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Term energies are determined for the ground state and n = 2 singlet states of heliu~»ke ions

with nuclear charges in the range 4 & Z & 92. These calculations are based on the relativistic no-

pair Hamiltonian which includes both the Coulomb interaction and the retarded Breit interaction.
Single-particle wave functions are expanded in a B-spline basis constructed &om Dirac-Coulomb

orbitals restricted to a finite cavity. The Hamiltonian matrix is evaluated and Davidson's method

is used to determine the lowest few eigenenergies and eigenfunctions for each angular symmetry.
Quantum electrodynamic corrections are also calculated. We Snd good, but not precise, agreement

between theory and experiment for the Ko. x-ray energies. It is argued that high-precision x-ray
measurements for highly charged ions are needed to further test the theory.

PACS number(s): 31.10.+z, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Energy levels of two-electron ions have been the sub-

ject of intense investigation during the past two decades.
Accad, Pekeris, and Schiff [1] carried out important
benchmark calculations including relativistic, quantum
electrodynamic (/ED), and recoil corrections for the low-

lying states of light heliumlike ions using variational tech-
niques. Drake [2] performed extensive calculations of the
term values for the n = 1 and 2 states of heliumlike
ions in the range Z = 2—100 by combining variational
methods and the relativistic 1/Z expansion approach.
Drake's unified method accounts for electron correlations
precisely at low Z and includes the dominant relativis-
tic, /ED, and recoil corrections. Drake estimates that
the term values in the unified method are in error by
+0.2a Z a.u. due to the neglect of higher-order rel-
ativistic and /ED corrections. Discrepancies with the
unified method were found by Johnson and Sapirstein us-

ing relativistic many-body perturbation theory {MBPT)
for Z = 10—36 [3]. In fact, differences between the uni-

fied method and the relativistic MBPT energies for the
2sPo states were found to be two to three times higher
than Drake s estimate. Similar differences with the uni-
fied method have also been found for the experimentally
measured 2 Po-2 Si energy intervals [4,5] and for the
2 sPo 2Pi fine structur-e splittings [6,7].

Recently, we have developed a large-scale relativistic
configuration-interaction (CI) code for two-electron ions
[8]. This code is based on the relativistic no-pair Hamil-
tonian and makes use of finite basis sets constructed &om
B splines [9]. This CI code was used to calculate the en-

ergy levels of the n = 2 triplet states of heliumlike ions
for Z = 5—100 [8]. These calculations produced term en-
ergies in precise agreement with experiment throughout

the periodic table. Furthermore, our results are in very
good agreement with MBPT [3] and show systematic dis-
crepancies with the unified method

In this paper, we report relativistic CI calculations
for the ground state and n = 2 singlet states of heli-
umlike ions. These calculations were undertaken to pro-
vide accurate term energies of the singlet states of highly-
charged heliumlike ions and to shed light on possible sys-
tematic discrepancies between theory and experiment for
the Ko. x-ray energies noted by Beiersdorfer et aL [10].
As in Ref. [8), our calculations are based on the no-pair
Hamiltonian from /ED [11—13]. Two-electron basis func-
tions with fixed angular momentum J and parity x are
constructed from products of one-electron orbitals. The
one-electron orbitals are approximate solutions of the
Dirac equation for an electron in a Coulomb field con-
strained to a finite cavity [9]. The resulting single-particle
spectrum separates cleanly into positive- and negative-
energy branches. The one-electron basis functions used in
our work contain only positive-energy states as required
by the presence of positive-energy projection operators
in the no-pair Hamiltonian. The B-spline functions form
a complete basis set for functions that can be approxi-
mated by piecewise polynomials of a fixed degree. As a
result, correlation energy contributions from both bound
and continuum states are automatically included in our
CI calculations.

The Hamiltonian matrix is evaluated in the two-
electron basis and the variational principle is applied to
determine the eigenvalues and eigenvectors. The result-
ing Hamiltonian matrix is dense. In this work, the num-
ber of configurations used ranges &om a few hundred
to well over eight thousand. We use Davidson's method
[14,15] to obtain the first few solutions to these large
eigenvalue problems. The evaluation of the Hamiltonian
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matrix is computer intensive. Although we have devel-
oped efficient algorithms to calculate angular momentum
recoupling coefIicients and Coulomb and Breit integrals,
ten to twenty hours of CRAY-YMP supercomputer time
are still needed for each of the heliumlike ions considered
here. The evaluation of the retarded magnetic interac-
tion is particularly time consuming and its convergence
as a function of the highest angular momentum state is
rather slow for the 1 So ground state. Considerably more
efFort is spent in calculating the retarded Breit energies
for the singlet states than for the triplet states.

We have also calculated /ED corrections using the
method described in Ref. [16]. Contributions &om mass-
polarization effect are taken from Drake [2]. Our term
energies &om the no-pair Hamiltonian are in very good
agreement with the relativistic all-order many-body cal-
culations of Plante, Johnson, and Sapirstein [17] through-
out the isoelectronic sequence. For low-Z ions, the
present results are in good, but not precise, agreement
with Drake's unified method [2]. Deviations increase as
Z increases. They come partly from no-pair energies and
partly from /ED corrections.

For the Ko. x-ray energies, our results agree slightly
better with the multiconfiguration Dirac-Fock (MCDF)
predictions [18,19] and with experiment than the unified
method does. However, for Ge + and Kr +, all theo-
retical results lie slightly outside experimental uncertain-
ties. As differences in correlation energies between var-
ious calculations are small compared to those between
theory and experiment in this Z range, we believe that
residual discrepancies with experiment, if they can be
verified, must arise from uncalculated higher-order /ED
corrections.

II. THEORETICAL METHOD

Details of our relativistic CI method are given in
Ref. [8]. Here, we only outline the essential features.
Briefiy, the no-pair Hamiltonian is given in second-
quantized form as

H = ) e;a,' a; + —). (g;z„, + b;,„,) a,'. a,.a,ai, ,

'&ae

where t, is the ith energy eigenvalues of the single-
particle Dirac equation for an electron in the Coulomb
field of the nucleus and where g;~I,g and 6;~I,g are two-

particle matrix elements of the Coulomb and Breit in-

teractions, respectively. The operators a; and a,- are the
annihilation and creation operators for an electron with
quantum numbers i = (n, , r;, m, ), where n; is the princi-
pal quantum number, x; is the relativistic angular quan-
tum number related to the orbital angular momentum Z;

and total angular momentum j, by n, = (E, —j;)(2j;+1),
and m; is the projection quantum number of the total
angular momentum. Nuclear finite-size corrections are
taken into account by using a Fermi charge distribution
with parameters given by Johnson and Soff [20].

We expand the atomic state function 4JM in terms of
two-electron configuration state functions $1 as

@zM = ) Clpl .
I

(2)

Here, a single index I denotes the configuration state
function ctpl = P(ij) withi ( j, and CI are the expansion
coefficients. The expectation value of the Hamiltonian is
then given by

(@&MI&l @&M) = ) EICI + ).CICscVIIc .
I I,K

In Eq. (3), the single-particle energy EI is given by
El = e, + ez for the configuration I = (ij). The potential
energy matrix element VIK including Coulomb and re-
tarded Breit interactions for the configurations I = (ij)
and K = (kE) is defined in Ref. [8].

Applying the variational principle to the functional
constructed f'rom the Hamiltonian matrix and the wave-
function normalization condition with respect to the ex-
pansion coefficients leads to the CI equation

) (&l~llc + Vsse)CIc = ACs .
K

(4)

Here, the eigenvalues A are energies of various atomic
states and the eigenvectors Cl are corresponding expan-
sion coefIicients.

III. NUMERICAL CALCULATIONS

The B-spline basis functions for a Dirac electron in
a Coulomb field constrained to a cavity of finite radius
were obtained using the method by Johnson, Blundell,
and Sapirstein [9]. The radius of the cavity was chosen
so that the first few s and p states agree precisely with the
actual Dirac-Coulomb eigenvalues. A radius of 8 a.u. was
used for orbitals with I ( 3 for Nes+ and the radius was

gradually increased to 16 a.u. for / = 8 orbitals. A 1/2
scaling rule was used to determine the cavity radius for
other ions. The choice of the cavity radius is not critical.

In this work, 40 positive-energy B-spline orbitals are
generated for each of the s, p, d, . . . , states inside the cav-

ity. For the So states, we included orbitals with 8 = 0—8
in our calculations. For Z & 10, we used 25 orbitals
&om a complete set of 40 B-spline basis functions for
each of the angular symmetries in our CI expansion. For
higher-Z ions where correlation corrections are less im-

portant, a smaller basis set consisting of 25 s, 24 p, 23 d,
. . . , 22 l orbitals was used to reduce the computational
efFort. There are many more configurations for the Pq
state than for the So state and so the basis set is fur-

ther reduced to 23 s, 22 p, 21 d, . . . , 20 i orbitals. As
in Ref. [8], the use of these truncated B-spline basis sets
was found to have negligible efFect on the accuracy of
our calculations. Much larger basis sets are used here
as compared to Ref. [8], where we included only orbitals
with E & 5. These larger basis sets are required because
of the slow convergence of the partial wave sequences for
singlet states. Once the Hamiltonian matrix is set up,
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Davidson's method permits us to solve the large eigen-
value problem, which for the 2 Pi state contains more
than 8000 configurations, in a relatively short time.

As in our previous work on the n = 2 triplet states, the
full &equency-dependent magnetic and retardation cor-
rections were calculated using a two-step approach. First,
the ofF-diagonal Hamiltonian matrix was calculated with
the unretarded Breit operator while the diagonal matrix
was evaluated with the retarded Breit operator to obtain
the leading &equency-dependent Breit energies. Next,
the corrections b,B(ur) from the off-diagonal matrix el-
ements of the retarded Breit interaction were obtained
by repeating the CI calculation described above with a
smaller set of B-spline orbitals and subtracting this re-
sult from a similar calculation with the full, frequency-
symmetrized Breit operator [13]. For the Pi states, we
include up to the f orbitals in calculating the 6B(&u)
corrections. For the So states, we have to include states
with angular momentum up to 8 = 7 because of the slow
convergence of the Breit interaction, which decreases as
1/P asymptotically.

For the n = 2 to 1 transitions, /ED corrections are
significant. Drake carried out two-electron /ED calcula-
tions in his unified method [2] based on works of Araki
[21], Sucher [22], and Kabir and Salpeter [23] and in-
cluded all the known one- and two-electron terms. In the
MCDF calculations by Indelicato and co-workers [18,19],
the self-energy was estimated by the Welton method
[24]. In the present work, self-energy corrections for the
highly-charged ions are calculated using the scheme of
Cheng, Johnson, and Sapirstein [16] based on a method
by Brown, Laager, and Schafer [25]. The effects of screen-
ing and relaxation on the self-energy are included by us-
ing appropriate Dirac-Slater (DS) potentials for different
low-lying states in calculating one-electron self-energies.
Thus, for example, the self-energy corrections for 1828
states would be calculated as the sum of the 18 and 28
one-electron self-energies in a 1828 DS potential, whereas
the ground state correction would be calculated in the lsz
DS potential. Nuclear finite-size effects on the self-energy

are also included by using a»»iformly charged sphere nu-
clear model in the DS potential. The one-electron vac-
u»~ polarizations and higher-order /ED corrections are
taken from the tabulation by Joh»son and Soff [20]. Their
s»m is then adjusted by a screening factor taken as the ra-
tio of the expectation values of the Uehling potential be-
tween the Dirac-Fock and the corresponding hydrogenic
results calculated using Grant's MCDF code [26]. Total
/ED corrections are given by the s»m of the calculated
single-particle self-energies and the adjusted vacuum po-
larization and higher-order /ED contributions, weighted
by the fractional occupation number of each orbital as
obtained from the eigenvectors of the CI calculation. We
include /ED corrections from the 1s, 2s, and 2p orbitals
only, as contributions &om higher-n orbitals are found to
be quite negligible. Details of our /ED calculations will
be published elsewhere.

IV. RESULTS AND DISCUSSION

Typical results of the Coulomb and Breit energies for
Os+ as functions of the angular momentum of orbitals
included in the calculation are listed in Table I. In the
first two columns, the orbitals and number of configura-
tions included up to the indicated angular momentum are
listed. In the third to fifth columns of the first row, we
list under E~, Eg, and. E„~;,the Coulomb, Breit, and
no-pair energies, respectively, obtained by using nsn'8
basis states. The contribution Ec is found by restricting
the interaction to the Coulomb interaction and E„p „is
the value &om the full no-pair Hamiltonian. The contri-
bution E~ is the difference between the latter two terms.
From a perturbation theory point of view, E~ contains
contributions not only from the usual first-order Breit
corrections but also from higher-order Breit-Breit and
Coulomb-Breit interactions.

In the second to the ninth row, we list the increments
of the Coulomb, Breit, and no-pair energies obtained
by successively adding more angular momentum states.

TABLE I. Contributions to the ionization energy (a.u. ) of the ground state of heliumlike oxygen,
Z = 8. Ez is the Coulomb energy, E~ is the Breit energy, and E„~;, is the energy from
the no-pair Hamiltonian. The values listed in the second through ninth rows are the increments
obtained on adding successive configurations. The second column lists the number of con6guration
state functions included up to the indicated orbital symmetry.

Con6guration

8S

m7

dd

ff
99
hh
n
kk
ll

Tail

No. of
con6gurations

325
975

1625
2275
2925
3575
4225
4875
5525

-27.147405
-0.025393
-0.003454
-0.000922
-0.000340
-0.000152
-0.000078
-0.000043
-0.000026
-0.000060(3)

0.005825
-0.000460
-0.000098
-0.000043
-0.000024
-0.000015
-0.000010
-0.000007
-0.000005
-0.000029(4)

@no-psir

-27.141580
-0.025853
-0.003552
-0.000965
-0.000364
-0.000167
-0.000088
-0.000050
-0.000031
-0.000089(5)

Total -27.177873(3) 0.005134(4) -27.172739(5)
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TABLE II. Coulomb and Breit contributions to the ionization energies (a.u. ) of the ground and
n = 2 singlet states of heliumlike ions are given, together with frequency-dependent Breit corrections
AB(ur), mass-polarization corrections MP [2], and +ED corrections.

State
1'Sp
2 'Sp
2'R
2 Pg

Coulomb

-5.656547
-1.1850941
-1.1108574
-1.1751078

Breit

0.000468
0.0000678

-0.0000212
0.0000595

AB((u)
-0.000001
-0.0000001

MP

0.000026
0.0000021

0.0000000 0.0000378
0.0000000 -0.0000430

/ED
0.000089

-0.0000039
-0.0000348
-0.0000289

Total

-5.655965
-1.1850282
-1.1108756
-1 ' 1751202

1'Sp
2 'Sp

2 'P~

2 Pg

-14.412373
-3.2235592
-3.0939876
-3.2227454

0.001955
0.0003204

-0.0000857
0.0002562

-0.000004
-0.0000010
0.0000001

-0.0000001

0.000031
0.0000027
0.0000843

-0.0000905

0.000542
0.0000267

-0.0000891
-0.0000795

-14.409849
-3.2232104
-3.0940780
-3.2226593

1'Sp
2 'Sp

2 P
2 Pg

-27.177873
-6.2644199
-6.0772025
-6.2733594

0.005134
0.0008874

-0.0002114
0.0006735

-0.000016
-0.0000033
0.0000003

-0.0000006

0.000033
0.0000028
0.0001267

-0.0001330

0.001739
0.0001365

-0.0001730
-0.0001628

-27.170983
-6.2633965
-6.0774599
-6.2729823

10 1'Sp
2'S,
21P
2 P]

-43.961648
-10.310427
-10.062286
-10.328201

0.010657
0.001898

-0.000405
0.001384

-0.000032
-0.000006
0.000001

-0.000002

0.000033
0.000003
0.000169

-0.000175

0.004122
0.000383

-0.000288
-0.000283

-43.946868
-10.308149
-10.062809
-10.327277

14 1S

2 1S

2 Pg

-89.631016
-21.432270
-21.044501
-21.461025

0.031334
0.005768

-0.000936
0.003890

-0.000099
-0.000019
0.000007

-0.000010

0.000034
0.000003
0.000253

-0.000259

0.014435
0.001560

-0.000613
-0.000655

-89.585312
-21.424958
-21.045790
-21.458059

18 1'Sp
2 Sp
2 'P~

2 Pg

-151.54093
-36.625924
-36.053818
-36.651675

0.06926
0.012982

-0.001247
0.007870

-0.00020
-0.000038
0.000025

-0.000034

0.00003
0.000003
0.000297

-0.000302

0.03571
0.004146

-0.001041
-0.001233

-151.43613
-36.608831
-36.055784
-36.645374

22 1 Sp
2 Sp
2 P
2 Pl

-229.85580
-55.941848
-55 ~ 102216
-55.948091

0.12970
0.024610

-0.000273
0.012781

-0.00044
-0.000083
0.000063

-0.000083

0.00003
0.000003
0.000357

-0.000362

0.07245
0.008812

-0.001514
-0.002057

-229.65405
-55.908506
-55.103583
-55.937812

1'Sp
2 'Sp

2 P
2 Pg

1'Sp
2 1S
2'P
2 Pg

-275.22905
-67.165363
-66.144038
-67.156365

-324.78620
-79.444960
-78.198991
-79.417990

0.17009
0.032431
0.001169
0.015280

0.21813
0.041771
0.003480
0.017655

-0.00057
-0.000108
0.000090

-0.000118

-0.00088
-0.000168
0.000120

-0.000159

0.00003
0.000003
0.000378

-0.000384

0.00003
0.000003
0.000393

-0.000399

0.09810
0.012152

-0.001741
-0.002571

0.12939
0.016294

-0.001944
-0.003157

-274.96140
-67.120885
-66.144142
-67.144158

-324.43952
-79.387060
-78.196942
-79.404050

32 1 Sp
2 SQ

2 'P~
2 Pg

-498.91779
-122.73079
-120.45536
-122.64093

0.41566
0.08050
0.01678
0.02362

-0.00150
-0.00029
0.00022

-0.00031

0.00003
0.00000
0.00038

-0.00039

0.26335
0.03458

-0.00226
-0.00532

-498.24025
-122.61601
-120.44023
-122.62332

36

44

1 'Sp

2 'Sp

1 'Sp
2 'Sp

2 'Pi
2 Pg

-636.63910
-157.09004
-153.72059
-156.95589

-965.84261
-239.58755
-232.57025
-239.36587

0.59905
0.11678
0.03141
0.02683

1.11783
0.22066
0.07542
0.03283

-0.00231
-0.00046
0.00027

-0.00041

-0.00413
-0.00085
0.00033

-0.00066

0.00003
0.00000
0.00037

-0.00038

0.00003
0.00000
0.00037

-0.00037

0.39243
0.05279

-0.00204
-0.00703

0.77028
0.10835
0.00039

-0.01065

-635.64991
-156.92092
-153.69057
-156.93688

-963.95859
-239.25937
-232.49375
-239.34472
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TABLE II. (Continued)

Z State

54 1 SQ

2 'Sp

2 PI

Coulomb

-1483.6398
-370.26864
-354.51341
-369.93985

Breit

2.1210
0.42550
0.16155
0.04169

b,B(~)
-O.Q093
-0.00186
0.00020

-0.00089

MP

O.QQQO

0.00000
0.00037

-0.00038

/ED

1.5275
0.22632
0.01017

-0.01367

Total

-1480.00Q6
-369.61868
-354.34112
-369.91310

64 1 Sp -2129.9058
2 Sp -534.84762
2 Pg -502.93046
2 P1 -534.41785

3.6309
0.74164
0.28906
0.05254

-0.0157
-0.00321
-0.00025
-0.00108

0.0000
0.00000
0.00040

-0.00040

2.6989
0.42163
0.03333

-0.00916

-2123.5916
-533.68756
-502.60791
-534.37596

80 1 Sp -3472.3394
2 Sp -881.87825
2 Pg -797.15100
2 Pg -881.40670

7.4795
1.58226
0.59928
0.07170

-0.0271
-0.00576
-0.00202
-0.00120

0.0000
0.00001
0.00046

-0.00046

5.7982
0.99021
0.12184
0.04685

-3459.0888
-879.31154
-796.43145
-881.28981

92 1 Sp -4783.2993
2 Sp -1227.7330
2 Py -1065.4797
2 Pg -1227.7708

11.9683
2.6185
0.9336
0.0802

-0.0365
-0.0081
-0.0045
-0.0010

0.0000
0.0000
0.0005

-0.0005

9.5107
1.7486
0.2577
0.1901

-4761.8567
-1223.3740
-1064.2924
-1227.5020

These tabulated values are extrapolated to infinity by as-
suming that the iacrements decrease as a(E+ 1/2) " +
b(E+ 1/2) " i, where k = 4 for Ec and k = 2 for E~.
Comparing with the n = 2 triplet states where k = 6
and 4 for Ec and E~ [8], respectively, it is clear that the
convergence of the Coulomb and Breit energies as func-
tions of E are substantially slower for the singlet states
than for the triplet states. Results of the extrapolated
tails, including estimated extrapolation errors, are listed
in the tenth row. The final Coulomb, Breit, and no-pair
energies, including the extrapolated values, are listed in
the last row of the table. The computational procedure
described above was applied to all ions covered in this
study.

In Table II, we present the ionization energies of the
ground and n = 2 singlet states for sixteen heliumlike
ions with Z in the range 4 ( Z ( 92. Data for the
ls2psPi state, which decays to the ls~ iSo ground state
as the Kaz line, are also included. The values of mass-
polarization corrections are taken &om Drake [2]. For
Z & 18, we use the calculated QED corrections described
above. For Z ( 18, the accuracy of our QED results is
afFected by severe numerical cancellations in our method
for calculating electron self-energies. In this Z range, we
subtract our QED results from those of Drake [2] and
extrapolate the difFerence to low-Z ions. We then use
Drake's QED values, corrected for the extrapolated dif-

ference, for ions with Z & 18.
In general, our QED corrections are smaller than those

given by Drake. This difFerence is, in part, due to the way
in which the QED corrections are calculated, and, for
singlet states, to a difFerence in the definition of the QED
corrections. As pointed out by Blundell et aL [27], singlet
state energies calculated using the no-pair Hamiltonian
contain (aZ)s terms &om perturbation theory which are
given by

~E[(az) ]=
I

—-- l(~ (r»)),I 19

(3 2)
where

(I'S.
(b' (ri2)) = ~ 6/243m x (aZ) for 2iSo . (6)

&2/243 ) &2 P, )
For triplet states, (b (ri2)) = 0, and there are no corre-
sponding (aZ) terms. In Ref. [2], Drake includes these
(aZ) terms with his QED contributions. As these terms
actually come &om the no-pair Hamiltonian, they show
up in our CI energies but not in our QED corrections.
In subsequent comparisoas with Drake's results, these
terms are subtracted &om his QED data and added to
his correlation energies. This does not afFect Drake's to-
tal and transition energy results, but gives more appro-
priate QED and correlation energy comparisons between
our two calculations.

In Figs. 1—4, correlation energies &om the present work
are compared with those from the unified method [2] and
the all-order theory [17] for the 1 iSo, 2 So, 2 Pi, and
2 P~ states, respectively. Here, comparing correlation
energies is the same as coxnparing term energies without
QED corrections. Also shown are differences between the
present results and those of Drake's on QED corrections.
[Plante et al. [17] use Drake's QED data, corrected for
the (aZ) terms for the singlet states, in their all-order
calculations. ] In general, correlation energies from our CI
calculations are in very good agreement with those from
the all-order theory. Small discrepancies arise xnainly
from the ofF-diagonal frequency-dependent Breit correc-
tions, b B(~), which are included in this work but not in
Ref. [17]. Drake's correlation energies are in good agree-
ment with our present results for the ~' P~ states, but are
much higher than our CI values for the two So states.
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FIG. 1. The I So term energies (a.u. ) relative to the
present results scaled by (nZ) as functions of the atomic
number. Open diamonds are Drake's QED corrections. Open
circles and open triangles are Drake's term energies with and
without QED corrections, respectively. Solid triangles are
term energies without QED corrections from the all-order the-
ory.

At Z = 36, CI correlation energies differ kom Drake's
by Ao.4Z a.u. , where A = 1, 0.5, 0.05, and 0.15 for the
1 Sp, 2 Sp, 2 Pg, and 2 Pq states, respectively. These
differences are largely due to the neglect of higher-order
relativistic corrections in Drake's calculations which are
dominated by the leading o.4Z4 term.

Differences in correlation energies between the present
work and the unified method are, however, small com-
pared to difFerences in QED corrections between the two
calculations. Exceptions are the two So states at very
high Z, where differences in correlations energies, which
scale like (nZ), overtake differences in QED correc-
tions, which scale like (nZ)2's. Drake's QED corrections
are consistently larger than the present results. For the
ground state at Z = 18, 36, 54, and 92, our QED correc-
tions are smaller than Drake's values by 0.063, 0.39, 1.15,

FIG. 3. The 2 PI term energies (a.u. ) relative to the
present results scaled by (nZ) as functions of the atomic
number. Symbols are the same as in Fig. 1.

and 2.45 eV, respectively, while our correlation energies
are smaller than his values by 0.009, 0.14, 0.66, and 7.79
eV, respectively. At the same time, discrepancies on cor-
relation energies between our CI and the all-order theory
are smaller at 0.004, 0.06, 0.24, and 0.97 eV, respectively.

The calculations described above are used to give the
Ko;q and Ko.2 x-ray energies presented in Tables III and
IV, respectively. These x-ray energies are compared with
results &om the unified method [2], from the all-order
theory [17], from MCDF [18,19], and from experiment.
For low-Z ions, the present CI values differ from the uni-
ted method by less than 0.001 eV. As Z increases, the
differences become much more pronounced, For exam-
ple, at Z = 92, the CI value for Kcxq energy is larger
than the unified model by 8.4 eV, which is about 83 ppm
of the Ko.~ energy. The size of the discrepancy may be
observable using modern spectroscopic techniques.

In Table V, theoretical contributions to Ka x-ray en-

ergies from electron correlation and QED corrections rel-
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FIG. 2. The 2 So term energies (a.u. ) relative to the
present results scaled by (nZ) as functions of the atomic
number. Symbols are the same as in Fig. l.

Z

FIG. 4. The 2 Pq term energies (a.u. ) relative to the
present results scaled by (nZ) as functions of the atomic
number. Symbols are the same as in Fig. 1.
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TABLE III. Theoretical and experimental Kaq x-ray energies (eV) for heliumlike ions.

Z
4
6
8

10
14
18

22
24
26

32
36
44
54
64
80
92

Present work
123.6707
307.9038
573.9645
922.0072

1865.020
3139.617

4749.708
5682.149
6700.539

10280.39
13114.70
19904.07
30630.64
44109.08
72454.43

100615.7

Drake
123.6704
307.9026
573.9612
922.0006

1865.000
3139.577

4749.630
5682.048
6700.404

10280.14
13114.34
19903.40
30629.28
44106.64
72449.62

100607.3

All-order

573.9616
922.0009

1865.002
3139.582

4749.641
5682.064
6700.427

10280.19
13114.42
19903.57
30629.68
44107.49
72452.26

100614.0

MCDF'

3139.649

6700.603

13114.80

30630.76

Experiment

3139.55 (0.04)
3139.57 (0.25)
4749 74 .(0.17)
5682.32 (0.40)
6700.73 (0.20)
6700.90 (0.25)

10280.70 (0.22)
13115.31 (0.30)

30629.1 (3.5)

100626 (35)

Reference

2S]
29]
10]
10]
10]
3O]

31]
32]

[33]

[34]

Drake, Ref. [2].
Plante et al. , Ref. [17].

'Indelicato et al. , Ref. [18].

ative to results of the present work are shown for selected
iona. For the uni6ed method, discrepancies with our re-
sults are dominated by differences in @ED corrections at
low Z to mid Z and by differences in correlation ener-
gies at high Z. Discrepancies between our results and
the all-order theory, on the other hand, are due mainly
to differences in /ED corrections. In general, our results
agree well with the MCDF predictions [18,19] for Z = 18
to 54. For Xes +, for example, our CI value for the x-
ray energy is smaller than the MCDF result by only 0.12
eV. However, this is partly because of cancellation of dif-

ferences between contributions from correlation energies
and /ED corrections. For low-Z ions, MCDF correlation
energies are much higher than those &om other theories
considered here. It is nevertheless interesting to note that
the present /ED results are in very good agreement with
those &om MCDF which are obtained using a modifica-
tion of Welton's method [24].

In Figs. 5 and 6, the present Kn transition energies
are compared with other theories and with experiment.
The CI and MCDF results agree with measured values to
within experimental uncertainties except for Ar + and

TABLE IV. Theoretical and experimental Kaz x-ray energies (eV) for heliumlike lons.

z
4
6
8

10
14
18

22
24
26
32
36
44
54
64
80
92

Present work
121.9226
304.4051
568.6443
914.8109

1853.801
3123.574

4727.007
5654.938
6667.692

10220.98
13026.36
19717.65
30206.91
43244.63
70145.32
96174.5

Drake
121.9222
304.4035
568.6401
914.8029

1853.780
3123.530

4726.925
5654.831
6667.552

10220.73
13026.00
19716.98
30205.58
43242.29
70140.93
96167.2

All-orderb

568.6408
914.8034

1853.781
3123.534

4726.933
5654.843
6667.567

10220.76
13026.05
19717.10
30205.87
43242.92
70142.94
96172.5

MCDF'

3123.567

6667.669

13026.31

30206.53

Experiment

3123.52 (0.04)
3123.60 (0.25)

6667.50 (0.25)
10221.80 (0.35)
13026.8 (0.3)

30209.6 (3.5)

96171 (52)

Reference

[2s]
[29]

[3o]
[31]
[32]

[331

[34]

Drake, Ref. [2].
Plante et aL, Ref. [17].

'Indelicato, Ref. [19].



254 CHEN@, CHEN ~ JOHNSO 0 SAPIRSTEIN

~ABZ,E V
relative t( th P sent results

corrections

Ko, 1 line

Kr'4+ Xe"+
Theory Type Ka2 line

Kr + Xe + U90+

-6.3

Ar16+ U90+ A 16+
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-0.9
-8.4

-0.008
-0.036
-0.044

Drake -0.56
-0.77
1%33

-0.12
-0.25
-0.37
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QED
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-0.13
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-0.77
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0.032
0.000
0.032

0.15
-0.05
0.10

0.31
-0.19
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Drake, Ref. [2].
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