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Rigorous lower bounds to the Weizsacker energy T~ of a many-fermion system are derived
by means of two and three radial expectation values. Some of them are of variational nature
and others are founded on classical integral inequalities and a theorem which allows us to extend
universally the validity of the bounds to T~ obtained for spherically symmetric densities. Also,
rigorous and approximate upper bounds, in terms of a radial expectation value and the ionization
potential, are encountered in the case of atomic systems by taking into account, at times, the
properties of monotonicity of the electron density. The role of the expectation value (r ) is highly
remarkable in the determination of the bounds. The bounds found in this work allow us to correlate
rigorously the Weizsacker energy with numerous fundamental and jor experimentally measurable
quantities of the system, such as, e.g. , the number of constituents, the diamagnetic susceptibility, the
diamagnetic-shielding correction, and the softness kernel in the density-functional theory. Finally,
just for checking the quality of both lower and upper bounds, numerical comparisons employing
Hartree-Fock atomic densities are done in the whole Periodic Table.

PACS number(s): 31.20.Lr, 31.20.Sy, 71.10.+x, 71.45.Jp

I. INTRODUCTION

The Weizsacker energy T~ given by [1—3] x dx'2. ..dFN

Tg [p] = — dr = — [V'p' '(r)]'dr
8 p(r) 2

(atomic units will be used through this paper) is a fun-
damental element not only in the Thomas-Fermi related
theories of many-electron systems [4—6] to explain, e.g. ,
the central and asymptotic behavior of the atomic charge
density, the binding of atoms and molecules, and the sta-
bility of negative ions, but also in the general density-
functional theory initiated by Hohenberg and Kohn [2,3].
Indeed, the Weizsacker energy is, when multiplied by 1/9,
the first order correction to the leading Thomas-Fermi
kinetic-energy term To in the gradient expansion of the
exact kinetic-energy functional T[p] and gives the kinetic
energy of the inhomogeneity of the electron density p(r)
of the system [7—9].

Also the Weizsacker energy together with the radial
expectation value (r 2) has been used to obtain different
upper bounds to the electron density of atoms and ions
[10—12].

Moreover, let us consider the normalized-to-unity and
antisymmetric N-fermion wave function 4(ri, r2, ..., rN,
0'i, ..., 0'~), where (r;, o,) denotes the space-spin coordi-
nates of the ith-particle. Each particle may have avail-
able q spin states; so o E (1,2, ..., q), q = 2 for electrons.
Then, the single-particle density is
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and the kinetic energy T[4] is [5]

Tj@]=N) f ~Vr@(r, rr, .. . , rr, rri, .. . , rr)I

xdx'2. ..dFN' .

Tg [p~] ( T[@]( (4z)'N T~[pg] . (2)

The lower bound was found by Hoffmann-Ostenhof and
Hoffmann-Ostenhof [13)and the upper bound was proved
by Lich [5]. The latter bound was improved by Zumbach
[14] as follows:

2(K) 9
T[e] ( 1+ (47r)'

~

—i, , T~[p~] . (3)

So, since the exact evaluation of the Weizsacker en-
ergy is practically impossible and to avoid uncontrolled
approximations for this functional which are not very use-
ful for the general theory, it is natural to obtain rigorous
inequalities which involve T~ [p] together with other den-
sity functionals of fundamental meaning for the system.
As reviewed by Gadre and Pathak [15], it is known that

It is not known, possibly it is uncomputable, the ex-
pression of this quantity in terms of the single-particle
density. That is, the kinetic-energy density-functional
T[p@]does not bear an exact, known universal form. The
Weizsacker energy T~[p@] has been used to rigorously
bound the exact kinetic energy T [% ] in both sides. In-
deed, it is fulfilled that
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4) 1/3

T~[p] & 3
~

— p (r)dr
& 2') (4)

which was derived by use of the Sobolev inequality [5,16].

that we have found in this work. Some are of variational
nature and others are derived from various classical in-

tegral inequalities and the Theorem proved in the Ap-
pendix.

5
~[P] —(12N)2/s 0[P] (5) A. Variational bounds

which illustrates the relative significance of the first two
terms of the aforementioned gradient expansion of the
kinetic-energy functional [17,18].

We have variationally found that

Two-moments bounds

which links the Weizsacker energy with the direct
Coulomb energy functional J[p] and the nucleus-electron
attraction energy (r ) in an atomic system [19].

9N I
~W (8)

1
Tgr[p] & —(r ) = Lg, (7)

(9)

which was derived by Gadre and co-workers [16,20], and

[12]. The symbol (r") denotes the nth-radial expectation
value defined by

(r") = f r"p(r)dr = 4r r"+ p(r)dr —= 4rp„rq,
0

which gives, apart from the factor 4z, the moment
of (n+ 2)th-order of the spherically symmetric single-
particle density p(r), i.e., p(r) =

4 J'A p(r)dO.
The radial expectation values (r") are not only analyt-

ically relevant because they completely characterize the
single-particle density but they are physically meaning-
ful. Indeed, they represent the diamagnetic-shielding cor-
rection (n = —1) [21], the number of constituents of the
system (n = 0), the diamagnetic susceptibility (n = 2)
[22], the softness kernel in the density-functional theory
(n = 3) [23], and so on.

Here we will use the radial expectation values (mo-
ments) as the basic elements to rigorously bound the
Weizsacker energy from below and from above. First
in Secs. II and III, we show and derive, respectively,
the lower bounds to the Weizsacker energy of general
fermionic systems either variationally or by means of
some classical integral inequalities (Sobolev, Holder) to-
gether with a theorem (proved in the Appendix) which
allows us to extend to general non-spherically-symmetric
densities the validity of the lower bounds to Tvr[p]
obtained for spherically-symmetric densities. Second,
in Sec. IV, we find difFerently upper bounds to the
Weizsacker energy of atomic systems. Then, in Sec. V,
just for checking the relative quality of the previous lower
and upper bounds, a numerical comparison is carried out
in a Hartree-Fock &amework. Finally, some concluding
remarks (Sec. VI) and some references are given.

where N is the number of constituents of the system.
These two bounds were previously proved [16] only for
spherically symmetric bound systems by use of a Red-
heffer inequality of Weyl type [24,25].

Thee-moments bounds

T &-( -')
(

—2)

(10)

—:L3.

B. Nonvariational bounds

They have been obtained by use of one, two, or three
classical integral inequalities together with a theorem de-
rived in the Appendix.

Two-moments bounds

(12)

According to their analytical origin, they may be clas-
sified in the two following types.

(a) First tyIpe. The starting point of these bounds is the
above mentioned RedhefFer's inequality or alternatively
the Holder inequality. They are given by

II. LOUVER BOUNDS: MAIN RESULTS

Here we collect the main lower bounds to the
Weizsacker energy T~[p] of a general fermionic system

for P & 0. The cases P = 1,3, and 5 give the variational
one-moment and two-moments bounds expressed by the
inequalities (7), (8), and (9), respectively. This allows
us to conjecture that all the bounds (12) are not only
rigorous but also the best possible ones.
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(b) Second type T. hese bounds are obtained from the
inequality (4) of Sobolev's origin and various variational
bounds to the density functional ~3 ——f psdr recently
encountered in terms of two moments (r ) [26] (see also
[27—30]) or a moment (r ) and a logarithmic moment
(r lnr) [31,32]. The following three sets of bounds are
found.

(i) Ifa&P& —2, then

(iii) If P & —3, then

(rp lnr)
Tw & C3(a P) (rP) exp —(P + 2) —1

(rp)

with
I/3

C.( P) = „(&+2)"

with

TW & Cl(a, (9) p+, (13)
In the case that P = 0 one has

Tw & 0.481 10N exp
~

—2
( (lnr) )

N )
(22)

~3/3 (a p) 5/3 (6 + 3p) 6+3p 3(cs —p)

211/3 (6 + 3a)6+3m

The symbol B(x,y) denotes the Euler's P function.
In the cases (a, P) = (1,-1) and (2,-1) one has the fol-

lowing interesting particular bounds:

w + 0.4~733 (14)()"' '

T~ + 0 44646
z /3(r')" '

respectively. Moreover, in the cases that P = 0 or a = 0
one has

Three-moments bounds

They belong to the two following types.
(a)First type Thes.e bounds are derived Rom the Red-

heffer's inequality followed by an optimization procedure.
They are given by

(23)

Since (rp)(r 3) ) (r ~ l)3, this bound improves
the known lower bound (7) of Gadre and co-workers

[16,20,12]. In addition, in the cases that P = 0 and 2,
one obtains the variational three-moments bounds given
by (10) and (ll), respectively. Other interesting three-
moments lower bounds can be found for bigger values of
P. Let us just collect here those that correspond to the
case P =4:

N1+2/m
Tw & Cl(0, m)

(
~)3/m (16)

0 g m ) —2, which leads to the following lower bounds

(r3) ( 9
Tw + 1 +

~ 4) ')
(24)

(17)

T~ & & 0.547353( ), , m = 1,

with

f („a)—(P+3) )
Tw & C3(a, p) ( +2)( („p)

—(~+2) )
(20)

3/3 (a p) 5/3
( 6 3p) 6+3p s(cc —y)

C3(a, p) = 9 211/3 ( 6 3a)6+3cx

—3(2+mr)

0.59527(„,), m = 2.

Although less accurate than the corresponding ones pre-
viously mentioned, these bounds generalize and comple-
ment them.

(ii) If P & a & —2, then

The three-moments bound (23) might be the best possi-
ble ones, although we have not been able to show it in
general but only for P = 0 and 2.

(b) Second Type. These bounds are derived in three
steps: (i) To use the Sobolev-origin inequality (4) in order
to bound Tw by means of the functional u3, (ii) to use
the Holder inequality [33] in order to bound u3 by means
of the number N of constituents of the system and any
functional ~5 = f p(r)5dr with 1 & b & 3, and (iii) to use
the known variational bounds to cup in terms of two radial
moments (r ) [26] (see also [27—30]) or a radial moment
(r ) and a logarithmic moment (r lnr) [32,34].

Among others, the following 6ve sets of lower bounds
are found.

(i) If a & P ) —3(b —1)/b, one has

p Q(~+3)—3 3(b —1)(n —
[~9

(3—b) f'
Tw & Kl(a, P, b)N (")'""' '.

(25)

with



WEIZSACKER ENERGY Op MANY-ELECTRON SYSTEMS 259

s(sb-x)
3S 2/3 ((r P) s(s —1) b s(s —1)

Kg(a1 P, b)— - 2/32 B~ 3+3&+p& 2& 1
I((~—P)(&—1)' &—1 )

2

( 3 + 3b + b )3 3—b b—a s(s —1)(m —())

( 3 + 3b + bp)3 —3b—bp

In the case p = 0, one has

K3 (0, b)N exp —2
(ln r)

(v) If P & —3(b —1)/b, then

2b

3(b —1)
(34)

An interesting particular case is that b = 2, p = —1,
and o. & —1; then,

(rP ) s(s 1)

Tw & K4(P b)
N3(s-i)

[-b(p+3)+3j2("1 )
3(b —1) (rp) 3(b —1)

2a+3 s(a+1)r
Tw & K~(&, —1,2)N

( )

And for a = 2, one has

w y 03594
(r')

~ (»)

(28)

with

Qb
3&2/3 g s(b —i)

K4(p, b) =
)~/3 s(ss 1}

(b ] ) s(s —1)

[-b(P+ 3) + 3l"'
( - 2/3

I, I/2b ).

, S-1

(ii) If p ( o, ( —3(b —1)/b, then

with

{s-s)
Tw & K2(a. , p, b)N s(s-')

( a) b(P+3)+—3 s(s —1)(~—)1)

X
p) b(a+3-)+3 (29)

III. LOWER BOUNDS: PROOFS

Let us prove the lower bounds described in the previous
section.

A. Proof of the variational bounds

s(sb-x)
3& / 23

(CS P) s(s —1) bs(s —1)
K2(a, P, b) =

2~~/3 - 2/3
3 3b ab — 2—b-l

(n-P)(b-1) ~ b-1

(3 3b b )3 sb ba (s- )( —s))

(3 —3b —bP)'-3'-'P

A particular case is b = 5/4, n = —1,P = —2,

] 1y14/3

T~ ) 0.375341N T/3i
2)4/3

(iii) It is fulfilled that

. (30)

To prove the inequalities (8)—(11) we will look for ex-
tremals to the functional

~(f) I&f(r) I'd,
f(r) (36)

r ' f (r)dr = (r '), i = 1, . . . , n .~

~ ~ ~ ~

To do that, we write the corresponding variational equa-
tions as

among all the positive definite functions f(r) subject to
the n moment restrictions

Tw & 0.2083 1— (32) gf 2

dr —) A; r 'f(r)dr = 0, (38)

(iv) If p & —3(b —1)/b, then

(rP) s(s —1)

Tw & K3(p, b)
N s(b —1)

„,„, [-b(P+3)+3~2("1-)
3(b —1) (rp)

with

2b

3(b —1)

(33)

where A; are the Lagrange multipliers, i.e., the unknown
parameters to be determined by means of the aforemen-
tioned restrictions. The difFerential equation to be solved
1s

+27'I I+) Ar ' =0.
)

With the change f(r) m y(r): y(r) = [f(r)] / this
equation transforms into

K3(P, b) = 3~ / bs(s-1) (b(p+ 3) 3)
211/3 &{~~ &) - ( - 2/3

(b —]) s(s-1) p (2b—1
Ii 5—1

n

V2y+) 'r 'y = 0. —
i=1
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(i) Let us first find the two-moments bounds (8) and
(9). So, n = 2.

(1) If o;q ——0 and o.2 ——2, the only solutions fulfilling
the integrability conditions are

so that the bound L2 readily follows. (ii) Let us now
prove the three-moments bound (10) and (11). So, n = 3.

(1) In the particular case that o.q ———l, n2 ——2 and
ck3 —0 the solution of our difFerential equation which
minimizes T is

H„, z;.
/&4)

xexp —z,
~

/2'& 4) (39)

where (zq, z2, zs) E R, A2 E R, Aq ( O, n; E N U O, i =
1, 2, 3, and

f (r) = r ++ "' exp( 2—r g A—s/4)

with A2 & 0, A3 ) 0 and
- 2

A, /4— 3=—
1+ Ql —A2

The values of the Lagrange multipliers are

(42)

3

) ~

n;+ —
~

= —A22/(16Ag)

The symbols 8„,(z) deno. te the Hermite polynomials
of degree n;. The values of C„,„,„,and Aq are obtained
by means of the restrictions (37) in this case. They are
given by

3

i=1

( ')
I' 1/(N (r-2) /(r-&)2 1)

and

C2
YLQ

ping

gA3

N~ . r 1)/n;+—
( 2)s/2 (

' 2)
3

x 2"'n ~~m
~ sl ~

( ')
N (r ') !(r ') —(r ')

Then, the bound Ls given by (10) follows.

(2) If nq ———2, cr2 ——2, as ——0, the solution of the differ-
ential equation which minimizes P is

Then

N2
P(f) =, 4(n, +n2+ms+ —,')'

g2
f(r) = '+ ~' "' xp( — Q—A /4)4x

with A (O,A (0 and

(43)

so that the only extremal which may supply a minimum
is that corresponding to the case nq ——n2 ——ns ——0. To
show that 9N /(8 (r2)) is indeed a minimum it is enough

to prove that
&&

exits and E(f) is a convex functional

[35]. The former is trivial since the function does not
vanish and the latter is shown in the Appendix. So the
bound I2 is proved.

(2) For o.q
——0 and n2 ———1 one can work similarly as

in the previous case and finds that the minimum extremal
1S

Q2
f (r) = exp( —CIA&]r)

l1 1 rl
4 4 g2 )

The values of the Lagrange multipliers are

1 1

4 (r-') (r2) /N2 —1
'

( ')
4 N (r )(r )/N —1

with

A2 = 16/Ag/, A1 (O, A2 & 0,
and the values of Co and A1 are given by

1—2 (~—3 ) (~1)/yg2(" )
N(( -') (")/N-1)

2( ')
I' tl/((r ') (r') /N' —1)]

Then, the bound Ls given by (ll) follows.
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B. Proof of the nonvariational taro- and
three-moments lower bounds

of the Srst type

4 1/3

Tw &3I —
I

(n l
E2

(47)

These bounds are given by the inequalities (12) and
(23). To derive them we start from the following Red-
heKer's inequality of Weyl type valid for any absolutely
continuous u(r):

f r
+ u (r)dr & r "[u'(r)] dr

o m+n) o

with (us ——f p (r)dr.
Then we use the variational lower bounds to the den-

sity functional uq, t & 1, encountered by Dehesa et cl.
[26] in terms of two radial moments, (r ) and (rP), and
by Porras and Galvez [34,32] in terms of a radial moment
and a logarithmic moment, respectively. These bounds
are given in the case t = 3 by the following.

If a & p & —2, then

)
1/z

x r u (r)dr
0

so that —m & n & m+ 1. Following Gadre and Chakra-
vorty [12]we make the change u(r) = r"gp(r), k = 1—n,
and obtain

Tw[p(r)] & —-k(k —1) (r )

(44)

with

p)a+2 ) ca-p

ups & Fg(a, P)
I, (")"'~

27(a -P)' ((6+3P)s+'Pi --~
~( p) =

16~, l((6+ 3a)s+,.)I

X 2
B ( s+sp 5~I

,2( -P) 2)

(48)

(with —m & k & m + 1), which is valid only for a spher-
ically symmetric density p(r). On the other hand, there
is a theorem (see Appendix) which states that

Tw[p(r)l & Tw[p(r)] .

Then, in the case that k = 0 and with the change
m ~ P = 2m+ 1 the inequality (44) directly leads to the
searched lower bound (12) for p & 1. To find the bound
(12) for p & 0 we need the use of Holder inequality [33].
To find the other inequality (23), we consider the inequal-
ity (44) for the general case in which k does not neces-
sarily vanish. Then, by use of the change (m, k) -+ (P, z)
so that k = ~4+ z

—z and m = ~4+ z + z one has

with

((ra) —(p+z) )
(us & Fz(a, P) ( ~z)p)

—(n+z)
~

(49)

Fz(a P) = 27(a —P)' ((—6 —3P)s+sP &

16' z ( (—6 —3a)s+s~)

X -2
~ l& -(e+3~)

lg 2(cr —p) ' 2

If p & —3, then

The symbol B(z,y) denotes the Euler's P function.
If p&a& —2, then

2

1
Tw & ——- (r-')

I

—+1 —z
I I

——z
I(P) 2 2 &4 p k4 )
(46)

with
with p & —2 and z & 0. Now, we optimize this inequality
with fixed p by looking it as a function of z. This function
has a maximum at

p 3 (rP lnr)
& F (P) ( P) exp —3 (P + 2) —3

(rp)

27 (2+ P)'
3 —

32 .3

(50)

The combination of the inequality (47) with the in-
equalities (48), (49), and (50) produces the searched
lower bounds (13), (20), and (21), respectively, in an easy
manner.

and the value of the function at this maximum is the
searched lower bound (23). D. Proof of the nonvariational

three-moments bounds of the second type

C. Proof of the nonvariational
two-moments bounds of the second type

Here we want to prove the inequalities (25), (29), (32),
(33), and (35). We start from the inequality (4), i.e.,

Here we want to prove the inequalities (13), (20), and
(21). To do that we start with the inequality (4), i.e.,

4 1/3
Tw&31 r I

~s
E2 )

(51)
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Then, we use the Holder inequality [33] which allows
us to bound &om below the quantity u3 by means of the
number N of constituents of the system and any density
functional cup, 1 & b ( 3, as follows:

of the density functienals ~t, t & 1, in terms of two radial
expectation values [26]:

(1) If a & P & —3(t —1)/t, then

1

/ ~2)s—x

(52)

1
p)t(n+3) —3 ~ —r)

(dt & Fi (a, P, t) t P 3)
(

~)t(/3+3) —3 (53)

Finally we take into account the following lower bounds with

1

tt(a P)2t —1
[t (~+ 3) —3]'"'"-'

~Fi(a, p, t) =
(4~Ã(~(/)+s) —&I/I(~ —/))(& —&)I, (2& —&)/(& —&))I' ' I(I~(a+ a) —s)'-+" ')

(2) If P ( a ( —3(t —1)/t, then

1

~)
—t(P+3)+3 ~ —/t

(ut & F2(a, p,t),( )
( p)

t(~y—3)+3

with

(54)

(55)

1

tt(a P)2t —1 I[-t( +3)+3] """
~F2(a, p, t) =

[4&&{[—t(a + 3) + 3] / [(a —&) (t —1)] (2t —1) / (t —1))1' ', [
—t (p + 3) + 3)

'p+"+'
]

(56)

F4(»t) = t' —t(P + 3) + 3

(t —1)2'—1 4m I' [(2t —1)/(t —1)]

where I'(z) denotes the Gamma function. The combina-
tion of the inequalities (51) and (52) together with (53),
(55), (57), and (58) readily leads to the searched lower
bounds (25), (29), (33), and (35), respectively.

It remains to be proved the inequality (32). To obtain
it we need the following result [34]:

( ')' ( ')"—9(2~2)2/3 Wi/3 (r-')
&

(59)

Also, it is known that the density functionals (dt, t & 1,
can be bounded f'rom below [34,32] in terms of radial
moments (r ) and a logarithmic moment (r lnr).

(3) If /9 & —3(t —1)/t, then

(rP lnr)
~t & F3(p, t) (rp) exp [

—t(p+ 3) + 3] —t
r/3

(57)
with

t(P+ 3) —3

(t —1)2' —' 4n.l' [(2t —1)/(t —1)]

(4) If P & —3(t —1)/t, then

(rP lnr)
(dt & F4(P, t) (r~) exp [—t(P+ 3) + 3] —t

(rp) )
(58)

with

Finally the combination of the inequalities (51) and
(52) with 5 = 5/3 together with (59) allows us to find
the searched lower bound given by (32).

IV. UPPER BOUNDS

Here we will describe and prove the upper bounds to
the Weizsacker energy Tv(/[py] in a state characterized by
the @ wave function. The inequalities (62), (66), (68),
and (72) given below are valid only for systems with a
spherically symmetric single-particle density.

(A) For ions with a nuclear charge Z and a number 1V
of electrons, it is fulfilled that

Tvt (Z(r ') —em (60)

in the approximation of infinite nuclear mass. The sym-
bol E' denotes the first ionization potential.

To prove this bound, we use the following inequal-
ity of the electron density p(r) found by the Hoffmann-
Ostenhof [11]in the infinite-nuclear-mass approximation:

~2 1/2( ) + + 1/2( ) & 0
2

(61)

r e lk, p'/ (r) $ 0 .

The integration of this inequality multiplied by p / (r)
over the whole space readily leads to (60).

(B) For fermionic systems with a kth-monotonic single-
particle density with k & 3 (this is the case, e.g. , of the
heliumlike ions among the finite electronic systems [36])
one has that
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1k —1 k&3. (62)

It is interesting to remark that in the cases where k = 3
the bound is

To prove these results we use the following known in-
equality [36]:

1
Tw & —(r ')

2
(63) , ) & —2[~'(r)]'

k —1 g(r)
(71)

and if the single-particle density p(r) is completely mono-
tone (i.e., when k -+ oo) [37,38] one has

1
Tw & -(r-') .

4
(64)

To derive these bounds we use a recent inequality [36]
among the derivatives of the density p(r ) which has the
property of monotonicity of order k & 3, i.e., such that

(—1)"p~"l ) 0. This inequality is

2 [p (")]
k —1 p(r)

(65)

The integration of this inequality over the whole
space and taking into account the definition (1) of the
Weizsacker energy allows us to find the searched bound
(62)

(C) For systems with a log-convex density function

p(r), it is verified that

Again here, working with this inequality similarly as with
(65) one is led to the bound (68).

(E) Some systems present a single-particle density p(r)
which is neither convex nor log convex but the related
function p(r)/r is log convex for a certain real value of cx.

For example, this is the case in all atoms of the periodic
table, except H and He where the electron density is log-
convex [39,40].

Let us consider a many-body system such that its den-
sity function g(r) = p(r)/r, cx being a known real pa-
rameter, is logarithmically convex. Then, the Weizsacker
energy is bounded from above by

(72)

To find this bound we start from the log-convexity con-
dition of g(r), naxnely,

1Tw&-( ') .
4

(66)
(„)) b'(r)]'

~(r)

To find this bound we start &om the log-convexity con-
dition of p(r), i.e., that d2[ln p(r)]/drz ) 0, which leads
to

(„)) [p'(r)1'
p(r)

(67)

o. +2 k —1
Tw & (n+1) —a (r )8 k —2

(68)

In the case that k = 3 this bound reduces as

2

& (o'+2)
(69)

while in the completely monotonic case (i.e., for k ~ oo)
one has

Operating with this inequality in a similar manner as
described above for the inequality (65), one easily ob-
tains the bound (66). It is worthwhile to remark that
the bounds (64) and (66) are the same in spite of the dif-
ferent requirements of the single-particle density which
they are founded on.

(D) There exist systems such that its single-particle
density p(r) does not possess a given order k of mono-
tonicity but the related function g(r) = p(r)/r, a real,
does. This is, e.g. , the case of most atoms in the Peri-
odic Table [38,39]. Let us consider a many-body system
such that the one-body density function g(r) = p(r)/r
o, being a known real parameter, is monotone of order k.
Then, it is fulfilled that

and we operate as already done in the determination of
the bound (66) from the inequality (67).

V. NUMERICAL TEST

Just for checking the quality of the bounds to the
Weizsacker energy obtained in this work, we use the near
Hartree-Fock wave functions of Clementi-Roetti [41] and
McLean-McLean [42] for all ground-state atoms with the
nuclear charge 1 & Z & 92. The numerical values of
the Weizsacker energy were calculated with these wave
functions by Murphy-Wang [43] and dePristo-Kress [44].

We have performed numerical comparisons of some of
the previous bounds and the Hartree-Fock values of the
Weizsacker energy. The results are shown in Figs. 1,
2, and 3. In Fig. 1, the Hartree-Fock value of the
lower bounds of variational nature with one-moment

Lx — s, with two xnoments (i.e., L2 ——(r ) /(2Z)
(" ') —1

and L2 ——9Z2/(8 (r2))), and with three-xnoments [i.e.,
Ls and I's given by (ll) and (10)] respectively, are
represented. The bounds are plotted by dotted (Lx),
dashed-dotted (L2), medium-dashed (L2), dashed (Ls),
and long-dashed (Ls) lines, while the values of Tw are
given by the continuous line in the figure. It is observed
that (i) the bound L2 is much more accurate than L2,
(ii) when we incorporate the moment (r ~), the resulting
variational bounds L3 and L3 get substantially improved,
being always Ls more accurate than Ls, and (iii) the one-
moment bound Lq is much better than the two-moments
bounds L2 and L& and, even more, it is of the same accu-
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racy as the three-moments bound I3. Then, for a given
number of moments (r ), the best lower bound to Tgr is
that corresponds to the moment(s) with lower order(s) n
what is an indication that the Weizsacker energy mainly
depends on the electronic region of the density near the
nucleus.

A similar study is done in Fig. 2 for the upper bounds
to Tvv of Schrodinger origin [to be denoted by Uq

Z((r ) —e)] and of kth-monotonic origin with k = 3

(Us ——(r )/2) and k ~ oo (U = (r 2)/4) found in
this work. We observe that, in the whole Periodic Table,
the Schrodinger upper bound Us is much less accurate
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FIG. 1. Study of the accuracy of the variational lower
bounds to the Weizsacker energy Tvr given by one (Lq), two

(Lq and Lz), and three (Lq and Ls) radial expectation val-

ues (r ). The Hartree-Fock value (solid line) of Tgr is com-
pared to the values of Lq (dotted line; it depends on (r )),
Lz (dashed-dotted line; it depends on Z and (r )), L3

(short-dashed line; Z, (r ) and (r )) and Ls (long-dashed

line; Z, (r ) and (r )). Atomic units are used throughout.

FIG. 3. Comparison of the upper bounds of monotonic ori-
gin Uq (short-dashed line) and U ( long-dashed line) with
the variational lower bounds to T of one and three moments
given by Lz (dotted line) and Ls (dashed-dotted line). The
Hartree-Fock values of the Weizsacker energy are given by the
solid line. Atomic units are used throughout.

that the bounds of monotonic origin but, contrary to
these, it is rigorous; in fact, to the best of our informa-
tion, it is the only rigorous upper bound known in the
literature.

Finally, in Fig. 3 we plot jointly the two upper bounds
to the Weizsacker energy with better accuracy (i.e. , Uq

and U ) and the variational one-moment, and three-
moments lower bounds (i.e. , Lq and Ls) together with
the Hartree-Fock values of T~. Keep in mind that both
bounds Lq and U depend only on the radial expectation
value (r 2).

It is striking that the complete monotonicity and the
log-convexity approximations (both lead to the same up-
per bound as explained in Sec. IV) for the electron den-
sity produce so accurate upper bounds to the Weizsacker
energy of all atoms of the Periodic Table in spite of the
known fact [37], [38], and [39] that they are generally
violated except for H in the completely monotonic case
and for H and He in the log-convex case. This obser-
vation, as well as the knowledge of the variational lower
bound Lq, explains from a fundamental point of view

(i.e., based on characteristics of the electron density) the
approximate representation of the second-gradient cor-
rection Tq = T~/9 to the total kinetic energy by means
of the expression

0
0 20 40 80

Atomic Number Z
80

(c2 is usually determined empirically and found to be
1.84 for atoms), which has been done by several authors
[16,45,46] when calculating the atomic kinetic-energy
density functional.

FIG. 2. Study of the accuracy of the upper bounds to the
Weizsacker energy T~ found in this work. The Hartree-Fock
value of Tw (solid line) is compared to the values of the rig-
orous bound of Schrodinger origin Us (dashed line ) and the
non-rigorous bounds of monotonic origin Uq (dashed-dotted
line ) and U (dotted line).

VI. DISCUSSION AND CONCLUDING
REMARKS

The relevant role played by the %eizsacker energy T~
in the general density-functional theory (DFT) of many-
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fermion systems [2,3,47] makes almost mandatory the
search of relationships with as many fundamental and/or
experimentally measurable quantities as possible. Since
exact equations among them cannot be found in com-
plex systems, it seems natural to look for relationships of
inequality type.

The inequality approach to the Weizsacker energy done
in this work is founded on the moments around the ori-
gin of the single-particle density p(r) which, apart &om
the constant 4n, are the radial expectation values (r").
The reason to choose these quantities as the basic ele-
ments of our approach is twofold. Mathematically the
knowledge of these expectation values (moments) of in-
teger order may completely characterize p(r). Physically
they describe (some constants apart) numerous impor-
tant quantities of the system under consideration as al-
ready mentioned.

The specific results of this approach are given by means
of lower and upper bounds to Tgr. Let us first consider
the lower bounds. They are rigorous and they apply to all
finite many-fermion systems and many of them to infinite
systems, also. In addition to the one-moment bound Li
given by Eq. (7), we have found variationally various two-
and three-moments lower bounds previously denoted by
LZ, L2, Ls, L's which are given by Eqs. (8)—(11), respec-
tively. Also, general sets of nonvariational two-moments
and three-moments lower bounds have been described.
To find the latter ones much use of the classical integral
inequalities of functional analysis like those of Holder,
Sobolev, and Redheffer has been necessary; some of them
are conjectured to be the best possible ones, although we
have not been able to prove its variational origin.

The upper bounds found in this work are of a fully dif-
ferent origin. Apart from the bound given by Eq. (60),
which is valid "only" for ions and comes out directly
&om the Schrodinger equation, the rest of upper bounds
are valid for those femionic systems whose single-particle
density or a related function possesses some monotonicity
property (e.g. , convexity, log-convexity, complete mono-
tonicity, ...). The latter bounds are given in terms of the
expectation value (r 2) and the order of monotonicity of
p(r) of the related density function under consideration.

Finally, let us make some observations in view of these
lower and upper bounds

from below and from above; let us bring here for
example, that

1 -2 1 -2—(r ')&T~& —(r '),
8 4

whose accuracy in neutral atoms is certainly strik-
ing as illustrated in Fig. 3. At this point, however,
we should immediately say that, contrary to the
lower bound (r ) /8 (which is of variational ori-

gin), the upper bound (r ) /4 was obtained un-
der the complete-rnonotonicity hypothesis (which is
only approximately satisfied, generally speaking).
The reason of such so important role of (r 2) is
possibly that it takes best (with respect to the rest
of the other possible expectation values of integer
order) the electronic region near atomic nucleus.

(iii) The logarithmic expectation values (r» lnr) and
specifically the mean logarithmic value (ln r),
(which determines [48,49] the high-energy behav-
ior of the phase-shifts in electron-nucleus scatter-
ing at low angular moment»~) are encountered
to be good elements to bounding &om below the
Weizsacker energy as illustrated by (21)—(34) and
(33)—(35). One should say, for completeness, that
these logarithmic values have been recently used
to bound physical density functionals of the type
~s = J p (r)dr in many-electron systems [32,34],
and [38] and to obtain novel uncertainty relation-
ships in D-dimensional many body systems [50].
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APPENDIX

Here the following result is proved.
Meorem. The electron density p(r) fulfills the inequal-

ity

(i) They set up numerous rigorous relationships of
inequality type which involve the Weizsacker
energy together with other physical quantities
(e.g. , number of constituents, magnetic susceptibil-
ity, diamagnetic-shielding correction, softness ker-
nel, ...) of the system, which would be difficult to
obtain otherwise.

Tiv[p(r)]»~[» (r)],
where p(r) is the spherical average of p(r), i.e.,

1
p(r) = — p(r) dO .4'

Proof. First, we shall prove the following result.
Let

(A1)

(ii) The expectation value (r 2), which gives the
strength of the angular-moment»~ dependent part
of the kinetic energy, is shown to play an impor-
tant role in bounding the Weizsacker energy both

I

with

I &&(r) I'
d

J'(r)

y . Ra + R y~&) y O. I+X( )I* g 1~)P).y —)) y —
O

)over the surface and —2 + E C (R )

~

~
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The symbol C(o) (Rs) denotes the class of functions that
are continuous on R . Then T is a convex functional over
X.

This result follows the proposition 42.6 of Ref. [35].
A functional P[f] is convex over X if and only if the in-

equality

the inequality (A2) for the functional X transforms into

which is clearly ful6lled.
Second, for p(r) C X, and p(r) g X, it is fulfilled that

glfil —gff~l —f (fi —fs)
&fz

is fulfilled for all fi and f2 C X. Indeed, since

(A2)
[p(r) —p(r)]

~
dr = O.f ~&[ (r)]

hpr

fi&'f2d &fi&f2d + f21&f2]'d,
Then, it easily follows that

&[i (r)] —&[p( )] & o.
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