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Ionization of an excited hydrogen atom by a high-frequency circularly polarized
pulsed field

Mariusz Gajda* and Bernard Piraux
Institut de Physique, Univcrsite Catholique de Louvain, 8, Chemin du Cyclotron, B18$8 Louvain La-Ne-uve, Belgium

Kazimierz Rzq.zewski
Centrum Fizyki Teoretycznej Polskiej Akademii Nauk, Al. Lotnikom 82/g6, 09-668 Warszawa, Poland

(Received ll March 1994; revised manuscript received 12 May 1994)

We study the ionization of atomic hydrogen by a high-frequency circularly polarized 6eld. We
solve numerically the time-dependent Schrodinger equation for the atomic wave function, which be-
forehand is expanded in a Coulomb-Sturmian basis. We analyze the ionization from various initial
states differing by their azimuthal quantum number m, the principal and the angular quantum num-

bers being equal to 2 and 1, respectively. At high field intensities we observe important differences
in the ionization yield: strong stabilization is observed for m = 0 and m = 1 while for m = —1 the
atom is almost completely ionized. We also study the electron energy spectra for the same cases
and show that they are characterized by a multiple splitting of the above-threshold-ionization (ATI)
peaks. The behavior of the ionization yield as well as the structure observed in the ATI spectra are
explained in terms of the ac-Stark shift and width of the atomic levels. We also consider some of
the aspects of the underlying dynamics by means of a very simple essential-state model.

PACS number(s): 32.80.Rm

I. INTRODUCTION

The interaction of simple atomic systems with very
strong laser pulses has become a subject of intensive ex-
perimental and theoretical investigation. Laser pulses
currently produced in the laboratory generate electric
Belds which often exceed the atomic internal binding
Beld. This has led to the observation of new and rather
unexpected phenomena such as, for example, the above-
threshold ionization (ATI), the generation of very high
harmonics of the driving Geld, and multielectron ioniza-
tion of atoms and molecules. A review of the present un-

derstanding of these processes is found in [1]. Recently,
various numerical simulations have indicated that a one-
electron atomic system may become stable against ion-
ization while exposed to a very strong laser pulse. This
means that there exists a regime of very high peak Geld

intensity in which the ionization yield decreases with in-

creasing peak Geld intensity. This stabilization process is
presently studied both theoretically [2] and experimen-
tally [3] when the laser 6eld is linearly polarized. The
aim of the present paper is to investigate the atomic sta-
bilization problem for a circularly polarized light.

Nonperturbative solution of the time-dependent
Schrodinger equation is a dificult numerical problem.
For linearly polarized light, the problem has an axial sym-
metry and as a result is two dimensional. This leads to
a substantial simplification of numerical efforts involved.

Permanent address: Institute of Physics, Polish Academy
of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

By contrast, the case of a circularly polarized light is
much more dificult since it is truly three dimensional.
So far, only a few papers [4,5] have treated this problem.

The existence of an additional degree of &eedom in
the case of circularly polarized light is of course related
to the nonconservation of the z component of the angu-
lar momentum in the optical transitions. This leads to
some new interesting features of the ionization process.
In the linear case, the azimuthal quantum number does
not change when the photon is absorbed. Therefore, an
electron can reach the continuum via the 8 m p m 8

transitions, i.e., its angular momentum can remain rela-
tively small. If this is the case, the electron penetrates
the nucleus region very easily. In this region the effective
interaction with the external Geld is very strong and the
probability for the atom to ionize can be quite large. For
the circular polarization (say o, for instance}, the se-

lection rules require an increase of the atomic azimuthal
quantum number by one, m m m+ 1, each time the pho-
ton is absorbed. This leads to an increase of electron's
angular momentum giving rise to a large centrifugal bar-
rier. This barrier prevents the electron from strong pen-
etration of the nucleus region.

Ionization of atomic hydrogen by a high-kequency cir-
cularly polarized pulse has already been considered but,
to our knowledge, the atom was always assumed to be
in its ground state [5). By contrast, ionization &om a
highly excited state has been studied theoretically in the
microwave regime. In that case, it was shown by means
of a classical treatment [6] that the probability of ioniza-
tion from Rydbergs orbits depends drastically on the z
projection of the angular momentum.

In our paper we study the ionization of hydrogen atom
by a strong circularly polarized laser pulse. We pay
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particular attention to the difFerence between ionization
from initial atomic states which difFer by their azimuthal
quantum number. For this reason we study the ionization
from the (n = 2, 1 = 1,m = 0, +1) states, where n is the
principal quantum number and l and m the angular mo-
mentum and azimuthal quantum numbers, respectively.
In our calculations we assume the photon energy to be
two times larger than the ionization potential. In this
case the absorption of a single photon brings the electron
high in the continuum. %e study in details the ioniza-
tion probability as a function of the peak laser intensity
as well as the electron energy spectrum.

The paper is organized as follows. A brief descrip-
tion of our numerical treatment is presented in Sec. II.
In Sec. III we present the results for the ionization yields
and the electron energy spectra. In Sec. IV these results
are explained and some aspects of the underlying dy-
namics are discussed within a very simple essential-state
model. Our final conclusions are presented in Sec. V.
Unless explicitly stated, we use atomic units throughout.

a set of coupled first-order difFerential equations to solve
for the expansion coefficients [7]. An appropriate choice
of the basis leads to a sparse matrix representation of
the total Hamiltonian; this may significantly reduce the
numerical efFort in terms of storage and execution time.
The close link between the Coulomb-Sturmian functions
S„"i [8] and the atomic hydrogen radial functions suggests
that it is convenient to expand the total wave function
as follows:

(4)

where K, is an arbitrary parameter. The Coulomb-
Sturmian functions may be expressed in terms of the
radial wave functions R„i(r/n) for the bound states of
atomic hydrogen:

S„",(r) = N„iR„((~r),

II. FORMALISM

In order to study the interaction of atomic hydrogen
with a strong circularly polarized laser pulse, we consider
the following time-dependent Schrodinger equation:

where Ho is the atomic Hamiltonian and A(t) is the vec-
tor potential associated with the field 8(t) = BA(t)/Ot.—
In Eq. (1) we use the dipole approximation. We omit the
A -term since within this approximation it only intro-
duces a constant phase. In order to describe the pulsed
field, we assume the following form of the vector poten-
tial:

A(t) =
Ao f(t) [

—e sin(ut) + e„cos(ut)]. (2)

In this formula Ao is the amplitude of the potential, u is
the &equency of the laser light, e and e„arethe unit
vectors in the z and y directions, respectively, and f (t) is
a slowly varying envelope. In our calculations, we assume
that f (t) has a sine-square form

f(t) = sin'(zt/tg),

where tg is the pulse time duration.
The form of vector potential (2) corresponds to the

o.+ or o polarization depending on the sign of ~. If the
initial state is an eigenstate of a given azimuthal number,
Eq. (1) is invariant under a simultaneous change of the
sign of ~ and m. For this reason, and without any loss of
generality, we ass»me that the field has a o.+ polarization.

The solution of Eq. (1) has to be found numerically.
Actually, there are two basic methods of solution to this
problem. One is simply the direct integration of the par-
tial difFerential Eq. (1) using a grid method [2]. The other
possibility consists in representing the Schrodinger equa-
tion in a basis of L -integrable functions; we then obtain

with N„i a normalization constant. In order to appreci-
ate the advantages and the limits of the present method,
let us briefiy review the main properties of the Coulomb-
Sturmian functions and the expansion (4):

(i) The Coulomb-Sturmian functions form a discrete
and complete set in the space of L2-integrable functions.
These functions are not orthogonal since the correspond-
ing overlap matrix is tridiagonal.

(ii) The K parameter distinguishes between difFerent
sets of Coulomb-Sturmian functions. Since in practice
we take into account a finite number, say N, of basis
functions, we actually need two parameters K and N to
specify our basis. For a given value of N and K we obtain
N eigenvalues of the atomic Hamiltonian. Some of these
eigenvalues correspond to the negative energies of atomic
hydrogen while others correspond to positive energies. It
is possible to choose rc and N such that a given number of
these negative eigenvalues are correctly reproduced and
at the same time such that the distribution of the positive
energies covers a given energy range depending on the
physical situation.

(iii) Both the atomic and the interaction Hamiltonian
can be very easily expressed in our Sturmian basis: first,
all the matrix elements have a very simple analytical
expression and second, the total Hamiltonian matrix is
very sparse. It is in fact block tridiagonal, the diagonal
blocks being tridiagonal and the ofF-diagonal blocks four-
diagonal. As a result, if the number of the basis func-
tions is equal to N, the number of independent nonzero
elements is of the order of 7 x N (( N .

(iv) If we study the ionization process, we have to
properly describe not only bound spectrum wave func-
tions but also the scattering Coulomb wave functions.
Within our approach, the continuum spectrum is dis-
cretized (only a finite number of positive eigenenergies of
the atomic Hamiltonian is taken into account). In prac-
tice, it means that for a given energy, the corresponding
radial scattering Coulomb wave function is correctly de-
scribed by a linear superposition of Coulomb-Sturmian
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functions up to a certain distance only. Beyond this point
the positive energy wave function (4) drops exponentially
to zero. By an appropriate choice of N and ~, we can
make this distance large enough. A similar problem arises
also within the space-time grid integration method. The
space grid is always finite and it has to be sufIiciently
large in order to avoid an unphysical reflection" of the
outgoing wave from the boundary of the grid. In the im-
plementation of the present method we paid special at-
tention to this problem making sure that this reHection
does not occur. Within the grid method, this reHection
problem is avoided by introducing an "absorber" at the
boundary of the grid. Within our approach, we can over-
come this problem by complex rotating the total Hamil-
tonian. In this way, the time-evolution operator becomes
nonunitary since its continuum component decays expo-
nentially in time. In other words, that means that the
probability density Bux dies out at large distances as is
the case in the presence of an absorber at large distance
[8]. It is important to note that, in general, the number
of Coulomb-Sturmian functions to be included is signif-
icantly smaller when the total Hamiltonian is complex
rotated since it is only close to the nucleus that the to-
tal wavefunction has to be precisely described. In the
present case, the results have been obtained without com-
plex rotation of the total Hamiltonian; we have, however,
checked that the same results can also be obtained with
a complex rotation of the Hamiltonian.

(v) The hydrogen free-free dipole matrix elements have
a singular component. Because the radial Coulomb-
Sturmian functions simulate the Coulomb wave function
in some finite area only, all dipole matrix elements are
finite in this basis. By using a Coulomb-Sturmian ex-
pansion of the total wave function we therefore simulta-
neously introduce a prescription for the regularization of
the ft.ee-&ee dipole elements.

In the Coulomb-Sturmian basis, Eq. (1) transforms into
a set of first-order differential equations for the expansion
coefficients a„i (t). The matrix of the system is sparse
so we avoid the storage problem. On the other hand,
this system of equations is stiK To overcome this dif-
ficulty we use a diagonally implicit fourth-order Runge-
Kutta method [9] for the time propagation. At the end
of the propagation, we get the expansion coeKcients of
the wave function 4'(r, tg) in the Coulomb-Sturmian ba-
sis. The projection of this solution on the atomic basis
gives us the amplitudes bE, I . If the energy E is equal to
E = —1/2n, ~b~ i ~~ represents the probability for the
system to be in the hydrogenic bound state of quantum
numbers (n, l, m). If E; and E;+i are two consecutive
positive energies, ~b~, , i ~~ represents the probability
for the system to be in the continuum and to have the
energy E between E; and E,+i. Therefore, the electron
spectrum which is a probability density can be defined
as follows:

yP(E) ) J RI+g ~l~TTl~

III. RESULTS

In our calculations we studied the ionization of hydro-
gen atom from a state (n = 2, l = 1, m) by a field of cr+

polarization. In this paper, we restrict our analysis to
the case of large photon frequencies, namely, we chose
the laser frequency to be equal to u = 0.25, which cor-
responds to a photon energy large enough to bring the
electron high into the continuum. The pulse duration
is equal to 20 optical cycles (tg = 407r/u). The size of
the Coulomb-Sturmian basis is adjusted according to the
pulse peak intensity and varies &om N = 2500 for low
field intensities up to N = 14000 for superintense fields.
More precisely we use a set of functions S„"

&
where n

ranges up to 250 and t up to 5 in the simplest case; in
the extreme case, n ranges up to 500 and l up to 8.

Before describing our results for the ionization yields
and the electron energy spectra, let us stress that the
electric field experienced by an electron on a n = 2 orbit
is equal to E' = 0.0625 in atomic units. Since in our cal-
culations we study the ionization of the atom by electric
fields ranging &om 0 to 0.75, it is clear that in most of
the cases, the peak electric field will exceed the binding
field by a large factor.

The ionization probability from the (n = 2, l = 1, m =
—1) initial state is presented in Fig. 1(a). Initially, for
small electric fields, the ionization probability grows lin-

early with intensity; then it reaches its maximum for elec-
tric fields around 0.3. Clearly there is no sign of real sta-
bilization. in this case. By contrast, the behavior of the
ionization yield changes significantly when atomic hydro-
gen is initially in the (n = 2, l = 1,m = 0) state; as shown
in Fig. 1(b), the ionization yield reaches its maximum for
a smaller field. Moreover, it exhibits a clear stabilization
behavior for fields larger than 0.3. Even more interest-
ing is the behavior of the ionization yield when atomic
hydrogen is initially in the (n = 2, l = 1,m = 1) state;
in addition to the stabilization regime, which also occurs
for electric fields larger than 0.3, we observe in Fig. 1(c)
a stability window around E' = 0.1. At this stage it is in-

teresting to wonder to what extend the significant difFer-

ences observed in the ionization yields will also manifest
themselves in the electron energy spectra.

For moderately small electric fields (E = 0.0625), all
the spectra exhibit one well pronounced ATI peak (the
next ones being very small) independently on the az-
imuthal quantum number of the initial state; this is illus-
trated in Figs. 2—4. However, we observe a structure in

the first ATI peak in the case where atomic hydrogen is
ionized &om the (n = 2, l = 1, m, = 1) state. For higher
electric fields (Z = 0.125), more ATI peaks appear {see
Figs. 5—7) and we clearly notice the development of a very
rich structure in the first ATI peak [10] when again the
azimuthal quantum number of the initial state is I =- 1.
Our results for higher field intensities (F = 0.25) are pre-
sented in Figs. 8—10. First, we observe a broadening of
each ATI peak. Second, the ATI peak splitting, which

occurs at lower field intensity when the azimuthal quan-
tum number m of the initial state of atomic hydrogen is
equal to 1, starts to develop also when m, = 0. In the
case where m = 1 (see Fig. 10), each ATI peak splits
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FIG. 2. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, t = 1,m = —1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy ~ = 0.25 a.u. The peak electric field
is equal to E = 0.0625 a.u.

FIG. 4. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, t = 1, m = +1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy cu = 0.25 a.u. The peak electric field
is equal to E' = 0.0625 a.u.

[11];however, a simple second-order calculation gives al-
ready some qualitative estimate of the shifts. In the case
of a circularly polarized field, this quadratic shift strongly
depends on the value of the azimuthal quantum number
of each atomic state [12]. Our results for these shifts are
presented in Figs. 14(a), 15(a), and 16(a). We want to

point out once more that these results have only a qual-
itative character and are valid only for relatively small
electric Beld strength. Let us stress at this stage that
what is represented is the second-order contribution to
the shift of the A p term [see Eq. (1)]. Since the A~

term (within the dipole approximation) adds a constant
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FIG. 3. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, / = 1,m = 0) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy u = 0.25 a.u. The peak electric field
is equal to F = 0.0625 a.u.

ENERGY [a. u.j

FIG. 5. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, / = 1, m = —1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy u = 0.25 a.u. The peak electric field
is equal to F = 0.125 a.u.
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FIG. 6. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, l = 1, m = 0) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy u = 0.25 a.u. The peak electric field
is equal to E' = 0.125 a.u.

ENERGY [a. u.]
FIG. 8. Electron energy spectrum produced when atomic

hydrogen initially in the (n = 2, / = 1,m = —1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy ~ = 0.25 a.u. The peak electric fleld
is equal to E' = 0.25 a.u.

shift, we do not take it into account; this is consistent
with Eq. (1). In other words, our zero on the energy
scale is the continuum threshold.

The shifts of the atomic levels characterized by l = 1
and m = —1 [see Fig. 14(a)] are negative, but stay very
small even for very strong fields. By contrast, for m dif-

ferent from —1, the shifts become positive and all levels
cross even at moderately high Beld [13], as is shown in
Figs. 15(a) and 16(a). For comparison, energies of the
(n = 2, l = 1,m = +1) states obtained with the help
of the Floquet approach are given in Fig. 17. These re-
sults have been obtained by Potvtiege [19] and by his
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FIG. 7. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, 1 = 1, m = +1)state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy m = 0.25 a.u. The peak electric Seld
is equal to E = 0.125 a.u.

ENERGY [a.u.]

FIG. 9. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, / = 1, m = 0) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy ~ = 0.25 a.u. The peak electric Beld
is equal to E' = 0.25 a.u.
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FIG. 10. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, L = 1, m = +1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy ~ = 0.25 a.u. The peak electric field
is equal to E' = 0.25 a.u.

FIG. 12. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, / = 1, m = 0) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy (d = 0.25 a.u. The peak electric field
is equal to E' = 0.75 a.u.

courtesy we are permitted to present them in this paper.
For the strong electric field we observe the large depar-
ture from the second-order ac-Stark shift; however, for
the field strength smaller than 0.1 the agreement (even
quantitative) is remarkable; the m = 1 and m = 0 states
are shifted upward while m = —1 state is shifted down-
ward.

We expect that the differences observed in the behav-
ior of the shift of the atomic levels for increasing field in-
tensities have a strong in8uence on the dynamics of the
ionization process. When, for instance, two levels are
close together they might be strongly coupled by a two-
photon Raman transition (since the angular momentum
of all these levels is the same). This is clearly illustrated

12
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gj 3

z
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FIG. 11. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, l = 1, m = —1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy co = 0.25 a.u. The peak electric field
is equal to E' = 0.75 a.u.

FIG. 13. Electron energy spectrum produced when atomic
hydrogen initially in the (n = 2, l = 1, m = +1) state interacts
with a sine-square pulse of duration equal to 20 optical cycles
and single photon energy cu = 0.25 a.u. The peak electric field
is equal to E = 0.75 a.u.
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FIG. 14. (a) Energy of atomic hydrogen levels of angu-
lar quantum numbers equal to (I = 1,m = —1). Quadratic
ac-Stark shift resulting from the interaction with the circu-
larly polarized (o+ polarization) Iield of frequency io = 0.25
a.u. is taken into account. The different lines correspond
to the consecutive principal quantum numbers n = 2, 3, . . . .
(b) Population of atomic hydrogen levels of angular quantuxn
numbers equal to (/ = 1,m, = —1) after the interaction with
the circularly polarized (o+ polarization) sine-square pulse
of duration equal to 20 optical cycles, single photon energy
tu = 0.25 a.u. , and peak electric f][eld E' = 0.75 a.u. Initially
the total population was in the (n = 2, I = 1, m = —1) state.

FIG. 15. (a) Energy of atomic hydrogen levels of angu-
lar quantum numbers equal to (I = 1,m = 0). Quadratic
ac-Stark shift resulting from the interaction with the circu-
larly polarized (cr+ polarization) field of frequency &u = 0.25
a.u. is taken into account. The different lines correspond
to the consecutive principal quantum numbers n = 2, 3, . . . .
(b) Population of atomic hydrogen levels of angular quantum
numbers equal to (I = 1,m = 0) after the interaction with
the circularly polarized (o+ polarization) sine-square pulse
of duration equal to 20 optical cycles, single photon energy
cu = 0.25 a.u. , and peak electric Geld E' = 0.75 a.u. Initially
the total population was in the (n = 2, I = 1, m = 0) state.
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to the consecutive principal quantum numbers n = 2, 3, . . . .
(b) Population of atomic hydrogen levels of angular quantum
numbers equal to (I = 1,m, = +1) after the interaction with
the circularly polarized (o+ polarization) sine-square pu se
of duration equal to 20 optical cycles, single photon energy
cu = 0.25 a.u. , and peak electric field f = 0.75 a.u. Initially
the total population was in the ~&n = 2,= 2 t = 1 m = 11 state.

in Figs. 14(b), 15(b), and 16(b) where we show the pop-
ulations left in various atomic levels after the interaction
with the pulse, the peak electric field being in all three
cases fixed and equal to 0.75. When initially, the popu-

observe [see Fig. 14(b)] any significant transfer of pop-
ulation toward higher excited states. This is of course
expected since level separation increases with intensity.
When the azimuthal quantum number of the initial state
is equal to 0, level separation decreases with increasing
field; as a result, some population is transferred to the
nearest states [see Fig. 15(b)]. This efFect is even more
pronounced when the azimuthal quantum number of the

b.initial state is equal to 1, as is shown in Fig. 16
These results indicate that the occurrence of a stabi-

lization regime at high field intensity when the azimuthal
quan umuantum number m of the initial state is equal to 0 or 1
is a consequence of the formation of a coherent superpo-
sition of excited atomic levels of the same parity of the
initial state. A similar stabilization mechanism has been
proposed by Fedorov and Movsesian [14] and Parker and
Stroud [15]. This stabilization mechanism is expected to
be really efficient when the atom is initially in a high
lying Rydberg state. However, a recent calculation in
the case of a linearly polarized Geld has shown that it is
not necessarily true [16]. To our knowledge, the present
numerical simulation seems to e t e

~ ~

Brst one that con-
firms the importance of this stabilization process. At
erst sight, this is unexpected since in the present case,
the atom is initially in a low lying state. However, the
role of the shift of each atomic level is crucial here since,
for various field intensities, the separation of these levels
might become of the same order of magnitude as their
total energy wi, w il 'dth hich includes both the ionization
width and the pulse bandwidth. In our case, the fre-
quency bandwidth of the pulse is relatively large (of the
order of 0.002). However, we expect that for longer pulse,
a similar effect could occur provided that the initial state
is a higher excited state; this follows from our analysis of
the shift of the levels. Finally, according to the present
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discussion, it is not surprising to see that the stability
window [17] observed for m = +1 occurs at a value of
the electric field at which the (n = 2, I = 1,m = 1) state
crosses the (n = 3, t = 1, m = 1) state. Similarly, the
stabilization regime for m = 0 starts also for an electric
field in the vicinity of such a crossing.

In order to gain more insight into the dynamics, and in
particular to understand the origin of the multiple split-
ting of the ATI peaks, we study in the following a sim-

ple essential state model which includes only two bound
states (of the same parity) and only one continuum (of
opposite parity). Although very simple, the model de-
scribes the most important physical process involved,
namely, the Raman coupling of the two bound states via
the continuum. We expect that this model will give a
good qualitative description of the physics when the az-
imuthal quantum number m of the initial state is equal
to 0, but not when m = +1 since the number of states
which participate to the dynamics is much larger. Un-
der the above condition, the equations for the amplitudes
read

d . ( [f(t)]')—ai(t) = —i
l
~i+6i 2 l

ai(t)
dt ~2 )

—aE(t)d, f P(~, t)de,

electron energy spectrum will be quasisymmetric with re-
spect to the energy threshold. We therefore expect that
the height of the ATI peak will be reduced by a factor 2.

The formal integration of Eq. (9)
t

p(e, t) = — e" E(t') ~pgai(t') + ~pga2(t') dt'
7r

allows us to eliminate the continuous spectrum from
Eqs. (7) and (8). After the following substitution:

2 2
7l l2)

Eqs. (7) and (8) transform into a closed set of coupled
equations which may be written as follows:

d . , /6i—ai = —i ~i+~
ldt g(d2 )

(12)

—a2= —i ~2+~
l

——n'2
ldt (~2 )

(13)

6i, 62, pi, and p2 are the parameters of the model. The
ionization probability is equal to

a2(t) — &
l

(L)2 + 62
l
a2(t)

X(t)]'&
dt (d2 )

iE(f)dg f P(—e, t)de (8)

p = 1 —(lail'+ la21')

and the electron energy spectrum is defined as

(i4)

d—p(e) 't) = —Mp(e) t) —28 (t) [diai(t) + d2a2 (t)], (9)

where E(t) is the oscillating (with frequency ur) electric
field whose amplitude follows the sine-square envelope
given by Eq. (3); ai(t) and a2(t) are the amplitudes of
(n = 2, I = 1, m = 0) and (n = 3, I = 1, m = 0) states
of negative energies ui and (d2, respectively. p(e, t) is
the amplitude of positive energy state (e, l = 2, m = 1);
dq and d2 are the bound-free dipole matrix elements and
6i[Z(t)]2/u2 and 62[8(t)]2/(d2 are the quadratic ac-Stark
shifts of the bound states. Before proceeding with the
calculations, let us describe and discuss the main assump-
tions of our model.

(i) The bound-free dipole matrix elements di and d2
do not depend on the energy of the final state; this as-
sumption can only be justified for large kinetic energies
of the outgoing electron.

(ii) Only one continuum is included in these calcula-
tions; therefore, free-free transitions are neglected and
only the first ATI peak is described. Other peaks may
appear, but in this case they must correspond to higher-
order transitions within the same continuum.

(iii) Since the photon energy is much larger than the
ionization potential, the integration over e in Eqs. (7)
and (8) is extended from minus to plus infinity. As a
result, the electron energy spectrum extends from neg-
ative to positive energies. Because cuq and cu2 are very
small compared to the "typical" value of u (which is the
photon frequency) it follows from Eqs. (7)—(9) that the

The parameters of the model are fitted in such a way
that the model reproduces as well as possible the ion-
ization yield obtained by means of our numerical simu-
lation [see the dashed line in Fig. 1(b)]. It is important
to stress that the shifts 6if2/u and 6282/(d2 are of the
order of second-order ac-Stark shifts. At low field inten-
sities, pif 2 and p2E' may be interpreted as the widths of
the bound states involved in the model. This of course
is not true any more at very high field intensity.

Having fitted these parameters, let us now analyze the
electron energy spectra. Those are presented in Figs. 18—
20 for various values of the peak electric field, the az-
imuthal quantum number of the initial state being equal
to 0 as previously mentioned. First of all, as we expect,
only the first ATI peak is reproduced and as indicated
before, its height is smaller by almost a factor 2. Second,
there is a remarkable qualitative agreement between the
spectra calculated within the model and the numerical
simulation. We clearly see that for increasing peak field
strength, a fine structure of the first ATI peak develops.

At this stage, it is important to realize that two types
of mechanisms may lead to the occurrence of this multi-
peak structure. The first mechanism involves the inter-
ference of each bound state contribution to the amplitude
P(e, t) [see Eq. (10)]. The second mechanism involves
the interference between the ionization amplitude P pro-
duced at the same intensity on the rising and falling edge
of the pulse. Both mechanisms depend on the laser in-
tensity as well as the pulse duration. As it is shown in
[18], the distance between the subpeaks produced by the
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FIG. 18. Result of the model calculation for the electron
energy spectrum produced when atomic hydrogen initially in
the (n = 2, I = 1, m = 0) state interacts with a sine-square
pulse of duration equal to 20 optical cycles and single pho-
ton energy u = 0.25 a.u. The peak electric Beld is equal to
E' = 0.0625 a.u. For comparison, the corresponding result of
numerical simulation is shown.

FIG. 20. Result of the model calculation for the electron
energy spectrum produced when atomic hydrogen initially in
the (n = 2, I = 1,m = 0) state interacts with a sine-square
pulse of duration equal to 20 optical cycles and single pho-
ton energy u = 0.25 a.u. The peak electric Beld is equal to
E' = 0.75 a.u. For comparison, the corresponding result of
numerical simulation is shown.
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FIG. 19. Result of the model calculation for the electron
energy spectrum produced when atomic hydrogen initially in
the (n = 2, / = 1,m = 0) state interacts with a sine-square
pulse of duration equal to 20 optical cycles and single pho-
ton energy cu = 0.25 a.u. The peak electric field is equal to
F = 0.25 a.u. For comparison, the corresponding result of
numerical simulation is shown.

second mechanism is proportional to E' ~ . As a result, at
low field intensity, any kind of well pronounced multipeak
structure in the ATI spectrum will be hardly attributed
to this mechanism. Therefore, the comparison between
the electron energy spectra produced by the same pulsed
field interacting with atomic hydrogen initially in various
states (n = 2, I = 1, m = —1,0, +1) (see Figs. 5—7) rather
suggests that the splitting observed in Fig. 7 results from
the first mechanism.

V. CONCLUSIONS

We have studied the interaction of atomic hydrogen
initially in a (n = 2, I = 1, m = —1, 0, +1) state
with a circularly polarized high-frequency pulsed elec-
tric Beld. We have solved numerically the corresponding
time-dependent Schrodinger equation; this is carried out
first by expanding the total wave function in a basis of
Coulomb-Sturmian functions and then by propagating
the amplitudes in time by means of a high-order diago-
nally implicit method.

We have shown that both the ionization yields and
the electron energy spectra are very sensitive to the az-
imuthal quantum number of the initial state. When
m = 0, +1 atomic hydrogen stabilizes at high field in-

tensity while for m = —1 it ionizes almost completely.
Moreover, we have demonstrated that when m = 1 the
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first ATI peaks of the electron energy spectra are charac-
terized by a splitting into many subpeaks. This structure
is also present when m = 0, but for higher peak electric
fields.

The dependence of the ionization yields and the elec-
tron energy spectra on the azimuthal quantum number of
the initial state of atomic hydrogen has been explained in
terms of both the shift and the width of the atomic levels.
When m = +1, we have shown that the shift of each level
becomes very important, leading to many level crossings.
These crossings are responsible for the trapping a signifi-
cant part of the total population into a coherent superpo-
sition of various states close and of the same parity as the
initial state. At high field intensity, this superposition is
stable against ionization. This process, which actually
involves interferences between various ionization ampli-
tudes, leads to the multipeak structure observed in, the
ATI spectra. This stabilization mechanism has been pre-
viously proposed by Fedorov and Movsesian [14]. How-

ever, to our knowledge, no numerical simulation has so
far demonstrated that this mechanism is really effective
in producing a substantial stabilization of the atom, the
present physical conditions are the first encountered ones
in which it is the case.
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