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Atom manipulation based on delayed laser pulses in three- and four-level systems:
Light shifts and transfer efBciencies
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Atomic mirrors and beam splitters based on adiabatic following by delayed laser pulses in a three-level

Raman configuration are analyzed. %e show that in a pure three-level system of two ground states and

one excited state, laser pulses tuned precisely on resonance with the excited state do not produce any ac-
cumulated phase shifts due to ac Stark shifts even if the process is nonadiabatic. A numerical simulation

suggests that multiple delayed laser pulses are attractive for precision interferometry since high transfer
efficiencies (up to 98.7% per pulse for the cesium D1 line) and low ac Stark shifts are expected. A possi-

ble application to optical two-photon spectroscopy for an optical clock is discussed.

PACS number(s): 42.50.Vk, 03.75.Dg, 07.60.Ly, 35.80.+ s

I. INTRODUCTION

Laser light has been used to coherently split and
recombine atomic wave packets in atomic interferometer
experiments [1]. A particularly useful method is light
pulse interferometry based on stimulated Raman transi-
tions connecting sharp hyperfine ground states [2]. The
sensitivity of such a measurement may be increased by
applying multiple n. pulses ("atomic mirrors"), introduc-
ing an additional recoil of 24k per pulse to the inter-
ferometer. In a recent measurement of the cesium recoil
energy, the photon recoil has been increased by
sandwiching up to 15 additional Raman ~ pulses between
the two sets of st/2 pulses, giving rise to a recoil splitting
of 64 photon momenta between two interferometers of
opposite recoil shift [3,4]. The observed transfer
efficiency per pulse was limited to about 85% by spatial
variations in the beam intensity, so that perfect ~ pulses
can not be generated for all the atoms. Atoms left behind
in the wrong atomic state after each m pulse did not affect
the fringe contrast since they could be distinguished and
removed from the interferometer before the final beam
splitter. On the other hand, a large number of imperfect
m pulses reduces the signal size.

Population transfer by coherent adiabatic passage is
not very sensitive to variations in the beam intensities
and should allow higher transfer efficiencies. Also, the
obtained transfer is expected to be very robust for a real-
istic laser power stability. In this paper, we investigate a
method of population transfer based on stimulated Ra-
man adiabatic passage (STIRAP) [5—8]. This method has
been demonstrated first by Gaubatz et al. [6,7], and its
application to atomic interferometry has been proposed
by Marte, Zoller, and Hall [8]. Recently, population and
momentum transfer by delayed laser pulses has been ob-
served in atomic systems [9,10].

Adiabatic transfer based on changes of light intensities
for precision experiments have the advantage over adia-
batic transfers relying on a sweep of the (two-photon) res-
onance frequency [11,12], that the two-photon resonance
condition may be maintained a~1 the time for the STIRAP

method. In this scheme, the transfer of population be-
tween ground states

~
1) and

~
3 ) via an excited state ~2)

can be done adiabatically with time delayed laser pulses
of light at frequency co, tuned to the ~1)~ ~2) transition
and co2 tuned to the

~
3 ) —+ ~2 ) transition, as shown in Fig.

1. For given Rabi frequencies 0& at co& and 02 at co2,

there is a superposition state that is "dark, " i.e., not con-
nected to the excited state ~2). For example, for Q, =0
the dark state is ~1 ), and for Q, =Qz the dark state con-
tains states ~1) and ~3) with equal amplitudes. An atom
initially in ~1) can be transferred adiabatically to ~3) by
first turning on Q2 with Q& =0 and then increasing 0& as
shown in Fig. 2. We later discuss possible atomic beam
splitters based on this method and show the setup of a
proposed interferometer using adiabatic following.

Adiabatic following by delayed laser pulses appears at-
tractive since the atoms remain in a dark state and should
not undergo any ac Stark shifts. However, transfer in a
finite amount of time requires slight nonadiabaticity and
the atoms undergo many Rabi cycles during the transfer.
We discuss here adiabatic transfer for real atomic sys-
tems, paying particular attention to the ac Stark shifts in-
duced during the transfer process. We show analytically
that in a pure three-level system, the atoms do not experi-
ence any ac Stark shift when the lasers are tuned precise-
ly on resonance with the intermediate state. This condi-
tion is also not particularly sensitive to slight errors in de-
tuning.

I2&

FIG. 1. Level scheme for population transfer by adiabatic
following between two ground states via an excited state. For
counterpropagating laser beams, the momenta of two optical
photons per transition is transferred to the atom.
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Rabi
frequency

we find that this adiabatic transfer method is superior to
off-resonant Raman transitions in terms of transfer
eSciency and ac Stark shifts.

II. GENERAL FORMULAS

FIG. 2. Pulse sequence for efficient population transfer be-
tween two ground states ~1 & and ~3 & via an excited state ~2 & by
adiabatic following, where light of frequency ml couples levels

~1&, )2& (Rabi frequency 0,) and co& couples ~2&, ~3& (Rabi fre-

quency Qz). For transfer from ~1& to ~3&, the dark state is ~1& if
Q&(t =0)=0. At some intermediate time when Q&=Q&, the
dark state consists of equal amplitudes of ~1 & and ~3 ), and when

Qz(t = T)=0 the system is left completely in state ~3 &.

In real atoms, the presence of additional excited off-
resonant states will introduce some ac Stark shift and
limit the maximum possible transfer efficiency. In a re-
cent experiment using the cesium D2 line, about 40% of
the atoms were coherently transferred from 6Si&2(F =4),
mF=4 to m~= —4 [10]. In this work it was suggested
that the imperfect transfer was due to off-resonant excita-
tion in the excited state hyperfine manifold. Here, we
here consider the cesium D1 line, which has the advan-
tage of a 5.8 times larger excited state hyperfine splitting
(1.17 GHz for 6P»z ) [13]. Off-resonant excitation thus is
expected to be suppressed by a factor of about (5.8) =34
compared to the D2 line. Our numerical simulations also
show that the relative matrix elements between the
different hyperfine states are much more favorable in the
case of the D1 line. Further, we have considered transi-
tions between magnetic field insensitive states that are
necessary for precision interferometer systems [2].

By numerical integration of the Schrodinger equation,

We consider a three-level atom with a level structure as
shown in Fig. 1 irradiated by two counterpropagating
laser beams of optical frequencies co, and co2 connecting
the states i 1 )~i2) and i2)~i3), respectively. The
Hamiltonian for the system is

2

2m

E=E, pcos(k, z —co,t+P, )

+Ez ccos( —k 2z toit +—Pt ) . (2)

For counterpropagating ( k -k, -k2 ) laser beams -2A'k
momentum per transition is transferred to the atoms. We
assume that the laser detunings from the respective tran-
sition frequencies are small compared to the splittings be-
tween the states (ro, -F02", and coz-cori —dos", ) so that tran-
sitions are induced only in a closed family of momentum
states. The time evolution of its wave function

+~i"il3&&3I—«E,
where fico&", and fico&", denote the atomic energy spacings
between level il) and levels i2) and ~3), respectively.
The relaxation of the intermediate state i2) has been ac-
counted for by introducing a non-Hermitian term —iI /2
as in Ref. [8]. We neglect decay into levels

i
1 ) and i3)

by spontaneous emission since it causes only an in-
coherent background to the fringes. This assumption is
verified by numerically solving the Bloch equations.

The electric field of the two incident beams is assumed
to be

(p+iiik, )
i~a) =c, (p, t)exp i —t ~1)+c2(p+fik„t)exp i — +t02", t i2)

2m% 2miri
J

(P +iiik, +irtkz)
+cs(p+Rk, +Tiki, t )exp i- +~,", t i3&

2m
(3)

can be described by the time evolution of the coefficients c;(p;, t). The equations of motion for the interaction wave
function

ci(p, t)

c2(p+Rk„t )

cs(p +8k, +fikz, t )

(4)

is determined by the Hamiltonian
—i(iII I+ th)

Q)e
i(&I+t~)0=——Qe1

—i [yp+t(6+5)]
Q2e

i [$2+t(h, +5) ]
Q2e
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batic following can, in the limit of very long interaction
times T (Q,ttT » 1 and I T» 1), be written as

(2lr Ez,ol3 &,

b, = —(co, —roz", )+ ((p+irtk, )
—p ),1

(6)

5=(co, cg—z co—z"i)+ (p —(p+Rki+irtkz) );1
(7)

see Refs. [14,15]. For the case when both detunings are
equal to zero, the interaction Hamiltonian simplifies to

The effect of small detunings b, and 5 from the one- and
two-photon resonances are discussed in Ref. [6]. Gen-
erally speaking, the following formulas are still approxi-
mately valid as long as both detunings are small com-
pared to 0,& and unless otherwise noted, we will assume
5=6=0.

When the populations and coherences change adiabati-
cally, steady state solutions can be applied [7]. For the
laser pulse shapes as shown in Fig. 2, adiabatic following
requires

Q,~T ))1,
where Q,it= QQi+ Qz denotes an efFective Rabi frequen-

cy. Under these conditions, one of the three eigenvectors
of the system is

Iq(T) ) = lU, (T) )(U, (0)lg( —~ )) .

Equation (11) suggests that an adiabatic following beam-
splitter can be accomplished by simultaneously turning
both lasers into zero intensity in the middle of a pulse se-
quence as shown in Fig. 2 (after Qi =Qz), as noted in Ref.
[8]. The opposite time sequence may be used for the final
beam splitter in an atomic interferometer, where two
atomic wave packets are recombined. This element may
also be used for redirecting the wave packets when the
two arms of the interferometer are in difFerent states, as
necessary for the second pulse of a four ir/2 pulse [17] in-

terferometer. Figure 3 shows the arrangement and
(simplified) pulse sequence for an atomic interferometer
using adiabatic following in four interaction regions.

A possible fourth "optical element" with two input and
two output channels can be formed by simply turning on
and off both lasers simultaneously. In the dressed pic-
ture, this element is a projector onto the dark state and
an optical analog to a Stern-Gerlach apparatus similar to
recent work in a two-level system [18] where, however,
only one dressed state is transmitted. For an atom initial-
ly in one of the ground states, this element generates a
coherent superposition of the two ground states, where,

Iv, (t)) =
cos8(t)

0 (10)

where tan8(t)=Q, (t)/Qz(t). This eigenvector is of spe-

cial interest, since for this state the amplitudes of both
lower levels for absorption into the excited state precisely
cancel [16]. This "dark state" is not coupled to the excit-
ed level and since the eigenvalue of this state is equal to
zero, it does not undergo any ac Stark shift. Adiabatic
change of the dark state allows a complete population
transfer from l1) to l3).

Our numerica1 solutions solve the full quantum-
rnechanical problem and therefore include the slight
nonadiabatic coupling to the excited state. The pulse
shape shown in Fig. 2 (for Q, ,„=Qz,„) allows faster
transfer with the same eSciency as for the two displaced
Gaussian pulses of Ref. [7]. Note that as long as all of
the population is in one of the ground states, the laser ad-
dressing the transition connecting the other ground state
with the excited state may be switched on and off as
quickly as possible.

So far, we mainly have considered complete population
transfer. The e6'ect of a pulse sequence on an initial wave
function lq( —oo ) ) acting as an optical element via adia-

QA

gA

FIG. 3. Pulse sequence for an atomic interferometer based on
adiabatic following by delayed laser pulses; for the level scheme
see Fig. 1. The double line shows the propagation axis of the
light with frequency col (Rabi frequency 0,). Light with fre-

quency co2 (Rabi frequency 02) is directed oppositely. The
analogous interferometer with opposite recoil shift is obtained

by applying pulse sequence D instead of B in the second interac-
tion region, and pulse sequence A instead of C in the third in-

teraction region. 1f atoms in state l 3 ) instead of l 1 ) are desired
at the output of the interferometer, pulse sequence B should be
used in the fourth interaction region.
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however, half the population is lost due to spontaneous
emission. We have "demonstrated" all four optical ele-
ments by numerical simulation in a three-level system.

IH. ANALY'1IC RESULTS

lip(
—~))= idz( —~ )e

ip)

d3( —oo )e
J

(12)

with all coefficients d;( —oo) real. Then the wave func-
tion for any time t can be written as

r

lq(t)) = id2(t)e

d ( )
—i($2 Pi)

(13)

During the population transfer, the atomic states un-
dergo many Rabi oscillations and the nonadiabatic part
may a priori allow a nonnegligible phase shift to accumu-
late. We now show that as long as both b, and 5 are zero
there is no accumulated phase shift for arbitrary pulse
forms. Assume the initial wave function before the laser
pulses is

di( —00 )

the wave function at any later time t may be written as

di(t)

ly(t}) = id2(t)e
i ($2—pi )—

(19}

lip(t)) has a fixed phase relationship between its com-
ponents that depend only on the relative phase between
the two lasers, and is independent of the laser intensities
or pulse shapes (the relative phase between the two lasers
is fixed by either locking two independent lasers as in
Refs. [3] and [4] or by generating to& from aii with an
electro-optic modulator as in Refs. [2] and [14]). By an
analogous calculation we obtain the phase behavior at
any time t for an initial wave function with only popula-
tion in state l3) before the pulse. Using the superposi-
tion principle, the result for an arbitrary superposition of
iriitial states l 1 ) and l3) may be deduced.

For laser pulses acting as a beam splitter with an initial
wave function

with all d;(t) real.
We can prove (13) by direct substitution into the time-

dependent Schrodinger equation, which gives

lq( —~))=

we obtain

be ie
(20}

d, (t)= —
—,
' Q, (t)d, (t),

d, (t)=—,'( Q, (t)d, (t) —I'd, (t) +Q,(t)d, (t)),

d, (t)= —
—,'Q, (t)d, (t) .

(14a)

(14b)

(14c)

lq(t)) =
&( &+(yg —

y$ ) )
auii(t)+bu3i(t)e

0
—

&(Q2
—$) ) i8au»(t)e ' ' +bu33(t)e'

(21)

The coupled system of first-order differential equation has
the form

d(t) = A (t)d(t), (15)

where A (t) is a real matrix. For all t, we can separate
d(t) into real and imaginary parts as

d(t) =u(t)+iv(t), (16)

u(t) = & (t)u(t), u( —~ ) =d( —~ ), (17a)

where u(t), v(t) are real vectors. Combining (15) with its
complex conjugate and using (16) gives first order
difFerential equations for u(t) and v(t):

where all coefficients u,j(t) are real. The relative phases
between u», u» and u, 3, u33 are independent of the laser
intensity and pulse shape, even if the transfer of popula-
tions has a significant nonadiabatic component.

We have performed this calculation using the Bloch
equation for the three-level density matrix and obtained
similar results.

We can also understand the absence of an ac Stark
shift in the dressed picture. The nonadiabatic popula-
tions of the two coupled states during the laser pulses are
equal and since the dressed state eigenenergies
+Q(Q,it/2) —(I'/4) are symmetrically shifted about
zero energy; the average shift is zero.

v(t) = A (t)v(t), v( —~ )=0, (17b) IV. NUMERICAL CALCULATIONS

where u(t)= —,'(d(t)+d (t)) and v(t)= —,'(d(t) —d'(t))/i
are real vectors for all times t and d* denotes the complex
conjugate of d. If we assume reasonable restrictions on
the "smoothness" of A (t), unique solutions exist for (15),
(17a), and (17b) [19]. The unique solution to (17b) is
clearly v(t) =0, so that d(t) =u(t) is the unique solution
of (15). Thus the d, (t) are real for all times t and (13) is
verified.

For an initial atomic wave function before the pulse

The calculation of the transfer eSciencies and the sen-
sitivity of result to detuning from the one-photon reso-
nance was done by numerically integrating the interac-
tion Schrodinger equation. For simplicity, we have re-
stricted ourselves to the case Q, ,„=Qz,„and mainly
considered population transfer ("atomic mirrors"). Using
laser pulse shapes as indicated in Fig. 2, we obtained the
coherent transfer efficiencies for the three-level system.
The dashed lines in Fig. 4 show the transfer efBciencies
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FIG. 4. Coherent transfer efficiencies (solid) and accumulated
phase due to ac Stark shift (dotted) as a function of pulse length
T for population transfer by adiabatic following [cesium
6S1/2 (F =3 ), m F =0~6Si n (F=4 ), m p

=0 using 6P
& ~2 (F=4),

mF =1 as an intermediate state] for different laser intensities
(a: 5, b: 20, c: 80 times saturation intensity, corresponding
to 23 mW/cm, 90 mW/cm, and 180 mW/cm for the cesium
D1 line). The dashed lines show coherent transfer efficiencies as
computed for a three-level system, neglecting off-resonant ab-
sorption. The accumulated phase due to ac Stark shift is equal
to zero for this case.

u -0.15
&o-~ ~oo 10' 102

T [us]

for three different maximum laser intensities. The nu-
merical values of the intensities are given for the magnet-
ic field insensitive transition between the two cesium
hyperfine ground states 6Si&z(F=3), mF =0
~6S,&z(F=4), mF=O using 6P, &2(F=4), m+=1 as an
intermediate level (D 1 line} and two counterpropagating
lasers in a 0+-o.+ polarization configuration. These re-
sults have been checked by numerically integrating the
Block equations.

In order to determine absolute phase shifts and the
coherent part of the transfer efficiency with the Bloch
equations, a fourth level not coupled to the first three lev-
els was introduced corresponding to atoms in the other
arm of the interferometer. The coherent transfer
efficiency could be determined by introducing a coher-
ence between the initial state and the fourth state before
the pulse, and observing the amount of coherence that
could be transferred to the final state and the fourth state.
An integration of the Schrodinger equation only gives the
coherent transfer efficiency.

We now discuss the effect of a small detuning 5 from
the one-photon resonance. Since the dark state is still a
precise eigenstate of the system with eigenvalue zero for a
perfectly adiabatic process [7], there is still no accumulat-
ed phase shift. However, for a partially nonadiabatic
transfer a phase shift is introduced since a detuning 6 im-
p1ies that the eigenvalues of the two coupled states are no
longer equally shifted from the dark state with eigenvalue
zero.

The accumulated phase due to ac Stark shift is propor-
tional to the detuning 5 for 5 &&0, „.The phase shift
per detuning is shown in Fig. 5 as a function of the in-
teraction time T for different laser intensities. The effect
of detuning 5 from the two-photon resonance is not ex-
pected to be a problem, since the difference can be con-
trolled with radio frequency precision.

FIG. 5. Accumulated phase due to ac Stark shift during pop-
ulation transfer by adiabatic following in a three-level system
for a detuning A=I /2m as a function of pulse length T for
different laser intensities (a: 5, b: 20, c: 80 times the satura-
tion intensity). For small detunings 5, the accumulated phase
shift is proportional to b.

In real atoms, off-resonant excitation into other levels
has to be taken into account. The effect of additional lev-

els limits the transfer efficiency and introduces phase
shifts due to the ac Stark effect. We have taken into ac-
count the effect of the neighboring 6P, &2(F =3) level of
the cesium D1 line and also the effect of the small -9.2
GHz off-resonant coupling of co, with the transition ~2)
to ~3) and co& with ~1) to ~2) by numerical integration of
the Schrodinger equation of the four-level system. The
expected transfer efficiencies as a function of pulse length
are shown in Fig. 4 (solid lines) for different laser intensi-
ties. The maximum transfer efficiency reaches about
98.7% efficiency (independent of the laser power forI;,„))I„,} for an optimum pulse length of T=500
p,sXI„,/I, ,„for I, ,„=I2,„,where I;,„denotes the
maximum intensity of m; and I„,the saturation intensity
[20]. The pulse length necessary to obtain a certain
transfer efficiency decreases with more available 1aser
power.

The dotted lines in Fig. 4 show the accumulated phase
due to ac Stark shift during the laser pulses for the sane
intensities. Since the accumulated phase shift for a
reasonable adiabatic process is roughly proportional to
the pulse length at a given laser intensity, one might be
tempted to shorten the pulse length below that required
to obtain optimum transfer efficiency in order to obtain a
lower phase shift. The pulse shape as plotted in Fig. 2
has been crudely optimized to match both conditions.

It should be noted that for a two-photon (e.g. , Raman)
pulse, where both lasers are pulsed on simultaneously and
detuned far from the intermediate state to avoid spon-
taneous emission, the ac Stark shift of each level in gen-
eral is of the order of the Rabi frequency. This shift can
be canceled to first order by choosing proper detuning
from the intermediate state and intensity ratio of the two
beams [4].

Cancellation of the residual ac Stark shift is also possi-
ble for adiabatic population transfer is a four-level system
if the lasers are detuned slightly from the one-photon res-
onance. The necessary detuning, which may be a few
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linewidths of the excited state, can be approximately
determined considering both Fig. 5 (approximately also
valid for the four-level system) and Fig. 4 (dotted lines).
This optimum detuning is a function of both laser pulse
length and intensity. Thus compensation of the residual
ac Stark shift here is more problematic and thus probably
less effective than for the case of Raman man. d n. /2
pulses, which depends only on the ratio of the intensity of
the two Raman lasers [4]. On the other hand, the phase
shift accumulated during the adiabatic passage is only
about 0.02 rad for 98% transfer eiliciency, two orders of
magnitude below the shift of a ground state level during
a Raman pulse.

In a recent measurement of the photon recoil energy
based on atomic interferometry using stimulated Raman
transitions [3,4] ac Stark shifts differences between the
two interferometers of opposite recoil shift caused by
wave-front imperfections were one of the two main
sources of systematic errors. This error and also phase
errors directly due to wave-front imperfections were es-
timated to be of the same order of magnitude. These
effects, although hard to quantify since the wave front er-
rors are not accurately known, were believed to be the
main cause of the eight parts in 10 (corresponding to
roughly 10 rad for the final ni2 pulse) disagreement
between the experimental and accepted value for the pho-
ton recoil [4]. It should be stressed that for ideal plane
optical wave fronts, both for Raman transitions and adia-
batic passage, errors due to ac Stark shifts cancel when
the difFerence between both recoil components is mea-
sured. For realistic nonideal wave fronts, however, an in-
terferometer based on adiabatic passage may yield lower

systematic errors.

V. CONCLUSIONS

Coherent population transfer by delayed laser pulses
seems to be an attractive method to realize high efficiency
"optical elements" for atoins with small accumulated
phase shifts from the ac Stark effect. We have shown
that in a pure three-level system, by tuning directly on
resonance with the intermediate state, two-photon reso-

nances may be observed without any ac Stark shifts.
A possible application closely related [17] to beam

splitters in atomic interferometers is an optical two-
photon Ramsey experiment for high resolution spectros-
copy, where the two photons are tuned on (or close to) an
intermediate state. Spontaneous emission can be avoided
even for a short lived intermediate state, when adiabatic
following is used in each interaction region. One of the
major drawbacks of two-photon spectroscopy, the ac
Stark shift, can be avoided, provided no other levels are
close compared to the Rabi frequency. An optical Ram-
sey setup based on adiabatic following thus is a promising
scheme for a future extremely precise optical clock. Suit-
able transitions are, for example, the Tl 6P, &2-6P&&2 and
the Ba 6S -6S 5D transitions, using 7S&&2 and 6S 6P, re-
spectively as intermediate levels. For both atoms the in-
termediate level is more energetic than both initial and
final states, so that the level scheme is similar to that in
Fig. 1, except the splitting between initial and final states
is in the optical regime. Both atoms have a metastable
final level connected by allowed single photon transitions
through the intermediate state and thus do not require
high laser power.

In general, two photons of unequal frequencies are
necessary to be resonant with an intermediate state. A
nonzero first order Doppler shift is introduced, which re-
quires four instead of two interaction regions, analogous
to an optical one-photon Ramsey setup [21]. A pulse se-
quence as shown in Fig. 3 may be used for an optical
two-photon Ramsey setup based on adiabatic following.
Since adiabatic following is not very frequency selective a
large transverse velocity spread can be used in an atomic
interferometer (or optical Ramsey setup) using this
method.
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