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The role played by the quadratic term of the interaction Hamiltonian —a A()-p+ +a® A*(#) in the ve-

locity gauge is examined in both the semiclassical and the quantized theory. It is shown that this term
cannot be eliminated in every case via standard contact transformations. For second-order processes a
special transformation is proposed that eliminates the noncontributing parts of A?(¢), and leads to the
right expressions for the Stark shift and the resonance-fluorescence probability. The generalization to
arbitrary order of these results is done in a fully quantized theory by resorting to diagram summation.
One finds that the contributions of diagrams displaying double-photon absorptions and emissions sum to
zero. The only effect of the quadratic term is to shift the whole atomic spectrum by an intensity-

dependent amount.

PACS number(s): 32.80.Rm, 32.60.+i

I. INTRODUCTION

The calculations in multiphoton theory and, more gen-
erally, those dealing with the interaction of intense radia-
tion fields with atomic systems, are done either in the
length gauge or in the velocity gauge. In the former case,
the interaction Hamiltonian is E(z)-r (in a.u.), E(?) being
the electric field, while in the last case the interaction is
expressed as

—a A(t)-p+(a?/2) AXt)

in terms of the vector potential A(z), the electron
momentum p, and the fine-structure constant a.

The choice of the gauge depends on the problem one
has to solve. In this respect, it has been shown [1] that
the difficulties arising in the calculation of the
continuum-continuum matrix elements of the shift opera-
tor were more easily solved in the velocity gauge. In this
case the A%(¢) term of the interaction Hamiltonian plays
a central role. The two parts of this Hamiltonian have
different effects on the states of the system atom-plus-
field. The A(z)-p changes both the electron and the pho-
ton states, while the A%(¢) term operators only on the
photon states. Since this term does not induce any atom-
ic transition, one could be tempted to eliminate it by
means of suitable transformations. One of them is dis-
cussed in Sec. II. By expressing the solution of the
transformed equation in the form of a perturbative series,
it is shown that the second-order approximation does not
lead to the right expression for the resonance-
fluorescence probability. This result proves that the arbi-
trary cancellation of the whole quadratic part of the in-
teraction is not justified. In contrast, we show that there
exists a transformation which eliminates most of the
terms displayed by the expansion of A%(t) and leads to
the exact formula for the second-ordr Stark shift and the
Kramers-Heisenberg formula.

In Sec. III the generalization of the discussion is done
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within a fully quantized calculation scheme. We evaluate
up to arbitrary orders the contributions of A%(¢). By us-
ing a conventional diagrammatic representation, we show
that this term provides three kinds of noncommuting in-
teractions taking place at the same vertex: (i) undistin-
guishable absorption emission and emission absorption of
a photon, (ii) absorption of two photons, and (iii) emission
of two photons. The first kind of process is treated on the
same footing as the free-field Hamiltonian. In contrast,
the double absorptions and the double emissions together
with the single-photon interactions coming from the
A(?)-p term reduce the problem arising from gauge
transform to that of performing the summation of a per-
turbation series involving four operators. To lowest or-
der, it was found [2-4] that, in multiphoton transitions,
the operator A%(t) could be discarded for processes in-
volving more than two net absorptions or emissions of
photons. But this result cannot be extended to higher-
order processes. The reason lies in the difficulty arising
from divergent irreducible diagrams, i.e,. the diagrams
accounting for transitions leaving the electron in its
atomic initial or final state. This problem has motivated
the present revisitation of multiphoton theory. In Sec. IV
the diagrams representing high-order interactions are
classified in four groups containing (i) only single-photon
interactions, (ii) only double-photon interactions, (iii) a
mixing of equal numbers of double absorptions and dou-
ble emissions, and (iv) a mixing of an unequal number of
double absorptions and double emissions. In doing so,
one finds that some diagrams belonging to the third and
the fourth class lead to divergences and provide overcon-
tributions. The difficulty is solved in Sec. (V) where it is
shown that among the double interactions supplied by
A%(t), only one can be straightforwardly treated. It
comes from absorption-emission processes occurring at
the same vertex, which produce an intensity-dependent
shift of the whole spectrum which may be included in the
free Hamiltonian. In Sec. (VI) nonperturbative expres-
sions of the shift operator R (z) depending only on p and
A(?) operators are derived.
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II. SEMICLASSICAL THEORY

A. Contact transformation

Before looking at the problems arising in the velocity
gauge within a fully quantized formalism, we examine the
effect of a contact transition [6,7] on the semiclassical
solution of the Schrodinger equation. The equation one
has to solve is (in a.u.)

(Ho(r)+H(r,t)+H,;'(1)]¥(r,1)=iW(r,1), (2.1a)
where
(r)—%2+V( ) (2.1b)
Hi(r,t)=—aA(t)p, (2.1¢)
H;'(t)= —A2< ), (2.1d)
172
A(t)=:i— % k ‘/;k (e +e ) (2.1e)

In Egs. (2.1), ¥V (r) is the static potential, €, is the photon
polarization vector in the kth mode corresponding to en-
ergy oy, and F, is the flux corresponding to a single pho-
ton (F=nF,).

We transform the state vector according to

ton
—i ["H (e g
N W(r,t) .

Y(r,t)=e (2.2)
The state W(r,?) is the solution of the transformed equa-
tion

[Ho()+Hj(r,)]1¥(r,0)=i¥(r,1) , 2.3)
which is obtained by using the independence property of
the vector potential with respect to the space variables.

—iHylt—1")

W(r,1)=ad( "Hie, (1)

t
r,t)—if dt'e
0

t t —iHy(t—1") -
—[lar [Tdrre T UH(r e T
0 0

Ao gt 1)+ -
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Equation (2.3) can be written in the interaction picture
as

H,(r,n)%(r,0)=iV¥(r,1) , (2.4)
where

- _ I'HOI‘/\

Y(r,t)= Y(r,?) , (2.5a)

Hie,n=e"'Hi(r,ne " (2.5b)
The solution of Eq. (2.4) is easily found to be

— t—, —_

W(r,)=(r) =i [ ‘Hj(r,1"\¥(r,1")dr’ (2.6)

The state ®(r) is the solution of the Schrodinger equation
in the absence of the radiation field. Due to Egs. (2.2)
and (2.5), the rate of the system atom plus field is ob-
tained from the integral equation

iH,(t—

W(r,1)=e W0 cb(r,z)—ifo’e~ o,

) Wi

XW(r,t")dt J , 2.7)
where
d(r,1)=P(r)e # (2.8a)
and
= [ B}t (2.8b)

In Eq. (2.7) the effect of the quadratic term is to intro-
duce a phase factor which can be dropped without
affecting the value of the probability. The state W(r,?)
can be expressed in the form of a perturbative series by
iterating Eq. (2.7):

(2.9

To check the relevance of the transformation of Eq. (2.2), we look at the resonance fluorescence. We calculate the prob-
ability for the absorption of a photon in the mode.k and the emission of a photon in the mode k’. To this end, we con-
sider the third term of Eq. (2.9) which displays two electron-field interactions. It is the only contribution to the second-
order process we are concerned with.

By using Egs. (2.1), the probability amplitude for the second-order absorption-emission process of Eq. (2.9) can be
written as

o, —w, —w, )t

g

l((o[+o)k, —w; )t’e

Fy
dr' ["dr(e )ri(€kP)ig
Fy \/a) W zl'f f kP

+(Ek'p)fi(€k’.p)ige

MP(1)=

1'(wf*wk —w; )t’ei(wi+mk, T, i

(2.10)
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The probability per unit time which is obtained after lit-
tle algebra reads

F
p= !
8 Fo

; 0, —0; t o

[(ek"P)ﬁ(sk'P)ig

2
+ (Ek'P)ﬁ(Ek"P)ig

W, — 0

I's i @

Xd(wf—w, top—o) . (2.11)
In comparison with the well-know formula of Kramers
and Heisenberg [8], we see that the expression of Eq.
(2.11) holds when the initial and the final states are
different. In the case where f =g, the lack of any contri-
bution coming from the A*(¢) term leads to a wrong re-
sult. This is the consequence of the transformation of Eq.
(2.2) which is not appropriate.

B. Modified contact transformation

In this section we consider another transformation
which enables us to eliminate the noncontributing part of
A%(1) but preserves the right expression of the Kramers-
Heisenberg formula and that of the second-order Stark
shift calculated in the velocity gauge. In combining Eqgs.
(2.1d) and (2.1e), one finds that H;'(¢) can be written as

i

Ve, 0)=(r,)—i [dre "

t.,rt,., —iHyt—1) 1 (2)( 41
— +
fodt fo dt"e [H;(t')+H?(t)]e

where, for brevity the space dependence of the operators
has not been written explicitly.

In Eq. (2.16) the solution W¥(r,¢) is determined up to the
phase factor displayed in Eq. (2.14), i.e.,

exp l—ifotdt’H}”(t’)

The difference between the expansions of Egs. (2.9) and
(2.16) is the presence of H|*(t) in the latter. As a result
of straightforward algebra, one finds that the probability
per unit time for the absorption of a photon in the mode
k and the emission of a photon in the mode £’ by a bound
electron which makes a transition from the state |g ) to

the state | f ) is

F, 2T

Pj(r,):————
& FO \/a)k(ok:

Ek 'sk'8fg

(Ek"P)ﬁ(Ek 'P)ig
T 0wt
2
4 (& P)si(€ Py
(Ug _w,' _a)k:

Xof—w, top—wy), (2.17)

—iH ('~
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Hy'(t)=H{"(t)+H®(1) , (2.12)
where
(1) _Fk €k
H; (t)—F—O *J[COS(Zwkt)-i—l]
g2,
+—[cos(2w;.t)+1]
Cl)k'
€€y
+2 cos[(@y T wy)t] (2.13a)
a)ka)k:
and
2F, €, -g;
H}Z)(t)=—1——k k cos[wy —wy)t] . (2.13b)
FO \/wkwk:

To solve Eq. (2.1a), we transform the wave vector accord-
ing to

L D
[arH V)~

W(r,t)=e o V(r,1), (2.14)

where W(r,?) is the solution of the transformed equation

[Ho(r)+H}(r,t)+HP () W(r,0)=i¥(r,t) . (2.15)

By following the same procedure as the one which led to
Eq. (2.7), one finds that W(r,?) can be expressed in the
form of the following perturbation series:

[Hj(t")+HP(t'))®(r,t")

CH e+ HP @)@+ - (2.16)

[
where &, is the Kronecker symbol.

By comparison with Eq. (2.11), one sees that the purely
field-independent term is restored. Therefore, the expan-
sion of Eq. (2.16) provides the right expression for the
transition rate while the noncontributing parts of A%(t)
are eliminated by the transformation of Eq. (2.14) in the
form of a phase factor. We note that the parts of A%(t)
which are eliminated by the transformation are charac-
terized by oscillation frequencies which are the sum and
twice the frequencies of each mode. The remaining con-
tribution occurring in the expansion (2.16) is a low-
frequency term which becomes independent of the fre-
quency when k —k'.

We have checked the rightness of the expansion in the
case of a well-known second-order process. In semiclassi-
cal theory, many transformations like those of Eq. (2.2)
or Eq. (2.14) can be done. Their effect is to put some
terms of the Hamiltonian into a phase factor which is
canceled by taking the square of the transition amplitude.
Such a procedure is fully justified if one knows that the
terms involved do not bring any contribution, but it is
not always the case. The example discussed in this sec-
tion shows that there exists a transformation where the
low-frequency contribution of the A?%(¢) plays an essen-
tial role while the high-frequency ones can be discarded.
From this particular second-order process, one sees that
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it is not always justified to ignore the quadratic term of
the interaction Hamiltonian as is often done in the litera-
ture. The problem we must solve now concerns the gen-
eralization of the preceding discussion to processes of ar-
bitrary orders provided by the series (2.16). More pre-
cisely, we have to examine to what extent the high-
frequency contributions can be neglected in terms of arbi-
trary orders. To this end, we resort to a fully quantized
calculation scheme where the interactions at frequencies
20y, 20, and w; + o, correspond to simultaneous ab-
sorptions and emissions of two photons of the same mode
and of two different modes.

III. QUANTIZED THEORY

In this section we consider a quantized monomode ra-
diation field. The formalism of the resolvent operator is
adopted and extensive use of the diagrammatic represen-
tation is made. The quantized energy which appears in
the expression of the free Hamiltonian H of the system
precludes the commutation of A or A? with H,. Thus,
all the diagrams are topologically different. In the
Schrodinger picture, the Hamiltonian of the system atom
plus field is (in a.u.)

—d J— . a_z 2
H=Hy—aA-p+—A",

3.1
5 (3.1)
where
Ho=—dv- L1l tataah (3.2)
0 2 ro 2 |
and
1/2
I
A=L1 2L (eatetat). (3.3)
a o IO

In Eq. (3.3), I, is the intensity (in W/cm?) correspond-
ing to one photon, i.e., I =nl;

I,-1.404X 10" W/cm? ,

a and a' are the destruction and the creation operators of
a photon of energy w, respectively; and ¢ is the polariza-
tion vector of the field. For brevity, the time and the spa-
tial dependences of the operators will not be written ex-
plicitly. Substitution of A as given by Eq. (2.3) into Eq.
(3.1) gives the different components of the Hamiltonian
explicitly. One has

H=H,+H, , (3.4a)
H,=K +K +V +Vvi+w +wt, (3.4b)
where
172
I
vo=rrr=—2L || epa, (3.5)
o |1
I
K =K== "tas", (3.5b)
20w° 1
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(3.5¢)

In Egs. (3.5), V™ are the single-photon interactions (ab-
sorptions or emissions), while K * and W are the opera-
tors corresponding to processes where two photons
simultaneously interact with the electron. Thus, K = and
K" account indifferently for the absorption-emission or
the emission-absorption of a photon; W~ and W™ corre-
spond to a double-photon absorption and emission, re-
spectively. We note that K* and W* are the quantum
operators corresponding to H{?(¢) and H{'(t) of Egs.
(2.13), respectively.
By defining K =K © +K ~, we note that

I

1 ¥
K=— a,a (3.6)
2 Iowz[ ]+

is of the same form as that of the free radiation field. By
including K into H,, we define the intensity-dependent
Hamiltonian

,_ 1,1
HO——§V2—7+5

o+— [[a,a’], . 3D

Iow

Equation (3.7) shows that the terms aa'+a'a of A? ac-
counting for the absorption and the emission of a photon
at the same vertex simply produce an intensity-dependent
shift of the whole spectrum of the atom. Such a shift is
taken into account by using H instead of H,.

The well-known formalism of the resolvent operator is
used here and will not be repeated. The readers can look
them up in the literature [9,10]. One defines the resolvent
operator G'(z) as

1

GI(Z):z—H—f)-H,'— , (3.8)
where H g is given by Eq. (3.7) and
H=V +Vi+w +w™". (3.9)
By expanding G'(z) with respect to H;, one has
G'(z)=Gy(2)+Gy(z)H;G(2)
+Gy(2)H;Gy(2)H;Gy(2)+ - - -, (3.10)
with
G(z)=—1 (3.11)

z—H,

The serial expression of G'(z) can be put into the follow-
ing compact form:

G'(z)=Gy(z2)+Gy(2)S'(2)Gy(2) , (3.12)

where the operator S'(z) is expressed in a power series of
the interaction as

S"(z)=H;+H|Gy(2)H] +H;G(2)H;Gy(2)H;+ - - - .
(3.13)
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The difference between S’(z) and the shift operator R (z)
of the standard resolvent theory lies in the fact that no
state is excluded from the basis involved by the represen-
tation of the Green functions Gg(z).

The study of multiphoton processes requires the
knowledge of the diagonal and the nondiagonal matrix
elements of S'(z) [11]. To warrant the relevance of the
theory at high intensity, nonperturbative expressions of
the matrix elements of this operator must be derived
from Eq. (3.13) and then calculated to all orders in the in-
tensity parameter. To this end, one must sum the whole
perturbation series of Eq. (3.13). The expressions thus
obtained display continued fractions involving, for linear-
ly polarized light, the four interaction operators of Eq.
(3.14). They hold at arbitrary high intensity provided
that enough iterations of the continued fractions are tak-
en into account.

IV. DIAGRAMMATIC REPRESENTATION

A. Classification of the diagrams

We discuss the procedure of summation by considering
the diagonal part of S’(z). If one substitutes H; as given
by Eq. (3.9) into Eq. (3.13), we are led to a perturbation
series involving four noncommuting operators. They ac-
count for all the possible combinations of single- and/or
double-photon absorptions and emissions so that the
number of absorptions is equal to the number of emis-
sions. The summation of such a series is made easier by
representing diagrammatically the processes we are con-
cerned with. As is shown in Fig. 1, the photons corre-
spond to horizontal lines which meet the vertical lines at
the vertices. The absorbed (emitted) photons are
represented by incoming (outgoing) lines at the left (right)
side of the vertices. The double vertical lines represent
the electron propagator built up from the eigenenergies
of H;. The analytical expression of ordered operators
can be illustrated by means of diagrams like those of Fig.
2 which are read upwards.

w‘;> w*s<

FIG. 1. Correspondence between the operators occurring in
the formulas and the symbols used in the diagrammatic repre-
sentation.

2463

+

@

|

(b)

FIG. 2. (a) Diagrams representing second- and fourth-order
contributions to the shift of an atomic level involving only
single-photon interactions. (b) Fourth- and eighth-order
forward-scattering diagrams involving double absorptions and
emissions.

It is useful to adopt the following definitions concern-
ing the topology of diagrams: (i) the forward scattering
diagrams [12] are those displaying the same number of
absorptions and emissions of photons between the same
initial and final states; (ii) the reducible diagrams are
those which can be split, at least, into two parts, one of
them being a forward-scattering diagram, and (iii) to each
direct diagram, there corresponds a mirror diagram ob-
tained by interchanging the absorption and the emission
lines. For brevity, only forward-scattering diagrams, as
illustrated in Figs. 2 and 3, are considered in our analysis.
In doing so, we do not restrict the generality of our re-
sults since the same discussion holds for processes involv-
ing the net absorption or emission of one or several pho-
tons and leads to the same conclusion.

Each diagram belongs to one of the four classes
displayed in Figs. 2 and 3. The diagrams 2(a) and 2(b)
contain only single and double interactions with equal
and unequal numbers of double absorptions and double
emissions, respectively. We discard the diagrams 2(a)
from our discussion because they are identical to those
encountered in the length gauge. Such diagrams have
been studied in detail in previous accounts [11]. The only
difference is that the energies of the electron lines are
shifted by the operator K. For each class, the number of
diagrams can be found in Table I up to eighth order.
Apart from the class 2(a) where the number of diagrams
of order 2k is given by the binomial coefficient (%), it is
difficult to set up a general rule for the other classes.
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FIG. 3. (a) Sixth- and tenth-order corrections to a level shift
involving an equal number of double absorptions and emissions.
(b) Same as (a) except that the double absorptions and the
double- photon emissions are unequal in number.

B. Calculation of the diagrams

The diagrams corresponding to the four classes previ-
ously mentioned are calculated order by order. The value
of the diagrams belonging to the same class is obtained
up to a common factor. In this way one sees what classes
sum to zero and must be discarded. As was previously
noted, the diagrams 2(a) are topologically identical to the
corresponding diagrams in the length gauge. Therefore,
the resulting resummed expression are straightforwardly
derived from the preceding ones by shifting the energies
of the continued fractions by the quiver energy K.

The diagrams 2(b) are obtained from the diagrams 2(a)
by replacing the single interactions by double-photon ab-
sorptions and emissions. The number of diagrams of or-
der 4k is also given by the binomial coefficient (3*). This

TABLE 1. The number of topologically different diagrams of
second-, fourth-, sixth- and eighth-order contained in the classes
displayed in Figs. 2(a), 2(b), 3(a), and 3(b).

Class
Order 2(a) 2(b) 3(a) 3(b) Total
2 2 0 0 0 2
4 6 2 0 6 14
6 20 0 24 60 104
8 70 6 180 210 466
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number comes from the contribution of 1 ( k) pairs of dia-
grams (direct diagram and its mirror). After a little alge-
bra, one finds that the contribution of any direct diagram
is given, up to a constant factor, by (1/2w)* ~!, while
that of the corresponding mirror diagrams is
—(1/2w)* "', Therefore, all the graphs 2(b) of order 4k
sum to zero.

The reducible diagrams which appear in the ensemble
of Fig. 3 lead to an overestimation of the sum. For exam-
ple, the first and the fourth diagrams of Fig. 3(a) are to-
pologically different from each other and their contribu-
tions, calculated for the state |g ), are

(€plgi(Eply

=1 4.1
o 2 Caet mE, to—E,+7 ¥
and
(E'p)gi(e'p)ig
, =1 , 4.1b
"eri)z (E;, +o—E;+n)n)—20+n7) (4.16)
respectively.

Obviously, the quantities of Egs. (4.1) are equal and
counted twice. The origin of this overestimation can be
found when one considers the product of the field opera-
tors. The sequence of the creation and destruction opera-

. Tt ¥
tors corresponding to D, and D, are a a'aaaa’ and
aa 'a a'aa, respectively. From the well-known boson
commutation relation

[a,a’]_=1, 4.2)
one easily shows that

a'a‘aaaa’=aa'a'a"aa . (4.3)
The equality of the contributions of D, and D, is not
accidental. It comes from the commutation of some
parts of diagrams containing blocks of operators. In the
example we are considering, one has from Eq. (4.3),

[aTaTaa aa ]_=0 , (4.4)

which means that, for these reducible diagrams, the dou-
ble emission-absorption processes can indifferently occur
before or after the single absorption-emission one. We
note that the splitting of the operator blocks takes place
at the junction of two forward-scattering graphs. This
rule is general and applies to every higher-order reducible
diagram. Furthermore, this overestimation comes from
the classes of diagrams containing single- and double-
photon interactions with an equal number of double ab-
sorptions and double emissions. Thus, in addition to the
elimination of multiple counting which consists in keep-
ing only topologically different diagrams, one has to
avoid overcontributions provided by the reducible dia-
grams.
C. Mixing of single and double photointeractions

We calculate the contributions of the diagrams belong-
ing to the classes displayed in Figs. 3(a) and 3(b). Due to
the summations coming from the electron propagators,
these contributions result from the sum of many terms
which an be arranged in groups characterized by a set of
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atomic states. For each order and inside each group, the
diagrams only differ from each other by the energy of
their electron lines, not by their vertex factors (matrix
elements). As an example, the analytical expression cor-
responding to a diagram where p interactions VT are
mixed with g interactions W is written, up to a common
factor, in the form of a product of p+q —1 energy
denominators. For this discussions, the diagrams are
designated through ensembles of numbers representing
the processes taking place at the vertices. In front of the
number of photons, the plus and the minus signs denote
the photon absorptions and emissions, respectively.
Thus, the first and the second diagrams of Fig. 3(a) will
be labeled (—2,+2,—1,+1) and (—2,+1,+2,—1), re-
spectively. In examining the sixth-order processes of Fig.
3(a), we find 24 topologically different diagrams obtained
by considering all the possible combinations of the four
kinds of absorption and emission operators. There are
four pairs of identical reducible diagrams. By using the
result of Sec. IV B, the overabundant terms may be elim-
inated. Four reducible diagrams remain which can be la-
belled as (—2,+2,—1,+1), (—2,+2,+1,—1),
(+2,—2,—1,+1), and (+2,—2,+1,—1), while the
four diagrams which are to be dropped are denoted by
(—1,+1,—2,4+2), (+1,—1,—2,+2), (+2,—2,—1,
+1), and (+2,—2,+1,—1). The analytical expressions
corresponding to the four remaining diagrams are

D,=Blim 3 dyid , (4.52)
71-0 7 N(—20+n) 0, —0;—o+n)

D,=Blim S duid , (4.5b)
1-0 < N(—20+n) 0, —0;+o+n)

D;=Blm 3 Ay , 4.5¢)
10 N20+n)N 0, —0;,—o+n)

D,=Blim 3 T : (4.5d)
-0 2o+, —w;+w+n)

In Egs. (4.5), B is the intensity parameter derived from
Egs. (3.5) {B=[1/(40°)](I1/I,)’} and d=(e-p). The
summations run over the whole atomic spectrum. After
elementary algebra, D=D,;+D,+D;+D, can be put in
the form

_ Dgi
D=BS dydy——5"— . 4.6)

In spite of the large value that each of the four diver-
gent diagrams of Egs. (4.5) can reach, their sum is finite
and cancels exactly the contribution of the 16 remaining
ones. Such a property is verified numerically to any or-
der in the present work.

The same discussions holds for the eight-order graphs
of Fig. 3(a). Here, the problem is a little more compli-
cated because among the 180 diagrams, 156 are irreduc-
ible, while 24 are reducible. An algorithm has been found
to classify, eliminate overabundant terms, and calculate
the contribution of each diagram. By using the commu-
tation rules of Sec. IV B, one finds that the sum of the 12
remaining diagrams (i) is finite, (ii) is independent of the
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parameter 7, and (iii) cancels the sum of the 156 irreduc-
ible diagrams exactly.

The difficulty arising from the diagrams of Fig. 3(b) is
solved by using the previous method. A group of 15 dia-
grams involving two double absorptions can be isolated
from the 210 eighth-order graphs of Fig. 3(b). Among
them, one finds nine reducible diagrams. In contrast to
the preceding case, none of them is identical to any of the
six remaining ones by changing the order of the
propagation-vertex operators. This is the consequence of
the asymmetry between the number of double absorp-
tions and double emissions. For example, the third
eighth-order diagram of Fig. 3(b) is reducible and can be
split into a double absorption followed by two single
emissions. The commutation of these blocks does not
change the topology of the graph. Therefore, it is unique
and its contribution is counted once. Such a property
holds for all the diagrams of class 3(b). The main points
of the discussion can be summarized through the follow-
ing general rules: (a) When the number of double absorp-
tions and double emission are equal, the contribution of
the reducible diagrams is large and compensates that of
the irreducible ones; (b) in the case of unequal numbers of
double interactions, the corresponding contributions are
different from each other and both of them vanish sepa-
rately; and (c) by generalizing the analysis to any order,
one finds that all the diagrams involving double absorp-
tions and/or double emission of photons are to be dis-
carded from the computation of the operator S'(z).

V. OPERATOR EXPRESSIONS

It is worthwhile to note that in any all-order theory,
one is faced with divergences due to reducible diagrams.
The previous investigations allow us to avoid those con-
tained in diagrams involving double-photon interactions
[Figs. 3(a) and 3(b)]. Nevertheless, divergences still
remain in the reducible diagrams of Fig. 2(a) involving
single-photon interactions. They come from the renor-
malization of external electron lines. As has been shown
in the preceding numerical analysis, these divergences
can be avoided by summing the perturbation series. such
a property is widely utilized in theories resorting to pro-
jector techniques [9-11].

According to what is done in the length gauge, one
defines the operators P and Q which are the projectors
onto and outside the subspace (€) spanned by particular
dressed states of the system atom plus field. In general,
these states are those which are degenerated by the pres-
ence of resonances. In this respect, we recall that two
states are degenerated when their energies differ from
each other by an integer number of photons. Such an
event can also happen in nonresonant processes when the
initial or the final sate is found as an intermediate state in
the expansion of the Green function. By introducing the
projectors P and Q, the shift operator S’(z) given by Eq.
(3.13) transforms into

R'(z)=H;+H;QG,(z)H;

+H;QG{(z2)H;QGy(z)H} + - - -, .1)
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with the obvious relations
P+Qo=1,
PQ =0 .

(5.2a)
(5.2b)

From the preceding lines, the resummed expressions in
the velocity gauge can be easily derived from those al-
ready obtained in the length gauge [5]. One has to re-
place H, everywhere by H, [the intensity-dependent
Hamiltonian given by Eq. (3.7)] and to use the interaction
operators V= of Eq. (3.5a). In doing so, one finds that the
diagonal part of the shift operator R'(z) sums to
R'P( )=V TV 7, +V 7V "7yl(z—H}y),  (5.3)
where 7, 7., and 7, are continued fractions of
Vir=0ov-".

The resummed part of R’(z) accounting for the
effective absorption and emission of N photons are

R =[V 7,77, )V !

+V RV )N Tz —HY) (5.4a)
and
R'MD(2)=[V (V)N 1
+VIR( VTN Tz —Hy),  (5.4b)

respectively.
The 7 operators are the following continued fractions
of the interaction V*:

T, = , (5.5a)

= _— (5.5b)
O —H,—VE
= 1 . (5.5¢)

T A N A A A

These expressions are formally identical to the ones de-
rived in the length gauge. The only, but important,
difference is that the interaction is now a A-p instead of
being E-r, whereas the whole spectrum is shifted upward.
We note that in most cases, the transition amplitudes in-
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volve energy differences. Therefore, the shift due to the
A? term, which is independent of the atomic operators, is
canceled and does not influence the final result.

V1. CONCLUSION

The problem concerning the calculation of level shifts
and transition probabilities in the velocity gauge has been
examined within standard semiclassical and quantized
models. It has been shown that a contact transformation
which cancels the whole contribution of the quadratic
term of the interaction Hamiltonian is not suitable to set
up the correct expressions of the second-order Stark shift
and the resonance-fluorescence probability. An alternate
transformation has been proposed which restores the
lacking term that is lacking in the corresponding formu-
las. Its implications have been studied on second-order
processes by resorting to a semiclassical model. Within
this framework, it has been shown that the interactions
involving twice the frequency of the radiation field could
be discarded. The generalization of this property to arbi-
trary order has been examined by using a fully quantized
theory. A suitable resummation of diagrams involving
single- and double-photon absorptions and emissions
shows the importance of calculating carefully the reduc-
ible diagrams which account for the corrections of the
external lines. These diagrams play an important role
concerning the gauge invariance of the theory [13]. By
computing order by order the contributions of all the dia-
grams belonging to the same class displaying at least one
double-photon interaction, we have found that the sum of
these diagrams did not have to be considered. Such a
law, which has been already enunciated for lowest-order
processes [3,4], is confirmed and can be generalized to ar-
bitrary order from the present work.

Thus, in the velocity gauge, the double absorptions or
emissions coming from (a®/2) A(t) (aa and a'a’ terms)
do not contribute to any order. Only the processes fo ab-
sorption emission of a photon at the same vertex (aa  and
a'a terms) need to be retained because they induce an
intensity-dependent shift of the whole spectrum. This
rule has permitted us to write resummed operator expres-
sions which will serve to make nonperturbative calcula-
tions in the case of radiation-matter interaction at very
high intensity.
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