approximations
specified in the main body of the paper,

nt
'n J, :nJ,

3hpg A32I'2

128P2 (n2+ gr2) (A39)

Here, ( )q and ( j2 correspond to the contribution of diagrams (A37) and(A38), respectively, and P is the
parameter (23). This should be compared to the "linearized" noise source value ~hea2~ = hpqA2. We see that the
"accounted" and "missed" contributions are just equal and must therefore be negligible for the one-loop approach to
be applicable. Most importantly, their negligibility is governed by the same parameter P given by (23) that makes
applicable the approach where the loops are computed with the lines taken in the linearized approximation. This shows
that the accuracy of the one-loop approach to the OPO does not extend beyond this computational approximation.

One thus has to treat the one-loop diagrams as a correction to the linearized expressions and has to neglect any
higher-order corrections which formally emerge. In particular, all correction terms in (A36) should be omitted,
resulting in

(A40a)

(A40b)

These relations are the graphical representation of Eqs. (12). They hold both in the linearized and the one-loop
approximations.

If aq ——0, no coherence exists between the subharmonic and fundamental, i.e. , quantities (A33) and (A34) vanish
if l P m. As a result, in the one-loop approximation the closed set of equations for the Fourier components of the
subharmonic linear response function is found,
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~ ~ ~ ~ ~ oeoo ~ ~ ePo ~ ~ ~ oeoee ~ ~ ~ oQ

1,0

~ ooo ~ ~ ~ ~ ~ ~ ~ ~ ~ a+e ~ ~ ~ ~ ~ ~ ~ ~ ~ oQ

1,—0
J

~ e ~ ~ ~ ~ ~ o ~ a ~ ~ e+oo ~ o ~ e ~ ~ ~ ~ ooQ

1,—0

geo ~ e ~ ~ ~ ~ ~ ooo+o ~ ooooo ~ ~ ~ ~ ~ e ~
1,0 0

+(= =
0 —0

+ 0 —0

~ e ~ ~ o ~ o ~ ~ ~ oo+o ~ o ~ oe ~ ~ ~ ~ ~ ~ eo
1,0

(A41a)

(A41b)

Assuming that the lines in the loops are given in the linearized approximation,

0 20' 2

0 —0

dA'
GA —0' x x +0'22 ~

/ 0 2 F
(A42)

(A43)

In the linearized approximation, relations (A41) are found on eliminating the fundamental using relations like

O.'I

~ ooo ~ ~ ~ ~ ~ ~ ~ o+oo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~
] 2

(A44)

Relations (A41) with the effective normal susceptibility

~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ o+o ~ eoooe ~ ~ eo ~ ~

0 2,0 0

fag/

0+ ip2
(A45)

thus hold also in the linearized approximation.
The Dyson equation for the average field amplitude on the fundamental appears as

r
(o)

2 + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o+ee ~ ~ ~ ~ ~ ~ ~ ~ ~ oe

2,0 = 0
(A46)

where a2 is the "bare" field on the fundamental, i.e., the average field in the empty resonator under the same
pumping conditions. Graphical notation for the average field is self-explanatory. In the linearized approximation, the
medium's average polarization on the fundamental frequency is

(A47)

In the one-loop approximation (aq ——0) it is given by the diagram

dO-
Gn

2 2 27r
(A48)

For Kg22 = K&&2, the linearized and one-loop diagram expressions formally coincide within the formal replacements

:-2mb 0 ' x

:-2vrb 0 ' x

(A49a)

(A49b)

Accounting for (20), obviously this is equivalent to the replacement n2~ -::.AQq.
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