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Relaxation, generation, and detection of Zeeman coherences
in an optically pumped heavy-alkali-metal vapor
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The relaxation and generation of multipole orientations in a heavy-alkali-metal vapor in the presence
of a weak static magnetic field are theoretically studied both for populations and for Zeeman coherences

by taking into account the effects on the evolution of the atomic density matrix of the relaxation process-
es (by alkali-atom —buffer-gas, alkali-atom —alkali-atom with spin exchange and alkali-atom-ce11-wall

collisions) and of the optical pumping with any light polarization and spectral distribution. The depen-
dence of the stationary-state multipole orientations on the pumping characteristic parameters is numeri-

cally analyzed. The detection process of these orientations is also studied.

PACS number(s): 32.80.Bx, 32.30.Bv

I. INTRODUCTION

Optical-pumping techniques have proved to be one of
the most useful methods for studying interactions be-
tween alkali-metal atoms and inert-gas molecules [I]. In
a typical Zeeman optical-pumping experiment, the
alkali-metal vapor is confined in a glass cell —as well as
the inert gas —in the presence of a weak magnetic field.
This system is excited by a resonant light in one of the
alkali-metal transitions. Depending on the polarization
and the spectral distribution of this light, it tends to keep
the system far from its natural equilibrium state. A num-
ber of relaxation mechanisms due to the interaction of
the alkali-meta1 atoms with their medium try to balance
that pumping process.

In most of the optical pumping experiments the infor-
mation about the atomic system is obtained through opti-
cal signals. In the presence of a weak magnetic field, the
optical macroscopic properties shown by a pumped
alkali-metal vapor depend in a direct way only on the
hyperfine, dipole, and quadrupole orientations induced in
such a vapor. The relaxation and generation of hyperfine
and dipole orientations have been thoroughly studied by
different authors. Nevertheless, the effects of the pres-
ence of the quadrupole orientation have been analyzed
only recently, both theoretically [2] and experimentally
[3], although those works deal only with populations and
consider very particular cases. However, there are
several situations where the above-mentioned theoretical
treatment is obviously insufficient. For instance, if the
pumping is transversal, or in those experiments in which
a radiofrequency external field connects the Zeeman sub-
levels of the alkali-metal atom, inducing coherences be-
tween them.

In this paper a complete theoretical study of the relax-
ation, generation, and detection of populations and
coherences in a Zeeman optical-pumping experiment is
presented. In Sec. II, we calculate the expressions of the
terms of the evolution equations of the atomic density-
matrix components using the irreducible formalism. The
normalization condition is discussed in Sec. III, and the

detection process is analyzed in Sec. IV. Finally, in Sec.
V several numerical results obtained from our theoretical
expressions are shown.

II. CONTRIBUTIONS TO THE EVOLUTION
OF THE ATOMIC DENSITY MATRIX

Under the typical conditions of optical pumping the
internal state of the atoms is generally well described by
the density matrix p, which obeys a master equation gen-
eralizing the 81och equations for spin —,. This equation

includes terms that reflect the effects of the pumping of
the different relaxation processes and also those due to
the presence of external electromagnetic fields. Owing to
the symmetry of the various interactions, it is usually
more convenient to expand the density matrix on a set of
irreducible tensors. A quite similar treatment can be ap-
plied to the photon polarization matrix by constructing
its irreducible components from the standard com-
ponents of the polarization vector. In this section we
determine the expressions in the irreducible formalism of
the terms, which have to be included in the evolution
equations of the density-matrix components.

A. Relaxation processes

(a) Alkali atom huger -gas co-llisions-The per.turbation
suffered by an alkali-metal atom in its fundamental state
when colliding with a buffer-gas molecule can be de-
scribed by the action of a random magnetic field that cou-
ples with the alkali-atom electronic spin without affecting
directly the nuclear part of its state. Taking into account
the isotropy of the alkali-atom-gas collision process, in-

troducing the conservation of the trace of p and in ab-
sence of hyperfine coherences, the relaxation equations
for the irreducible components of p are [4,5]

' K(p))(C) — g FQ X K(FI )
(,) 1

c F'

where
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p& = 4&—pp+( —1) + +"—,'(ZF+ 1)(2F'+1)

E F' F' I —,
' F

1 F F 1 F'
2L

(2)

and T, is the characteristic time constant of the relaxa-
tion by alkali-atom —gas collisions, which depend inverse-
ly on the buffer-gas pressure P,

1 P
c re& PC 0

(3)

where NL is Loschmidt's number, v„& is the mean relative
velocity among the colliding particles, Po is the atmos-
pheric pressure, and o, is the electronic disorientation
cross section for these types of collisions. As Eq. (2)

I

shows, the coeScients z R are q independent and,
whereas the relaxation of the k-pole orientations of the
two ground-state hyperfine levels is coupled, there is no
coupling among the relaxations of the different multipole
orders.

(b) Spin ex-change collisions A. s the interaction be-
tween two colliding alkali-metal atoms is much more
brief than the hyperfine period, it can be considered as
being only dependent on the orientation state of the two
electronic spins. However, after the collision, nuclear
and electronic spins become coupled again. Following
Ref. [6] and adopting the irreducible formalism in the
case of two identical colliding atoms, the atomic density-
matrix evolution equation under the only effect of the
spin-exchange collisions has the form

[p (F)] p (F) g( 1P[SqpS ]q(F) 2g [SppS S pSp] (F)(S )
P

—g( —1Y[S p+pS ] (F)(S ) (4)

S being the standard components of the electronic spin operator and where a cyclic permutation of the subindexes is
p~q~~

assumed in the summations.
In Eq. (4), Tz is the characteristic relaxation constant by spin-exchange collisions and depends inversely on the vapor

pressure of the alkali-metal atom in the same way as in Eq. (3),

1 P
T =NI- +s "gael PS 0

except for mrs, which denotes the relaxation cross section by these types of collisions.
Using the expansions of the density matrix and of the spin operator standard components as a function of the stan-

dard irreducible tensorial basis, we have obtained the explicit expressions for each one of the terms included in Eq. (4):

F I
[SppS ]q(F) g ( 1) 3(2F+1)(2F +1)

F' 2 '.
X g ( —1) ' (2K'+1)Q(2K+1)(2K~+1)

K&q2
K'q'

1 IC2 IC' K' 1 E 1 K2 K' K 1 K
p q2

—q' q' q qF' F F—' F F F'

F+I+——
[Spp+pS~]q{F)= g ( —1) ' Q-,'(2F+1)+{2K+1)(2K2+1)

K2q2

(6a)

X [(—1) +1] F, 1 F F F Pq'(F) .
2

(6b)

If (Sq) =OVq, Eq. (4} becomes equivalent to Eq. (1),
which described the relaxation by alkali-atom-gas col-
lisions. This is so because if the alkali-metal vapor has no
dipole orientation, it also presents isotropic conditions
with respect to the spin-exchange collisions. However, in
the presence of dipole orientation the coupled equations
system (4} becomes nonlinear and the calculations are

I

substantially complicated. On the contrary, depending
on the pumping approximation adopted, only a few of the
tensorial orders have to be considered in the summations.

The eSciency of the spin-exchange relaxation is very
different for populations and coherences in the presence
of a static magnetic field. %hereas the difference between
the hyperfine levels longitudinal orientations remains
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constant in time, as the Lande factors corresponding to
the ground-state hyperfine levels are opposite, transversal
orientations are quickly destroyed by spin-exchange col-
lisions. However, in some experiences this situation may
change. For instance, if the atom is radio-frequency
dressed, depending on the characteristics of the rf field,
the intrinsic evolution frequencies of both levels of
transversal orientations can coincide, and a resonant cir-
culation of Zeeman coherence between the hyperfine lev-
els becomes possible.

(c) Alkali atom-cel!—u)all -collisions If .uncoated walls
are used, the collisions of the alkali-metal atoms against
the cell walls after their diffusion through the buffer gas
are completely disorienting. Due to this fact, the local
mean value of any observable (Q(r)) evolves in the
course of time following the diffusion equation [7]:

(Q( ))=DV (Q( )),
where D is the diffusion coefficient, inversely dependent
on the buffer-gas pressure.

The complexity of the solution of this equation for
spherical symmetry [8] advises us to approximate the to-
tality of the relaxation modes to the dominant term (f)rst
diffusion mode approximation). In that case, and consid-
ering also the conservation of the total population, the
corresponding terms of the evolution equations of the
density-matrix irreducible components for E =0 become
identical to the ones included in (1). For KWO the evolu-
tion equations are given by

[pq(F)] "'= —
p (F), KWO,(d)

d

where Td is the characteristic relaxation time for what
concerns this process. In particular, for a spherical cell
with radius R,

1

R

where the coefficients include all the nonlinear contribu-
tions from the terms in (4).

B. Pumping process

Due to the proximity of the Larmor frequencies associ-
ated with the hyperfine levels of the ground and first ex-
cited states, the generation and circulation of Zeeman
coherences during the pumping process have to be con-
sidered. Hyperfine coherences instead need not be taken
into account, as the frequencies of the ground level and
first excited-state hyperfine transitions are notably
different. The optical excitation by the corresponding
hyperfine components is considered resonant and with

negligible spectral width.

1. Optica/-pumping cycle

The optical-pumping cycle may be broken up into
three independent stages entirely separated in time: (a)
the atom initially in the ground state is excited optically
and brought to the excited state by absorbing a photon;
(b) when the atom is in the excited state it has a certain
probability per unit time I E of returning to the ground
state by spontaneous emission; and (c) between these two

processes of interaction with the optical radiation the ex-

cited state experiences its intrinsic evolution under the
inAuence of the Zeeman effect.

In the following we are going to establish the evolution
equations that describe the various stages of the optical
pumping cycle for the components of the ground-state
and the excited-state density matrices.

(a) Optical excitation: Absorption process The a.ction
of the pumping light with polarization vector c on the
ground state is given by [10,11]

[p(F )]((&))= —g [C(F„Fg) Ap (a )Pp pg
F

+C'(F„F )p P~ A~~ (e)],
In practice, by using a properly dimensioned beam, the
average amplitude of the second most important relaxa-
tion mode vanishes [9] and, this way, systematic errors
introduced by the first diffusion mode approximation can
be avoided.

In order to easily handle the expressions that describe
the effects of the relaxation processes we can put together
in a single term those corresponding to the alkali-
atom —gas collisions, to the alkali-atom —cell-wall col-
lisions, and the linear terms of the spin-exchange col-
lisions, which are represented from now on by the
coefficients ~ P, so that

[ 'K(F) ](c) (d+) (st+) —~ F PK K(Fi )Pq Pq
F'

(10)

The nonlinear part of the spin-exchange collisions can be
expressed as

FKq

fppq(F)] '" = g NF'K'q'p ~ (F')p'.(F"),
F'K'q' F"]q"F"

where PF is the projector onto the multiplet F~. AF is

the absorption operator,

A~ (a) =e'dP~ ad, (13)

d is the transition electric dipole operator, and

3W (F„Fs)
C(F„F )=

2Id, , ' (14)

In Eq. (14) dJ J is the reduced matrix element of d be-
e g

tween the upper and lower fine levels and the constant

W~(F„F ) is the so-called pumping rate of the transition

F ~F, . In the case of an isolated transition,

8 2

W (F„Fg ) = I
d1 1 I'd 0 I (F„F ),

3hc

where I (F„F ) is the spectral intensity of the radiation

at the central frequency of the transition and dQ is the
solid angle subtended by the pumping beam.

The expression for the operator AF, as a function of
e
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the standard irreducible operators constructed from the
angular momenta F and F', is

AF (a)= g $ (a')Bx(F,F',F, )T (F,F') .
F F Kq

(16)

Xdp p dp F

In expression (16), P are the components of a second-
degree tensor constructed from the components of the
polarization vector a [12],whereas the coefficients

Fg Fg K
Bx(F,F',F, )=(—1) '

yield the dependence upon the line strengths and upon
the angular momenta involved.

The operator AF appears in Eq. (12) within a product
e

with the density matrix p, and accordingly a new decom-
position of this product into irreducible components is re-
quired. There results a mixing of the different k com-
ponents of the ground-state density matrix, except in the
case of weak atomic polarization or weak pumping light,
where p can be considered as proportional to Pg in the
first approximation. Including, as was mentioned before,
the possibility of the generation of Zeeman coherences,
but not of the hyperfine ones, the evolution of irreducible
components of the ground-state density matrix caused by
the absorption process is given by

K I

[p ~(F )]((i'I= —g Wp(F, F, ) g Biff f(F„Fs,a)p~f(Fs),
e K q

where in order to simplify subsequent expressions we have introduced a set of coefficients B, ', ', (F„Fs,a) defined by

B, I ~(F„F,a)=( —1) s ' ~
—,'(2F, +1)(2F +1) 'F

Fg F K)
XQ(2E +1)(2E'+1) g (

—1) 'P '(a) ' QZE(+'1
K)q(

K) K' Kg K) Kg K

. g g g. ~1 ~g
—

~g
(19)

[p(F, )]((~I=C(F„F )adp s'd,
and in the same way as in (12), for the sake of generality, the density matrix p may be polarized. Evaluating the factors
in (20), and introducing the set of coefficients B,F'x' ' (a), defined as

(20)

The pumping beam )polarization a through the tensor px(a) together with 3J and 6J coefficients selection rules deter-

mine which of the B, ', ',(F„F,a) are difFerent from zero, and which tensorial components can be generated in the

ground state by depopulation. Logically, no coupling appears among tensorial components of difFerent hyperfine levels.
The evolution equation of the excited-state density matrix, which describes the effect of the absorption process, is

J,
B ' ' '(a)=( —1) '3(2F, +1)(2Fs+1)Q(2I(., +1)(211.x+1) 'F

Kl Kl Kg K) K,
X g ( —1) '$q'(a)+2K(+1( —1)

K q &g &i 0e

expression (20) gives

1 J
1 F,

F, Fg 1

F, Fg 1

K, Kg K)

(21)

[pq' .)]('I= X ~p(Fs F. ) X B.i-'x'q'(&)pq'(Fs) . (22)
s aqg

I' K, qThe coefBcients S,p ~ q (a) comprise all the geometrical dependence and also the dependence upon the line strengths
E

of the absorption process. The tensor P (a) included in (21) yields again the dependence upon the pumping beam polar-
ization and determines which excited-state tensorial components can be generated by the optical excitation.

(b) Spontaneous emission process The evolution .of the excited-state density matrix is described by

[P, '(F, )](gI= —r,p, (F, ), (23)
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where

3(2J, +1)h

is the inverse of the mean lifetime of the excited level and 2qr /k is the transition wavelength.
On the other hand, the evolution of the ground-state density matrix can be expressed in the form

e

(24)

(25)

J, 1 Jg

F I F Je Jg
(26)

yielding

[p, '(F )]IbI = I & g B2(F,,F„K )p, '(F, ) .
Fe

(27)

We have introduced another set of coefficients
B2(Fs,F„K ) defined as

J,
B2(Fq,F„Kg)=2(2Fs+1) 'F

F,
X(2F, +1) 'F

1 J F +F +K +i
I F,

F, K

F 1
(28)

Whereas in the absorption process the pumping beam
with given propagation and polarization vectors intro-
duces privileged directions, and accordingly diverse sub-
levels absorb light in a different way, the emission process
is isotropic, having all the sublevels the same mean life-

where A (F„F ) is the Einstein coefficient of the
hyperfine transition.

Equation (25) can also be expressed as a function of the
same parameter I E by using the relation

dF F =(—1) ' ' Q(2F, +1)(2F +1)

time and giving rise to the q independence of the
coefficients Bz. As there is no coupling in (27) between
different tenso rial orders, only those tensorial corn-
ponents already present in the excited state may be gen-
erated in the ground state by spontaneous emission.

(c) Intrinsic euolution under the injluence of the exter
nal magnetic field The .excited-state density-matrix com-
ponents evolve in the form

(P'q'(F, )](,) = iq, toF—Pq'(F, ), (29)

where coF is the Larmor frequency of the excited level
e

F, . Although it has no direct influence on the coefficients
that characterize the pumping process, an analogous
term of intrinsic evolution of the ground-state density-
matrix tensorial components will have to be considered
when completing the total evolution equations system.

2. Pumping matrix

By adding the effects of the three stages of the pumping
process and taking into account that for heavy alkali-
metal atoms and under ordinary working conditions the
relaxation in the excited level can be considered as only
caused by the alkali-atom —gas collisions [13], the overall
evolution equation for the components of the excited-
state density matrix has the form

K
[P '(F, )]F+ ' = Q W (Fs,F, )B,F'K'q'(a)Pqg(F ) I EPq'(F, )

—g—',P 'Pq'(F,') tq, a)F P '(F—, ) .
FKq F

(30)

By using this expression, the dependence of the evolution of the ground-state components on the excited-state com-
ponents that reflects (27) can be eliminated. We differentiate two cases.

(a) Euolution of the ground state populati-ons Due to the sp. ontaneous emission characteristics, only the excited-state
population can contribute to the evolution of the ground-state populations. However, the excited-state populations
may have been generated from the ground-state coherences and therefore the evolution of ground-state populations and
coherences becomes coupled.

As it was pointed out in case (a) of Sec. II A the relaxation by alkali-atom —buffer-gas collisions of same-order popula-
tion belonging to the excited-state different hyperfine levels is coupled. The equations included in the equation system
(38) can then be uncoupled by diagonalizing the relaxation (2J, + 1)-dimension matrix constituted by the corresponding
coefficients defined in Eq. (2). If the change of basis associated with the diagonalization process is done, the now uncou-

pled evolution equations of the relaxation eigenobservables by alkali-atom —gas collisions ( V; ) [1) can be written as

(V;')=gC (iF, ) g W(F,F )B, ' ' (e)p (F ) —I (V;') —I;'(V;'), (31)

where
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( V;
' ) =y C» ( (', F, )( T, ' (F, ) ),

F

K
and I; ' are the relaxation-time constants of the eigenobservables.

Taking (31) into account, we can determine the stationary mean values of these eigenobservables,

(32)

C» (i F ) Q W (F F )B p» q (a)pq~(Fq)

(v ')= '

r, +r, ' (33)

In order to undo the change of basis we have to use the adjoint matrix of the one in (32). This way, we can obtain the
expression for the stationary values of the excited-state populations, and if they are substituted in (27), the evolution of
the ground-state populations caused by the spontaneous emission becomes

[p ~(F )]'~'= —g W (F,F, )gB, I (F„F,a)p ~(F )+I' gB (F,F„K )

g

Xg C» (i,F, )

q I

g C» (i,Fe') g W (F',F,')B, ; ', ,(a)p (((F')
e g gqg

r, +r, g
(34)

where any dependence upon excited-state components has been eliminated
(b) Euolurion of the ground-state Zeernan coherences We as.sume the secular approximation, that is, the coupling is

only possible between those components that evolve under the effect of the external magnetic field at the same frequen-
cies.

Due to the excited-state intrinsic evolution term it is more advisable to adopt the interaction representation with
respect to the Hamiltonian that includes the effect of the static magnetic field Ho, so that

~ ~ ( )+(e)—
[p '(F, )]()')+"= g W (F,F, )B,F'»' '(a)p '(F )e ' ' I Ep '(F, —)—g;P 'p '(F,')e

FgKgqg F

(35)

Each excited-state tensorial component is only coupled by collisions to itself so that no diagonalization is necessary,
and we directly obtain

[p
8

(F ) ](P ) + ( c)

FKq

FKq K ~qe F qg F ~

Wp(F, F, )B,~'»' '(a)p '(F )e
g g

F KI E+I,'P '+i[q, roz —
q co~ ]

(36)

If (36) is substituted in expression (27) once it has been transformed into the interaction representation,

() i [q (coF —coF )jt
[pq~(F&)]/I=I E QB2(F F K )p ~(F )e

F g
e

we can write

(37)

K
[p '(F )]I/I=r» yB2(F,F„K )

i[q (rdF Cd' )+(q Cd'——q'al, jf
W (F',F, )B, ; ', ', (a)p~f(Fs)e

F K
I E+F'P ~+i [qscoz —q'co, ]e 8 g

(38)

Adopting again the secular approximation, the summation in the second member is restricted enly to these values of
qg that verify qgcoF =qgco, . We finally obtain

I

[p '(F )]'~'= —g W (F,F, ) g B, , ',(F„F,a)p f(F )+I gB (F,F„K ) g
e g F F

(39)



J. A. VALLES AND J. M. ALVAREZ 50

In order to describe in a compact way the effects of the

pumping process on the ground-state tensorial com-
ponents we define a pumping matrix which comprises
both Eq. (34) and Eq. (39), so that we write

FKq

[p, (F)]= y', ,P~p~(F")+ y X~~, p~, '(F')p,'„(F")
F'K'q' F"Jq"
Fll tt

+ g A,Pg. p ~ (F') iq—coFp (F) .

I:6,«) ]"'= X ~~ st, pq (F') (40)
F'K'q'

F'K'q'

The characteristics of pumping processes can be de-
duced by observing which of the elements of the pumping
matrix are difFerent from zero and therefore which of the
tensorial components may be generated.

III. STATIONARY STATE

In order to obtain the stationary values of the ground-
state density-matrix tensorial components, the homo-
geneous system associated to the one formed by their evo-
lution equations has to be solved. If we group together
the terms analyzed in section II we can write the com-
plete evolution equations as

g +2F +1po(F )+g +2F, +lpo(F, )=1 . (42)

By using the same procedure as with the pumping pro-
cess, the terms depending on the excited-state com-
ponents can be eliminated from the normalization equa-
tion, yielding

This system has to be completed with a normalization
condition. If the intensity of the detection beam is con-
sidered as negligible, and hence it does not affect
significantly the stationary atom distribution, it seems
reasonable to adopt as a normalization condition that
which guarantees the conservation of the total population
inside the ground level and the excited levels involved in

the pumping process:

I I I I

g Co(i, F,') g W (Fs,F,') g B, ',~' '(e)p g(F, )

F p K

g +2Fs + ipo(Fs ) +g +2F, + 1 g Co(F„i)
I E+I,.

(43)

The polarization of the pumping beam, through the

coefficients B, g ~ ~(e), included in (43), determines
e

which ground-state tensorial components have a nonzero
contribution to the evolution of the po(F, ) and therefore
are present in the normalization equation.

BDq(Fg F e) B~IrI(F F a) (47)

where Wd (Fg,F, ) are the intensities of the hyperfine com-
ponents and the coefficients BD~(F,F„e) are geometri-
cal factors and, as could be expected, coincide with the
coefficients B, defined in (19) for K =q =0:

IV. LIGHT ABSORPTION BY OPTICALLY PUMPED
ALKALI-METAL VAPORS

EI ~ g +2F + 1po(F ),
F

(44)

and from (12),

bI ~ Tr —g [C(F„F )AF (e)PF pg+c. c. ]
F F

(45)

Taking this and expansion (16) into account, we obtain

AI ~ g Wd(F F ) QBnq(F F e)px(Fg)
F F

(46)

The variation that a light beam experiences when it
passes through an optically pumped alkali-metal vapor is
determined by the change in the number of atoms in the
ground state. This change is related to the instantaneous
values of the density-matrix components. Therefore, the
orientation state of the atom assembly can be studied by
analyzing the modifications produced on a resonant
crossing light beam.

The dependence of that variation can be expressed as

If we substitute the stationary values of the density-
matrix components in Eq. (46) we can separate the contri-
butions of each multipole order to the variations that the
detection beam experiences and therefore deduce the suit-
able orientation, polarization, and spectral distribution of
that detection beam in order to measure any tensorial
component, either populations or coherences.

V. NUMERICAL RESULTS

In order to show the applicability of the expressions
obtained in the previous sections, we are going to analyze
the dependences of the stationary values of the density-
matrix components by solving numerically their evolu-
tions (41) for a particular system. The alkali-metal atom
that we have selected is cesium, as it has been the one
mostly used in our laboratory. For our calculations we
assume the intermediate pumping approximation, that is,
we consider that the only multipole orientations that can
be generated by the pumping process are the hyperfine,
dipole, and quadrupole. In practice, this means that we
only have to include in our equations tensorial corn-
ponents with K ~ 2.
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A. Coef5cients involved in the evolution equations
for cesium

TABLE II. Spontaneous emission coefficients B2(Fg F Kg)
between the hyperfine levels of the cesium ground and first ex-

cited states.
Before calculating the stationary values of the density-

matrix components, several sets of coefficients that ap-
pear in the terms of the evolution equations have to be
computed for the particular case of cesium. The
coefficients FR, which are present in the alkali-
atom —gas-collision term are defined in Eq. (2). Their
values for the Cs ground state are given in Table I. From
these values, the relaxation-time constants of the eigenob-
servables by alkali-atom-gas collisions V; are

Fg

1

4

~7/4
11
48

&105/16
3
16

5&33/48

1 K(K+1) tt 1

T, 64 T,
(48)

TABLE I. Relaxation coefficients by alkali-atom-bufer-gas
collisions z~R K for the density-matrix components of the cesium
ground state.

F' FR K

16—3&7/16
—3&7/16

16

37

—3+105/64
—3&105/64

29

39
64—5v'33/64

—5&33/64
31

T, being the one in (3).
As was noted in case (b) of Sec II A when there is no

dipole orientation the relaxation coefficients by spin-
exchange collisions reduce to the ones by alkali-
atom —gas collisions (Table I). Nevertheless, their evalua-
tion in the presence of dipole orientation using (6a} and
(6b} becomes more difficult and in this case the large
number of nonzero coefficients would require an exten-
sive tabulation. The values obtained from our completely
general expressions coincide for cesium and, in the ab-
sence of coherences, with the particular ones tabulated
for the relaxation by spin exchange of the ( V~~) in Ref.
[21.

The values of the pumping matrix elements depend on
the polarization and spectral distribution of the pumping
light, so that they have to be calculated for each case and
cannot be tabulated. It is so with the sets of pumping
coefficients Bi g g(F„F,a) and B,F'tt'q'(a), which

8 8 8

where introduced in Eqs. (19) and (21) as they also de-
pend on the pumping beam polarization. Spontaneous
emission coefficients B2(F,F„Ks) for cesium, instead,
are given in Table II. The only previous results with
which we can compare, in this case, the values that we
obtain for all these sets of coefficients from our general

&7/4

12

&105/16
19
48

5&33/48
17
48

expressions are the ones in Ref. [2] that correspond to
cesium o*polarization pumping. In this particular case
we obtain equal values. In order to compute the pump-
ing matrix we also need to determine, as Eq. (38) shows,
the relaxation coefficients by alkali-atom-gas collisions
for the cesium excited states, which are involved in the
pumping process. If, for simplicity, we consider D,
pumping, the corresponding coefficients are also the same
as the ones in Table I. Lastly, as we pointed out in Sec.
IV„ the coefficients Bo (F,F„a) that take part in the
detection process coincided with the pumping

B, ', ', (F„Fg,a) coefficients when K =q =0, and there-
K q

8 8
fore depend also on the pumping beam polarization.

B. Stationary values of the density-matrix components

Our calculations have been realized for the system
Cs+20-Torr Ar. For the values of the characteristic
constants of the relaxation processes for the ground state,
we have assuined those given in Ref. [3]:
tr, = 104X 10 cm~; o s = 1.63 X 10 ' cm; Do =0.101
cm s '. The cesium vapor is contained in a spherical
cell (R =2.5 cm) at T=300 K. The density of cesium
atoms, pc, =5.54X10' atcm, has been evaluated by
using the Langmuir-Taylor formula [14]. In these condi-
tions the relaxation times by the relaxation processes are,
respectively, 1/T& =6.98, 1/T, =30.44, 1/T, =27.91.
In what concerns the excited level, we adopt for its relax-
ation cross section by Cs-Ar collisions the value

o, =5.6X10 ' cm [15] and for the mean lifetime of the
level I '=3.4X10 s [16],so that 1/T, =1.64X10 .

We are going to analyze first the generation of longitu-
dinal components (i.e., the populations of the levels), and
secondly we will consider that of the transversal com-
ponents (i.e., the Zeeman coherences).

(a) Longitudinal components In order to .show the
stationary-state situation, the equilibrium values of the
relaxation eigenobservables by alkah-atom-gas collisions
are usually used as they can be readily expressed in terms
of the angular observables [2]. In Fig. 1 the equilibrium
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FIG. 1. Equilibrium mean values of the relaxation eigenob-
servables by alkali-atom-gas collisions ( V; ) induced by pump-
ing with 0. -polarized white light vs pumping rate 8'~: (a)
(v' )xlo, (b) (v+), (ci (v' ), (d) (v', ), (e) (v' )&&10.

values of ( V, ), i =+,—, for pumping with o+-
polarized white light, are represented as a function of the
pumping rate. It can be seen how in this case of uniform
spectrum, the dipole orientation, which has been directly
generated, depends on the pumping rate in an approxi-
mately linear form, whereas even-K orientations, which
have been generated in second order, present a square-
law dependence.

Unlike for rubidium through isotropic pumping, for
cesium there is no possibility of efficient hyperfine purnp-
ing with classic spectral sources of light. However, if the
intensities of the two hyperfine lines i+ and i are unbal-
anced or if the intensities of the two components of each
of those lines are also unbalanced, a detectable hyperfine
orientation accompanied by alignment can be achieved.
As an example of this, in Fig. 2, the relative differences in
the equilibrium values ( V; ), when compared to those
plotted in Fig. 1, are represented versus the difference of
pumping rate between the two lines i+ and i for pump-
ing with 0. -polarized light and 8' =5. Hyperfine
pumping presents the strongest dependence on the
difference between pumping rates as it turns to be gen-
erated in first order, whereas dipole orientation shows rel-

atively little dependence. We have supposed the same in-

tensity for the two hyperfine components of each of the
lines; otherwise there is also a direct generation of quad-
rupole orientation.

(b) Transuersal components T. ransversal pumping can
induce Zeeman coherences. Their stationary-state values
are nonnegligible and present a resonant behavior near
zero magnetic field, the known Hanle effect. In Figs. 3(a)
and 3(b) we represent, respectively, the values of the real
and imaginary parts of the transversal components of the
density matrix, +p, induced by pumping with uniform

spectrum, transversal 0.+-polarized light, and 8' =3, as

a function of the ground-state Larmor frequency. The
population of the levels, due to their coupling with the
Zeeman coherences, also exhibit the so-called "zero-field
saturation resonance. " We represent in Fig. 4 the depen-
dences of the mean values ( V~),i =+, — on the
ground-state Larmor frequency for the same pumping pa-
rameters. Due to the pumping beam characteristics the
hyperfine and quadrupole orientation represented in Fig.
4 can only be generated through their coupling with the
coherences. That is why their values approach zero far
from the zero magnetic field.

In Fig. 5 the amplitudes of the resonances of the Zee-
man coherences represented in Figs. 3(a) and 3(b) are
plotted as a function of the pumping rate. It can be ob-
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FIG. 2. Relative differences in the equilibrium values of
( V, ) represented in Fig. 1 for W =5 vs the difFerence of
pumping rate between the hyperfine lines [ W~(i + )

—W~(i —
) ]:

(ai ( V ) /5, (b) ( V' ), (c) ( V' ), (d) ( V~ ), (e) ( V' ).

FIG. 3. (a) and (b) Real and imaginary parts, respectively, of
the transversal components of the atomic density matrix in-

duced by pumping with transversal o -polarized white light as
a function of the ground-state Larmor frequency [(a) lower lev-

el, (b) upper level]: (a),p', , (b),p2 X 10, (c) b pl, (d) q p2 & 10.
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FIG. 4. "Zero-field saturation resonances" experienced by
the equilibrium mean values of the relaxation eigenobservables

by alkali-atom-gas collisions & V, & induced by pumping with
transversal 0+-polarized white light vs the ground-state Larmor
frequency: (a) & V &, (b) & V+ &, (c) & V

served clearly how for these pumping beam characteris-
tics the lower level dipole coherence, directly generated,
tends to decrease for higher pumping rates, as the other
coherences that are generated from it in second order in-
crease.

We have analyzed the influence of the nonlinear term
in Eq. (41) by calculating the stationary mean values
without considering that term and using them as starting
values for a Newton-Rhaphson method. The nonlinear
term introduces no qualitative changes and after three or
four iterations the stationary mean values converge up to
lO-'.

C. Detection process

As it could be expected, the detection signals present a
strong dependence on the multipole character and on the
spectral uniformity of both the pumping and the detec-
tion beam. These dependences can be revealed by using
Eq. (46) to compute the changes experienced by the
detection beam intensity.

The multipole character of the detection beam can be
modified for instance by rotating its propagation direc-

FIG. 6. Detection signal and different multipole contribu-

tions to this signal as a function of the angle 8 between the
propagation direction of the o+-polarized detection beam and
the z axis defined by the static magnetic field. The pumping
beam is 0+ polarized with a strongly unbalanced spectrum:

(Fg 3~F 3) Wp(Fg 4~F 3) 4 Sp(Fg 3~F
4) $Vp(Fg 4~F 4) 6

tion. In Fig. 6 we represent the detection signal together
with the diferent multipole contributions to this signal
versus 0, the angle between the propagation direction of
the cr+-polarized detection beam and the z axis defined

by the static magnetic field. The pumping beam is cr+-
polarized and it has an unbalanced spectrum. We can ob-
serve that the largest contribution to the detection profile
is by far that of the dipole orientation, but there are non-
negligible contributions of both the hyperfine and the
quadrupole orientations. Whereas the hyperfine contri-
bution remains constant, the quadrupole goes from posi-
tive to negative values, being zero for cose= 1/v'3.

In Fig. 7 the dependence of the detection signal on the
spectrum uniformity of the pumping beam can be seen in
a case of presence of Zeeman coherences. Due to the
detection beam characteristics only the hyperfine orienta-
tion and the quadrupole coherences, but not the dipole or

1.2

0.8

0.003 g
0.4

0.002—

0.001—
CT

CL

-0.001—

-0 4

-0.8

-1.2

Total

I

-2 -1 5 -1 -05 0 05 1 15 2
Wp(Fg 4 ~ F 4) Wp(Fg 3 ~ F 3)

-0 ~ 002 I I I I I I I I
I

I I I I

5 10
Pumping rate (s ')

15

FIG. 5. Amplitudes of the Zeeman-coherences resonances
represented in Figs. 3(a) and 3(b) as a function of the pumping
rate: (a) &.p', &, (b) &.p,'&, (c) &,p', &, (d) &,p,'&.

FIG. '7. Dependence of the detection signal on the spectral
uniformity of the pumping beam. The pumping beam is o po-
larized and the intensities of the components of the hyperfine
lines are as in Fig. 6. We represent the detection signal
and the contributions to this signal as a function of the differ-
ence between $~(Fg =3—+F,=4)= W~(Fg =4—+F, =4) and
Wp(Fg =3~F,=3) = 8'p(Fg =4~F, =3).
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quadrupole orientation, can contribute to the detection
profile. We can see how these contributions change
strongly for unbalanced pumping beam spectra.

The dependence on the detection beam characteristics
of the detection profiles in situation of resonance of the
Zeeman coherences can also be analyzed. Figures 8(a)
and 8(b) show the detection profiles and the contributions
to these profiles from the populations and Zeeman coher-
ences, for two cases with the same o. +-polarized pumping
beam and where only the detection beam differs. It can
be seen how the signal shape may cha~ge completely. In
Fig. 8(a) the two-maxima signal results from the addition
of the one-maximum contributions of the coherences. In
Fig. 8(b) the signal has also two maxima, although they
are almost superposed. This shape is due to the contribu-
tion of the ~q~=2 coherence. For this polarization the
complex parts of the tensorial components /~2 of the

(a)
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I I I I I I I ~ I
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Ground state Larmor frequency (Hz)

detection beam have opposite signs so that the contribu-
tion of the complex parts of the p+2 coherences [see Fig.
3(b)] do not cancel and originate the two-maxima shape
of the ~q~ =2 coherence contribution to the total signal.
The hyperfine orientation keeps its contribution un-

changed as it is independent of the detection beam polar-
ization.

The contribution of a single coherence can be deter-
mined experimentally, by combining the profiles obtained
for two suitable detection beam polarizations. For in-
stance, the difference between the profile shown in Fig.
8(a) and the one for a transversal cr-polartzed detection
beam results to be proportional to the ~q =1 coherence
contribution. This happens because that contribution is
the only one which has the opposite sign when changing
in that way the polarization of the detection beam.
Another method to detect experimentally the contribu-
tion of a single coherence is the one described in Ref.
[17], where the atoms in a collimated Na atomic beam
are excited with two cw-laser beams. A proper combina-
tion of the two consecutive laser beam polarizations al-
lows a selective measurement of the ground-state coher-
ences by means of a polarization-dependent detection of
the excited-state emitted fluorescence at the second laser.
In Ref. [17] it is shown how the experimental profiles of
the total fluorescence signals and in particular those due
to a single coherence may present depending on the com-
bination of the polarizations, the one or two maxima
shapes similar to the ones that are plotted in Figs. 8(a)
and 8(b).

VI. CONCLUSIONS
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FIG. 8. (a) and (b) Detection signal and contributions of the
populations and Zeeman coherences to this signal as a function
of the ground-state Larmor frequency. The pumping beam is
transversal o.+ polarized with uniform spectrum and 8'~ =15.
The detection beams are, respectively, transversal o.+ polarized
and linearly polarized, propagating along the z axis and, with an
angle 0=54.74' between the polarization and the plane deter-
mined by the z axis and the propagation direction of the pump-
ing beam. Only the D, line was used for detection, and

JYd(Fg 3~F 4)/$Yd(Fg 3~F 3 ) =0.6. We plot the to-
tal signal ( ) and the contributions of the populations, po
( —- —.—-) and po ( ———), and of the coherences, ~q~ =1

In this work we present a complete theoretical study of
the relaxation, generation, and detection of multipole
orientations in an optically pumped heavy-alkali-metal
vapor. It means a generalization of previous partial stud-
ies that where limited only to longitudinal components
and to particular pumping and detection beam polariza-
tions. Therefore it can be used to model an optical
pumping experience for any polarization or spectral dis-
tribution of the pumping and the detection beams and it
allows us to make clear the dependences on the pumping
and detection beam parameters and on the static
magnetic-field amplitude of the equilibrium mean values
of longitudinal and transversal components and by means
of them on the detection profiles. The knowledge of these
dependences is especially important for those experiences
in cesium in which unbalanced spectrum lamps are used
in order to generate stronger atomic polarization or for
those experiences in which the quadrupole orientation be-
comes significant as its presence has been systematically
ignored when measuring the parameters that characterize
the relaxation of the hyperfine or dipole orientations,
which can be the cause of the notable dispersion in their
values that can be found in the bibliography. This study
is also intended as a basis for further theoretical studies
of experiences where the optically pumped atomic system
also interacts with external radio or hyperfrequency elec-
tromagnetic fields.
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