
PHYSICAL REVIEW A VOLUME 50, NUMBER 3 SEPTEMBER 1994

Observation of quantum beating in a simple beam-splitting experiment:
Two-particle entanglement in spin and space-time
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A single light beam, generated by type-II down-conversion, is split by a beam splitter. When a set of
quartz plates is inserted into the single beam, the coincidence counting rate between the split beams ex-

hibits a 100% frequency-beating modulation. This nonclassical phenomena is a manifestation of a two-

photon entangled state in which the two-particle state is entangled simultaneously in spin and space-
time.

PACS number{s): 42.50.0v, 42.50.Wm, 03.65.8z

Two-particle entangled states have been known since
the early days of quantum mechanics. These states play a
particularly important role in the study of the Einstein-
Podolsky-Rosen (EPR) paradox [1] and in the test of
Bell s inequalities [2]. It was Schrodinger who first point-
ed out that a particular type of two-particle state, which
he called an "entangled state, " is responsible for the EPR
paradox [3]. Entangled states are states of two or more
particles that cannot be written as products of single-
particle states. An example of a two-particle entangled
state was given in EPR's 1935 paper where the measure-
ment of an observable of either particle determined the
value of that observable for the other particle with unit
probability [1]. Although the two-particle entangled
EPR states are predicted by quantum theory, they are not
allowed in classical physics. The physical consequences
resulting from the EPR states violate classical local real-
ism [4].

Two-particle entanglement has been demonstrated by
two types of experiments in the past: (1) two-particle po-
larization correlation measurements; most of the histori-
cal EPR-Bohm experiments [5] and Bell's inequality mea-
surements exhibited nonlocal two-particle polarization
entanglement [6-11]. (2) Two-particle interference
(fourth-order interference) experiments; recent two-
particle nonclassical interference experiments demon-
strated the two-particle space-time entanglement
[12—26]. A typical two-particle polarization entangle-
ment fringe is a sine function of coincidence counting
rate between spatially separated detection events against
the relative orientation of the independent polarization
analyzers. A typical two-particle space-time entangle-
ment fringe is an interference pattern of coincidence
counting rate between the spatially separated detection
events against the optical path difference between two
beams, which usually involves ordinary interferometer(s).
In contrast to the nonlocal coincidence counting rate,
each of the single detector counting rates in these experi-
ments remains constant when the polarizer orientation or
the optical path difference is manipulated. It has been
understood that two types of two-particle entangled
states are responsible for the above two types of nonclas-
sical interference phenomena: (1) spin entanglement and
(2) space-time entanglement [4].

We wish to report an experiment which shows another
type of two-particle entanglement: (3) spin and space-
time entanglement. The spin and space-time combined
nonlocal interference phenomena exhibits quite unusual
behavior in comparison with previous experiments. For
example, in the following reported experiment, a pair of
orthogonally polarized light quanta with different colors
is injected collinearly through a single port of a beam-
splitter and detected by two independent photon count-
ing detectors placed in the two output ports of the beam
splitter with two linear polarization analyzers and narrow
bandwidth spectral filters. The bandwidths of the filters
are narrow enough so that each of the detectors picks up
only one color. There is no preferred polarization orien-
tation in each of the three (incident, transmitted, and
reflected} beams. There is no single detector counting
rate change when the orientation of the polarization
analyzers or the optical path difference between the or-
thogonally polarized components is manipulated. There
is not even a coincidence counting rate change when
manipulating the optical path difference without having
polarizers in each of the transmitted and reflected beams.
However, a beating fringe with 100% modulation shows

up in the coincidence counting rate by inserting crystal
quartz plates in the incident beam with the help of
correctly orientated polarizers in each of the transmitted
and reflected beams. It is this spin and space-time entan-
gled state (simultaneously) which makes it possible to
demonstrate two-particle nonlocal interference in a sim-

ple beam-splitting experiment.
The schematic experimental setup is illustrated in Fig.

1. A cw argon ion laser line of 351.1 nm is used to pump
an 8 mm X8 mm X(0.56+0.05)-mm BBO (jt3-BaBz04}
nonlinear crystal. The BBO is cut at a type-II phase-
matching angle to generate a pair of orthogonally polar-
ized signal and idler photons collinearly around 702-nm
wavelengths. The down-converted beam is separated
from the pumping beam by a UV grade fused silica
dispersion prism, then directed collinearly at a near nor-
mal incident angle to a polarization independent beam
splitter which has 50% - 50% reflection and transmission
coefficients. A single photon detector is placed in each
transmission and reflection output ports of the beam
splitter. The photon detectors are dry ice cooled
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avalanche photodiodes operated in photon counting
Geiger mode. A Gian-Thompson linear polarization
analyzer, followed by a narrow bandwidth interference
spectral filter, is placed in front of each of the detectors.
The polarization analyzers are oriented at 45' to the
ordinary-ray (o-ray) polarization planes of the BBO crys-
tal. The spectral filters f, and f2 have Gaussian shape
transmission functions centered at conjugate wavelengths
of the down-conversion, A, , =700.7 nm and F2=703.7
nm, respectively. The spectral bandwidths are both 1 nm
in full width at half maximum. Practically, there is no
frequency overlap between the two filters. The output
pulses of the detectors are then sent to a coincidence cir-
cuit with a 3-nsec coincidence time window. The two
detectors are separated by about 2 m; compared to the
coincidence time window the detection events are spatial-
ly separated events.

A set of 15 crystal quartz plates is placed in the in-
cident beam for changing the optical path difference, b, l,
between the orthogonally polarized signal and idler pho-
tons. The fast axes of the quartz plates were carefully
aligned to match the o-ray or e-ray polarization planes of
the BBO crystal during the measurements. Each of the
quartz plates is (1.0+0. 1) mm in thickness, resulting in
an optical path difference (n, n, )L —=—9 pm between the
o-ray and e-ray. The 15 quartz plates were aligned care-
fully one by one before the taking of data, and moved
away one by one during the measurements. Two sets of
measUrements were made in order to have 31 experimen-
tal points to show the modulation of the interference. In
the first (second) set, we aligned the fast axes of the
quartz plates to match the o-ray (e-ray) polarization
plane of the BBO. The two-photon coincidence counting
rate was observed to show a frequency beating fringe
when the polarization analyzers were oriented at 45,

R, =—R0 [1—cos(2m /A,
&

—2m /A2)( b l )],

N, ll

FIG. 1. Schematic experimental setup. BS denotes a beam

splitter, f is a filter, D is a photon detector, and BBO is a P-

Ba,B204 crystal.

Xa t(co, )a t(co~) ~0), (2)

where co represents the frequencies for signal (1), idler (2),
and pump (p) of the down conversion. The 5 function
represents perfect frequency phase matching of the down
conversion, i.e., co&+co&=co~. The wave number phase
matching condition k, +k2=k is implicit in the choice
of the locations of the pinholes which direct the down-
converted beams to the detectors; in this experiment we
consider collinear down-conversion. The subscript in-
dices o and e for the creation operators indicate the ordi-
nary and extraordinary rays of the down conversion,
traveling along the same direction as the pump, the z
direction. The defined x and y coordinate axes coincide
with the o-ray and e-ray polarization directions of the
crystal. A (co ) is a spectral distribution function for the
laser line, which is usually considered to be a Gaussian.
DifFerent from type-I down-conversion, the two-photon
state is entangled in polarization, frequency, and wave
number (vector). It is not diScult to see from state (2)
that for each pair of the conjugate frequency components
co, and co2, the state is entangled in polarization:

[aJ(co, )at(co2)+a, (co, )a, (co2)] ~0) .

The fields at the detectors 1 and 2 are given by

E',+'(t) =a, Jdco f(co)[exp( —icot', )e, e,a, (co)

+exp( i cot', )e&.e,a, (—co)],

E~2+'(t)=a„f dco f(co)[exp( icot2)e2 e,a, (co—).
+exp( i cot,')e, e,a, (co—)],

(3)

where e; is in the direction of the ith linear polarization

where A, is the center wavelength of the ith spectral filter,
and b/ is the optical path difference introduced by the
quartz plates.

Figure 2 reports typical observed two-photon coin-
cidence rate measurements as a function of hl. The coin-
cidence counts are direct measurements, with no "ac-
cidental" subtractions or any other theoretical correc-
tions. Each of the data points corresponds to a difFerent
number of quartz plates remaining in the incident beam.
The left (right) side s 15 points, which are indicated by a"—"sign ("+"sign), of data were taken under the fol-

lowing condition: the fast axes of the quartz plates coin-
cide with the o-ray (e-ray) polarization plane of the BBO
crystal. It is clear that the interference pattern has a
period of about 164 pm, which corresponds to the beat-
ing frequency 1.83X10' Hz, of the down-converted
beams. The modulation visibility is (97+2)%.

Contrary to the coincidence counting rate, the single
detector counting rates do not show any modulations, as
is reported in the upper part of Fig. 2.

To explain these measurements theoretically, we
present a simple quantum mechanical aiodel. According
to the standard theory of type-II parametric down-
conversion, the two-photon state can be written as [17]

i%) =f dco A (co )f dco, dco25(coi+cop cop )—
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where A(t„tz) is calculated in the Appendix. The two
terms in (6) correspond to two probability amplitudes: (1)
o ra-y transmitted e r-ay re/ected and (2) e r-ay transmit
ted o ray-rejected T. he effective wave function (6) indi-
cates two-particle entanglement in both spin and space-
time.

Substituting A (t„t2)[Appendix Eq. (A5)] into Eq.
(6), the coincidence counting rate is calculated as

R, =R,o[1—exp( —o 5/2)cos(Qi —02)5],
Optical Delay h, l (N, m)

-15 -10 -5 0 5 10 15

Number of Quartz Plates Inserted

FIG. 2. Lower curve: Coincidence counts in 60 sec as a func-
tion of 61, which corresponds to a certain number of quartz
plates. The solid curve is a fitting curve of Eq. (7). The modula-
tion visibility is (97+2)% (no accidental subtractions). Upper
curve: Single detector counting rate (per second) as a function
of hl.

analyzer axis, a, (co} and a, (co) are the destruction opera-
tors for the 0-ray and e-ray, a, and a, are the complex
transmission and reflection coeScients of the beam
splitter, and f(co) is the spectral transmission function of
the filters. The t s are given by t = t I,'/c, t,'—= t —1;/c,
i =1 and 2, where I,"=f dz n "(z) indicates the optical
path for the o-ray or e-ray of the ith beam, with n "(z}
being the refractive index at position z. We have approx-
imated (dn/de), —(dn/dec), —=0 for simplifying the cal-
culation. The use of pinholes, which limit the transverse
width of the beams, allows a good one-dimensional ap-
proximation. The coincidence counting rate is

R, =(1/T) f f dT, dT, (+~EI 'E,' 'E2+'EI+'~+)
0

XS(r,hT, )

=(1/T) f f dTidT2i%'(ti, t2)~ S(r, b T, ),
0

where ~—= T~ T2 T; is the detection time of the ith
detector, S(~,b, T, ) is a function that describes the coin-
cidence circuit, and hT, is the time window of the coin-
cidence circuit. For ~) hT, S(~,b, T, )—=0, and for
r (hT, S(r, b, T, )

-=l. If the coincidence time window is

large enough, S can be considered as one at time t. The
time integral can be taken to infinity as a good approxi-
mation. In Eq. (4), an effective two-photon wave function
4(t„t2),which is realized by the coincidence measure-
ment at the two detectors, is defined by

+e, e, e2.e, &(&i,&2)], (6)

The introduction of %(t, , t2) is helpful for the under-
standing of physics.

It is straightforward to show from (2), (3), and (5) that

+(&i,&2)=a,a„[e,e, e2 e, &(&' i&/)

where 5—:b, l /c is the optical delay between the o-ray and
the e-ray, and 0; is the ith filter's center frequency. The
45' orientation of the analyzers has been taken into ac-
count. We use a right-handed natural coordinate system
with respect to the k vector as the positive z-axis direc-
tion. Care has to be taken to follow the rules of the natu-
ral coordinate system, especially for the reflected beam.

Equation (7) indicates an interference beating of the
coincidence counting rate at frequency 0,—02 with
100% modulation when bl is near zero. The modulation
visibility vanishes exponentially when Al is off from zero.
The solid curve in Fig. 2 is a fitting curve of Eq. (7).

It is interesting to see that the zero point of the count-
ing rate is not in the case of zero quartz plates. The
reason is that the refractive indices for the o-ray and e-

ray of the BBO crystal also contribute to the optical de-
lay 5, 5=5aiio+5q„„„.BBO is a negative uniaxial crys-
tal and quartz is a positive uniaxial crystal. If we align
the BBO and the quartz plates in such a way that the 0-
ray polarization plane of BBO and the e-ray polarization
plane of quartz plates coincide, the optical delay inside
the BBO can be compensated for by the quartz plate for a
certain value of thickness. From repeated measurements,
we conclude that the zero point of the coincidence count-
ing rate happens at a point in which about
2.4X (1.0+0. 1)-mm quartz plates are placed in the beam
path. The difference of refractive indices (n, no) of-
quartz is about 0.009 around 700 nm.
c/u, —c/u, = (n, n—, ) of—BBO at this phase matching
angle for 702.2 nm is about 0.077, where u, , are the
group velocities for the o-ray and e-ray, respectively. It
indicates that 2.4 mrn of quartz plate will compensate for
about half of the thickness of the 0.56-mm BBO crystal
which was used in the measurements. This effect sug-
gests that the average "birth place" of the twin brother
photon pair is in the middle of the down-conversion crys-
tal, which is reasonable. Mathematically, this compensa-
tion effect is to make a complete overlap of the spatial
part of the two-photon effective wave function A(t', , tz )

and A(t'„tz)in Eq. (6).
The above quantum beating phenomenon demonstrat-

ed a two-photon entangled state in spin and in space-time
generated by type-II spontaneous parametric down-
conversion. The simultaneous double entanglement may
easily be seen from the following argument: neither the
transmitted nor the reflected beam has a preferred polar-
ization or a preferred optical path (short or long path in
the quartz plates); however, if the photon in the transmit-
ted beam is measured to be polarized at 0, , the photon in
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the rejected beam must have been polarized at 8, =8z.
At the same time, if the photon which triggered detector
1 is the one which took a shorter path in the quartz, the
one which triggered detector 2 must have been the one
which took a longer path, and vice versa. The measure-
ment of the observables of either particle (spin and
space-time) determines the value of these observables for
the other particle with unit probability. The (97+2)%%uo

visibility coincidence interference pattern is the signature
of this particular double entanglement.
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M. A. Horne for many helpful discussions. %'e are grate-
ful for the assistance of data taking by T. B. Pittman.
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APPENDIX

From (2), (3) and (5),

A (t, , tz ) = f dto~ A (to~ )f fdto, d toff, (to, )fztoz)5(to, +to& to~
—)exp( i to,—t, )exp( i toztz

—), (Al)

where t =t —i ./c, j= 1 and 2, i =f dz n (z ), and n is the refractive index. Assuming Gaussian spectrum distributions

with equal widths o for both signal and idler,

(to —
QJ )f (to )=foexp j=1,2 . (A2)

Substituting into (Al) and making the change of variables v+ =v, +vz and v =(v, —vz)/2 gives

Q, (t, +t, ) Q„(t,—t, )
A ( t &, tz )=fdry A (to& )exp i — exp i—

v v+(t)+tz )
X fdv+ fdv foexp — exp — exp i —exp( iv (t,——tz))5(v+ bto ), —

40 0'

(A3)

where hto =to —Q and Qd =(Q, —Qz)/2. The integral (A3) over v+ is easily done using the 5 function. In doing the
integral over v we use the fact that Q& and Qz are both much greater than 0. to extend the integral from —00 to + ~.
This is just a Gaussian integral which leads to the result

A(t„tz)=u(t, tz)v(t, +tz)—,

0 t
u(t) =exp

4

Qdt
exp

2
(A4)

0 t ECO&t
U(t)=exp i dto —A(to )exp i exp—

2 JJ

LCD

40

where all constants have been incorporated into A(to ). For a Gaussian spectrum and narrow bandwidth of A(to ),
(b, to~ &&o ), (A4) can be approximated:

o (t, ~tz)
A (t„tz)= Aoexp

8
exp

o'(t, —t, )'

4
QIt )

exp —i
2

O&t&
exp —i

2
(A5)
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