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Mode structure and the noise performance of a gain-guided amplifier
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The spatial structure of a gain-guided amplifier is naturally described by a set of nonorthogonal
modes. We present an analysis of the mode structure of an amplifier with a focused Gaussian gain. It is
found that the modes are spatially narrower and have a different radius of curvature than the corre-
sponding free-space modes. A calculation of the signal-to-noise ratio shows that the spatial structure of
the input field has a significant effect on the amplifier noise performance.

PACS number(s): 42.60.Da, 42.65.Dr

I. INTRODUCTION

To solve the three-dimensional wave equation describ-
ing growth of a field in gain-guided amplifier (GGA) it is
convenient to write the amplified field as a sum of
nonorthogonal modes [1—6]. The nonorthogonal modes
can be considered the natural modes of the system be-
cause they are the eigenmodes of the non-Hermitian wave
equation describing the amplified field and, for the case of
a long amplifier, only one nonorthogonal mode is
significantly populated [1,6]. This is in contrast to the
many orthogonal modes needed to describe the amplified
field [7]. A nonorthogonal mode basis is a convenient
basis to employ when describing systems whose wave
equations or boundary conditions are non-Hermitian.
Examples of such systems are gain-guided amplifiers and
unstable resonators [2].

As a consequence of the nonorthogonality of the
modes, the amount of noise effectively seeding a mode
can be larger than the usual quantum limit [8]. To ac-
count for spontaneous emission in a power orthogonal
basis, one noise photon is considered to seed each mode
[1-3,9—11]. On the other hand, when a nonorthogonal
mode basis is employed the spontaneous emission into
different modes is correlated. Therefore the amount of
spontaneous emission effectively seeding each mode can
be significantly larger than one photon. Some authors
have labeled this phenomena "excess spontaneous emis-
sion, "but following Haus and Kawakami [1]we prefer to
call it "excess noise. " It has been shown, however, that
the performance of an amplifier is not necessarily degrad-
ed by the excess noise [1,2]. An important measure of
amplifier performance, the signal-to-noise ratio (SNR),
can still be at the quantum limit if an input signal has the
proper spatial structure. Modes with the proper struc-
ture to maximize the SNR turn out to be the eigenmodes
of the Hermitian adjoint of the wave equation describing
the GGA and as such are called adjoint modes.

'Present address: Physics Branch, Code 5640, Optical Sciences
Division, Naval Research Laboratory, Washington, D.C. 20375.

Many insightful and informative papers have already
been published on the subject of excess noise and
nonorthogonal modes of GGA's [1—6]. The emphasis in
most of these articles was to either find an expression for
the output power from the amplifier or analyze the impli-
cations of the excess noise. While almost all of the
above-mentioned papers present a mathematical deriva-
tion of the nonorthogonal modes, few discuss the struc-
ture of the modes. In this paper, plots of the amplitude
and phase of these modes are presented and compared to
the usual orthogonal modes. Although we will concen-
trate on the nonorthogonal modes for an amplifier with
focused Gaussian gain, much of the discussion is applica-
ble to other gain profiles.

The issue of coupling into a gain-guided amplifier is
also addressed. It is theoretically well established that
the amplifier performance is maximized if the input sig-
nal is an adjoint mode [1,2]. However, for a Gaussian
gain profile, it is experimentally nontrivial to construct an
adjoint mode. We therefore discuss the SNR of an
amplifier for inputs which are experimentally more con-
venient: a nonorthogonal mode input and a simple Gauss-
ian input. This knowledge of predicted amplifier perfor-
mance is crucial for eScient use of GGA's.

This paper is organized as follows. In Sec. II a brief re-
view of the nonorthogonal mode theory for a focused
Gaussian gain amplifier is presented. In Sec. III we ana-
lyze the radius of curvature and the waists of both the
nonorthogonal modes and the adjoint modes. Discussion
of amplifier performance for adjoint mode, nonorthogo-
nal mode, and Gaussian mode inputs is presented in Sec.
IV. Section V is the conclusion.

II. THEORY

To model theoretically the growth from spontaneous
emission in an amplifier with focused gain we start with
Maxwell's wave equation. The steady-state time-
averaged, paraxial wave equation for a slowly varying
electric field traveling in the positive z direction is [1,3,6]

[VT 2ikB, +ikg(z, r—T)]P (z rz )= k 4~P. (z rT)
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where VT=B„+8», rT=xx+yy, and k =co/c. g(z, rT)
represents the gain profile, due to a pump laser, which we
take to be proportional to a focused Gaussian [7], i.e.,

biorthogonality relationship is expressed as

f d'rTq'"*(z, rT )@'„(z,rT ) =o (6)

4G exp[ 2r—/cos(z)]
g(z, rT)=

kgcgg(z)
(2)

g ( —)( )
21TkvflCO

T g&„' (z)+'„(z,rr ), (3)
n, l

where 8„' (z) is a generalized creation operator [3,6, 13]
for the photons in the nonorthogonal mode 4'„(z,rT ) and
bv is the amplifier bandwidth. The modes [4'„(z,rT) I

are not arbitrary; rather they are chosen to satisfy the ei-
genvalue equation

[Vr 2ikB,—+ikg(z, rT)]4'„(z,rr)

4'„(z,r ), (4)"k co (z}

where A, '„ is the eigenvalue associated with the mode
4'„(z,rT). The indices n and l correspond to the radial
and angular degrees of freedom, respectively. Because
the modes 4'„(z,rT) are eigenmodes of a non-Hermitian
operator [the presence of the gain term in Eq. (4) makes it
non-Hermitian] they are not guaranteed to form a com-
plete set. In addition, the modes are not orthogonal to
each other in the usual manner. Instead, one finds [14]

B„' =f d r @'*(z,r )@'„(z,r )&8

The quantity (B„'„) is referred to as the excess spontane-
ous emission or Petermann factor for the mode 4'„(z,rT )

and is greater than or equal to unity [8].
There does, however, exist an orthogonality relation-

ship with the set of adjoint modes [4'„(z,rT)]. The ad-
joint modes are solutions to the differential equation
formed by taking the Hermitian adjoint of Eq. (4). The

where ~s(z)=coo[1+(z/zo) ] is the transverse radius
(squared), r = rT ~, zo is the Rayleigh range, and G is a di-

mensionless gain coefficient. Note that since the gain
profile is a focused Gaussian, the diffraction of the pump
beam is incorporated into Eq. (1). The transverse Lapla-
cian in Eq. (1) accounts for the diffraction of the
amplified field. To account for spontaneous emission the
time-averaged quantum Langevin operator P,~(z, r T ),
which represents the quantum fluctuations in the polar-
ization of the medium, is included [3,12].

The field and polarization operators in Eq. (1)
represent time-averaged quantities and thus are indepen-
dent of time. In the Appendix, we show how the
Maxwell-Bloch equations of stimulated Raman scattering
can be reduced to this form. It is important to note, how-
ever, that Eq. (1) is a general expression describing many
types of GGA's [2—4].

The detailed solution to Eq. (1) has already been
presented elsewhere [6] and is not duplicated here. How-
ever, for the sake of continuity a short summary of the
solution is presented. To solve Eq. (1), the amplified field
is expanded into a set of nonorthogonal modes

1/2

Physically, the adjoint modes correspond to the
nonorthogonal modes propagating backward through the
amplifier [2,3].

To solve for the total power in the amplified field, the
normally ordered product of the field is integrated over
the transverse coordinates:

P= f d r (P' '(z, r )E'+'(z, r ))

=bvRco g (&„(z)it'(z))f d rT4„"(z,rT)@t"(z,rT) .
n, p, k, l

Note that since the modes are not orthogonal the cross
terms do not vanish. The value of the correlation
(&„' (z)&z(z)) is obtained by modeling the amplifier as a
completely inverted two-level system. This model,
though simple, has been used to describe a wide range of
amplifiers from the Raman amplifier to a single-pass x-
ray laser [4]. The details of these calculations can be
found in previous work [6]. The total power contained in
the field at position z is

P =bvfia) g g B' „(B'„[exp[(A,'„+A,'")(8—8; )]—1I
l n, p

+(~„t(8;e,'(8;) &

X exp[(A, '„+k" )(8—8; ) ]}, (8)

where the transformation 8=tan '(z/zo) [7], which has
the effect of folding out the focused nature of the fields,
has been made and 0; locates the entrance to the
amplifier. The correlation (8„' (8;)&»(8, )) is related to
the external signal input into the amplifier. Note that we
have assumed the external input has the same bandwidth
as the amplifier. The expression for total output power
has two distinct contributions: The first corresponds to
amplified spontaneous emission, while the second
represents the amplified input into the amplifier.

The utility of the nonorthogonal mode expansion is
most evident when the expression for power, Eq. (8), is
dominated by a single nonorthogonal mode, as is the case
for a long, high gain amplifier [1,6,15]. In this case only
the lowest order mode (l =n =0) has significant popula-
tion, and thus the total power can be written

P =b,vfiru[B +B(& (8;)&(8;)}]exp[2Re(A.)(8—8;)],

where all subscripts and superscripts on B, 8 (8,-), and A,

have been dropped since they will be zero, unless other-
wise noted, for the remainder of this paper.

When there is no external input into the amplifier
[(d (8;)8(8;))=0], the output is due to amplified spon-
taneous emission only. In this case, Eq. (9) shows that
the effective noise input, into @(z,rT ), due to gain guid-

ing, is B () 1) photons. Therefore, since the effective
input into the orthogonal modes describing an inverted,
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two-level amplifier operating at the quantum limit is one
photon [1,2,9—11], 4(z, rT) is said to have excess noise
[1]. In Sec. IV it is shown that gain guiding can have a
significant effect on the SNR of an amplifier.

0.010

0 005 ———————————

III. DISCUSSION OF MODES

In this section the spatial structure of the nonorthogo-
nal modes of a focused GGA is explored. For simplicity
the spatial structure of only the lowest-order nonorthogo-
nal mode 4(z, rT ) is examined. Higher-order nonorthog-
onal modes are expected to have features similar to
4(z, rT) and thus will not be discussed.

To solve Eq. (4), it is convenient to write the
nonorthogonal modes as linear combinations of the free-
space, or Gauss-Laguerre, modes, which are denoted by
U„'(z, rT) [or simply U(z, rT) when n=l=O] [6,7]. The
[U„'(z, rz )] are solutions to Eq. (4) when both g(z, rT)
and A, '„are zero. The free-space modes used in the linear
combination to represent 4(z, rT) are chosen to have the
same confocal parameter as the gain medium. The
coefficients of expansion are functions of the amplifier
gain G, thus the shape of 4(z, rT ) is also a function of the
gain. At low gains 4(z, rT) = U(z, rT), where U(z, rT) is
the usual focused Gaussian, but as the gain increases,
4(z, rr) becomes spatially narrower than U(z, rT).
Therefore many free-space modes must be added together
to represent the narrowed nonorthogonal mode. This
narrowing is known as transverse gain narrowing and can
be understood in the following way: since the gain is larg-
est on axis the mode grows more rapidly on axis than it
does off axis. A direct measurement of the narrowing has
been carried out by LaSala, Deacon, and Madey [16] for
a free-electron laser and by Duncan et al. for a Raman
amplifier [17].

An example of the transverse narrowing is shown in
Fig. 1 where we plot the intensity distribution of 4(z, rT),
with U(z, rT) included for reference, as a function of
r/cog(z) Since r/co.g(z) is a function of z, Fig. 1 is valid
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N

-0 005 ———————————
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~ ~ I s ~ s

0.5 1.0

FIG. 2. Wave fronts for both the dominant nonorthogonal
mode (solid line) and the lowest-order free-space mode (dashed
line) in the region near focus. The curved wave fronts of the
nonorthogonal mode indicate that gain guiding is occurring.

everywhere in the gain region. It is interesting to note
that 4(z, rT) can be narrower than U(z, rT), yet both
modes diffract at the same rate. The plot was generated
using a gain of 6=3, which corresponds to the max-
imum gain used in previous Raman scattering experi-
ments in which gain-guiding effects were evident [6].

It is also found that gain guiding causes the nonorthog-
onal modes to have a radius of curvature that can be
significantly different than that of the free-space modes.
In Fig. 2 an example of wave-front distortion due to gain
guiding is shown. The wave fronts (lines of constant
phase) are plotted for both 4(z, rT) (solid line) and
U(z, rT) (dashed line) in the region near focus where
~z/zo

~

&& 1 [18]. In this region the wave fronts of
U(z, rT) [and 4(z, rr) for G —+0] are essentially fiat.
Therefore any deviation of 4(z, rr)'s wave fronts from
flatness is an indication that gain guiding is occurring.

While Fig. 2 shows the nonorthogonal modes only in
the region near focus where ~z/zo~ &&1, Fig. 3 shows the

1.0

~ 0.6
L0

~~ 0.4
V)
C

—0.2

0
N 0 ——
N

0.0
0.0 0.5 1.0

r rd(z)
1.5 2.0

—2 —2
I I e

0 1

r/s),

FIG. 1. Transverse intensity distribution of the dominant
nonorthogonal mode (solid line) and lowest-order free-space
mode (dashed line). The nonorthogonal mode is narrower as a
result of transverse gain narrowing.

FIG. 3 Same as Fig. 2, except the plot extends over several
Rayleigh ranges. Note that the nonorthogonal mode (solid line)
has a curvature different from the free-space modes. This is due
to gain guiding.
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FIG. 4. Wave fronts of lowest-order adjoint mode (solid line)
and lowest-order free-space mode (dashed line). To maximize
amplifier noise performance, inputs should be constructed as an
adjoint mode. The adjoint modes correspond to backward trav-
eling nonorthogonal modes. This can be seen by comparing the
solid lines in Fig. 3 to the solid lines in Fig. 4.

wave fronts of 4(z, rT ) over several Rayleigh ranges [18].
For reference, the wave fronts of U(z, r T ) are also shown.
As was the case in the focused region, the wave fronts of
the nonorthogonal modes appear to be swept back to-
wards the negative z axis compared to the free-space
modes.

As will be discussed in the next section, the adjoint
modes play a very important role in optimizing the per-
formance of an amplifier. The relationship between
4(z, rT) and %(z, rr) is such that their transverse intensi-

ty distributions are identical. Therefore the solid line in

Fig. 1 also represents the adjoint mode profile as well as
the nonorthogonal mode profile. However, Fig. 4 shows
that the radius of curvature of the adjoint mode differs
significantly from the radius of curvature of 4(z, r T ) [18].
Since the adjoint modes correspond to backward propa-
gating nonorthogonal modes there is a symmetry between
their respective wave fronts. This can be seen by letting
z~ —z in Fig. 4 and then comparing the plot to Fig. 3;
the wave fronts are then identical.

Figures 2 —4 were all generated using G =3 and a beam
waist of coo=1 cm. However, for clarity of the plots, the
Rayleigh range zo was chosen to be 12 cm in Fig. 2 and
&2 cm in Figs. 3 and 4. The large wavelength
( =n.coo/zo ) and the different Rayleigh ranges were
chosen only to visually enhance the differences between
the various wave fronts shown in Figs. 2 —4.

IV. COUPLING

In this section we discuss the performance of a GGA
as a function of the input into the amplifier. The SNR is
used as a quantitative measure of amplifier performance.
To be consistent with quantum mechanics an amplifier
must add at least one input noise photon per orthogonal
mode [1-3,9—11]. Therefore an amplifier operating at the
quantum limit has a SNR of 1 when one photon of signal

g ( —
)( 8 )

2776vflco

C
gd„' (8; )4'„(8;,r T ), (11)
n, l

as in Eq. (3) with z~8. An expression for the lowest-

order creation operator & (8; ) is found by using the
biorthogonality condition given in Eq. (6). The result is

8 (8;)=
1/2

f d rTE' '(8;,rT)+*(8;,rT) .

(12)

When calculating the SNR, the total power of the input
signal into the GGA is required to be the same for all of
the inputs. We arbitrarily choose the input power to be
equal to one photon per unit time such that

I'= f d rT(E' '(8, ,rT)P'+'(8;, rT))=A'coAv. (13)
2m

Equations (10)—(13) can be used to calculate the SNR
for any input into the amplifier. SNR calculations for ad-
joint mode and nonorthogonal mode inputs are presented
to show that the equations describing a GGA with fo-
cused Gaussian gain give results which are formally con-
sistent with theories utilizing other gain profiles. In addi-
tion, we calculate the SNR for the lowest-order free-
space mode (a simple Gaussian). The SNR for a Gauss-
ian mode input is important for experimental reasons.
Many optical devices such as single-mode fibers and
several types of lasers produce Gaussian beams which

is input into the amplifier. In the nonorthogonal mode
description of a GGA, on the other hand, noise can be
transferred among the nonorthogonal modes. As a re-
sult, the noise effectively seeding a nonorthogona1 mode
can be larger than the quantum limit of one photon.
Surprisingly this excess noise does not necessarily de-
grade the SNR of the amplifier. Haus and Kawakami [1]
and Siegman [2] have demonstrated that if the input sig-
nal is an adjoint mode the SNR would be at the quantum
limit. However, to our knowledge no one has studied the
SNR of a focused Gaussian GGA for inputs other than
an adjoint mode.

The SNR, S/N, for a long, high gain GGA can be cal-
culated by taking the ratio of the first two terms on the
right-hand side of Eq. (9). Doing so yields

(~ (8;e(8;))
S/N= 8 (10)

where the correlation (8 (8;)&(8;)) is proportional to
the initial power in the lowest-order nonorthogonal mode
4(8,rT) and 8 is the overlap integral given in Eq. (5).
The SNR depends only on the input into 4(8, rr) be-
cause the gain of this mode is much larger than the gain
of any other mode. Therefore, even though input into
higher-order modes does amplify, the effect of these other
modes on the total output power is negligible.

To obtain an expression for the correlation
(d (8;)&(8;)), the input field P' '(8;,rT) is written as a
linear combination of the nonorthogonal modes [19]
I4'„(8,rT)],

1/2
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g ( )( 8 )
27rkvflco

C

can be input into an amplifier. Nonorthogonal mode in-

puts are also important experimentally because some ex-

periments make use of consecutive amplifiers [5,10,17,20]

in which case the input into the second amplifier is a

nonorthogonal mode. The adjoint modes, on the other

hand, are more difficult to construct experimentally and

therefore have not yet been used as an amplifier input.

First, consider an adjoint mode input such that
1/2

b (8, )sII(8, ,rT),

1e5 s s s ~

1.0 ~

0.5—

s ~ ~
i

~ s a s
1

s s ~ s

—.-nonorth. mode—ad joint—-Gaussian mode

where b (8, ) is the generalized creation operator for the

lowest-order adjoint mode. Setting the input power equal

to one photon per unit time according to Eq. (13)

B&b'(8, )b(8, ) ) =1, (15)

where Ref. [14]has also been used. To calculate the SNR
Af

using Eq. (10), the adjoint mode creation operator b (8, )

must be expressed in terms of the nonorthogonal mode

creation operator 8 (8; }. Using Eq. (12), in conjunction

with Eq. (14), yields

8 (8, )=Bb (8;) .

0.0
0

s a a I a

10
a a s I s

20
G

~ s ~ I a s s s

30 40

FIG. 5. The signal-to-noise ratio as a function of gain for

nonorthogonal mode input, adjoint mode input, and Gaussian

mode input. The total input power is the same for each of the

three inputs shown. As can be seen, the amplifier couples most

strongly to the adjoint mode input. In fact, the amplifier

operates at the quantum limit with this input. For the other in-

puts the SNR is degraded.

Substituting this expression for 8 (8, ) into Eq. (10) for

the SNR and utilizing Eq. (15) gives
Thus the SNR for a nonorthogonal mode input depends
on gain. The SNR for this input is plotted (dot-dashed

line) as a function of gain in Fig. 5 [21]. At low gains

4(8, rT)=U(8, rr); therefore, B=l because the free-

space modes are orthonormal. In the other extreme, as
the gain gets very large S/N~ ,' as is expe—cted based

upon comparison to theories utilizing a two-dimensional

parabolic gain profile [1,3]. For intermediate values of
the gain, the SNR has a minimum before asymptotically
approaching —,'. At this point we do not have a complete

physical explanation of this phenomena.
The last input to be considered is a Gaussian mode in-

put. The input field is then written
' 1/2

c (8,. )U(8, ,rr), (21)
C

S/N= 1 (adjoint mode input)

for all values of the gain G. Therefore a GGA can

operate at the quantum limit if the input is an adjoint

mode.
Since B) 1, Eq. (16) has a rather peculiar interpreta-

tion. Even though the total input power is fixed at one

photon per unit time, by configuring the input mode as

an adjoint mode it appears that more initial power is de-

posited in 4(8, , rz } than if the input itself were one pho-

ton per unit time in the mode 4(8;,rT). Equation (13}
still holds, however, because some of the terms in the full

expression for output power Eq. (8) are negative. The
efficiency of adjoint mode coupling is a consequence of
the nonorthogonality of the alnplifier modes and points
out one of the difficulties of using a nonorthogonal mode
basis. Namely, it is not possible to silnultaneously specify
the number of photons in two distinct nonorthogonal
modes [3,13].

Next consider a nonorthogonal mode input into the
amplifier. In this case

E(-)(8,,r, ) =

where c (8, ) is the creation operator for photons in the

mode U(8, , rz ). The input power is normalized by sub-

stituting Eq. (21) into Eq. (13), yielding

&-"(8,)c(8, ) &
= 1 . (22)

1/2

8 (8, )4(8, , rT) .g ( )( 8 )
2774Yflco

C

I fd rT U(8, , rr)sP'(8, , rT)l
S/N=

BSubstituting this into Eq. (13) gives

B&e'(8, )e(8, ))=1. (19) (Gaussian mode input} . (23}

This result is to be expected since the free-space modes
constitute an orthonormal set. Equations (12) and (10}

(18} then give

S/N=1/B (nonorthogonal mode input) . (20)

Therefore amplifier performance is reduced from the
quantum limit by precisely the Petermann factor B .

The SNR is obtained by inserting Eq. (19) into Eq. (10}
which gives

The SNR for a Gaussian input Eq. (23) is plotted as a
function of gain (dashed line} in Fig. 5 [21]. Note that
the SNR for a Gaussian mode input is a monotonically
decreasing function of gain. At low gains
sP(8, ,rT)= U(8;, rT) and the overlap integral in Eq. (23)
is large. However, as the gain is increased more and
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more free-space modes are needed to form %(8;,rz };
hence the overlap integral in Eq. (23) steadily decreases.

V. CONCLUSION

We have presented a discussion of the nonorthogonal
modes of a GGA with focused Gaussian gain. These
modes are found to be narrower (spatially) than the free-
space modes due to gain narrowing. They also are found
to have a different radius of curvature than the free-space
mode as a result of the competition between diffraction
and gain narrowing. The SNR for a GGA was found to
depend significantly on the shape of the input mode into
the amplifier. As discussed by other authors the SNR of
the amplifier is found to be at the quantum limit if the in-

put is configured as an adjoint mode, but the SNR is
significantly less than the quantum limit if the input is a
nonorthogonal mode. We also calculated the SNR for a
Gaussian mode input to the amplifier. The SNR is found
to be close to the quantum limit at low gains, but de-
creases steadily as the gain is increased.
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APPENDIX

In this appendix Eq. (1) is derived starting from the
Maxwell-Bloch equations [12,22] of a gain-guided Raman
amplifier. Even though the derivation utilizes equations
specific to Raman amplifiers, the result Eq. (1) is general
enough to also describe other types of gain-guided
amplifiers [2—4]. The startin ~oint for describing
growth of the amplified field ' (z, r z, t )exp' ' "" is

the Maxwell wave equation [22]

P2 g2 g( —
)( r t) i(n)r —kz)1

tt 7

C

2K2
B„[EL(z, rr, t)Q (z, rr, t)e' ' "'], (Al)

where K2 is a coupling constant, c is the velocity of light,
EL(z, rz, t) is the (classical) pump laser
field which gives the gain profile, and the product
EL(z, rz, t)Q (z, rz, t)e'"' "' is the polarization. In ad-

dition, the equation describing the development of the
molecular polarization Q (z, rr, t) is given by

B,Q (z, rz, t}= I Q (z, rr, t)—
+ix,EL'(z, rz-, t)P' '(z, rr, t)+P (z, rr, t),

(A2)

where I is the collisional dephasing rate, K, is another
coupling constant, and P (z, rr, t) is the Langevin noise
operator [12]. Assuming paraxial fields propagating in
the z direction, the slowly varying envelope of the
amplified electric field P' '(z, rr, t) obeys the wave equa-
tion [12]

where r = t —z/c is the retarded time [23].
For times long compared to I ', the polarization ap-

proaches a steady-state value. The polarization does fluc-
tuate somewhat due to the Langevin operator, but we as-
sume these fluctuations are small enough such that
B,Q (z, rz, t) can be set equal to zero in Eq. (A2) [to write

Eq. (A2) in the retarded time frame, simply replace each t

with a r]. Roughly, the steady-state approximation is

valid if pump laser field is long compared to the time be-
tween collisions I . More rigorously, the approxima-
tion is valid if the amplified field grows to its maximum
(at a fixed z) in a time long compared to I '. The rate at
which the amplified field grows depends on the intensity
of the pump laser; therefore the accuracy of the steady-
state approximation depends not only on I and the pump
laser duration, but also on the pump laser intensity
[12,22].

Assuming a steady-state polarization, the left-hand side
of Eq. (A2) is set equal to zero. The resultant expression
for Q (z, rr, r) is substituted into Eq. (A3), yielding

[Vr 2ikB,—+ikg(z, rr, ~)]E' '(z, rr, r)

4nkP,—(z, .rr, r) (A4)

where the following definitions have been made:

2~,~zlZL(z, rr, r }I
g(z, rr, r)= (A5)

represents the gain profile and
A.f

A&EL(z, rr, ~)F (z, rr, w)
P, (z, rr, r)= (A6)

is the spontaneous polarization operator. Notice that ex-
plicit (slow) time dependence remains in Eq. (A4) even
after the steady-state approximation has been made.

Deutsch, Garrison, and Wright [3] have shown, how-

ever, that the remaining time dependence can be removed
by time averaging Eq. (A4) over the Hertzian bandwidth
b, v of the amplified field according to the rule [3]

1/2hv
X(z, rr)=bv d~X(z, rz ~) .

—1/2b v
(A7)

Since we have assumed that the pump field is slowly vary-

ing, the gain profile given by Eq. (A5} changes slowly
over the time (Av) ' so that time averaging the quantity
g(z, rr, ~)P '(z, rr, ~) is straightforward. Averaging the
Langevin noise operator in Eq. (A6) over b, v ensures that
only noise frequencies within the bandwidth of
E' '(z, rr, r) will amplify. For the Raman calculations,
b,v is taken to be the gain narrowed Raman linewidth [6].
Applying Eq. (A7) to Eq. (A4) then gives

[Vr 2ikd, +ikg(z, rr—)]E' '(z, rr}= 4nk P, (z,rr),—

(A8)

which is identical to Eq. (1).

(Vr —2ikB, }E' '(z, rr, r)= 2—kazQ (z, r~, ~)Et (z, rr, r)

(A3)
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