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Quantum formalism for electron capture from a solid surface by heavy projectiles
making grazing collisions
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Electron capture from surfaces by grazing heavy projectiles is studied with a fully quantum treat-
ment. The collision is considered in the high-energy regime where the projectile velocity is larger
than the Fermi velocity of the free-electron gas of the solid. Some approximations commonly used

in atomic collision theory, such as the first-order Born, the impulse, and the Vainstein-Presnyakov-
Sovelman approximations, are adapted to the present geometry and interactions. The surface-
electron and surface-projectile interactions are represented according to the jellium model and the
Moliere and Lindhard potentials. Detailed calculations are made for protons on an Al(111) surface
and compared with recent experiments. No agreement is found; the theory largely underestimates
the experiments at high energies. This disagreement shows that the high-energy-tail data cannot be
explained as a capture process from the free-electron gas. Other neutralization mechanisms should
take place to account for the experiments.

PACS number(s): 79.20.Rf

I. INTRODUCTION

During the past years there has been an increasing ef-
fort in the theoretical [1—4] and experimental [5, 6] fields
of inelastic processes occurring with solid surfaces by im-

pinging projectiles at grazing conditions. In the theo-
retical field, most of the investigators have tackled the
problem with tools developed in their own fields, such as
atomic collision theory. In the simplest and most ideal
atomic collision, we generally deal with three particles: a
projectile (P), an electron (e), and a target nucleus (T).
Among the three collision velocity ranges, namely, low,
intermediate, and high energies, the latter is the simplest
to deal with. That is, the mechanisms involved are rel-
atively simple and not numerous [7, 8]. Therefore, the
understanding achieved in high-energy atomic collisions
can be very useful in trying to understand inelastic graz-
ing collisions at the simplest level.

If we translate an ideal atomic collision into an ion-
surface process, we have again P and e, but instead of
the point target T we now have the surface S. By S we
mean not only the surface but also the whole solid (amor-
phous or crystalline) beneath the surface. Therefore, the
simplest system is composed of two particles (P and e)
and the solid structure (S). The neutralization can be
read as follows: P + (S+ + e) i (P + e) + S+. The job
reduces to solving the problem under the new geometry
and interactions.

In an interesting theoretical work, Thumm and Briggs
(TB) [2] have presented an analysis of neutralization from
a surface by grazing ion impact at high energies. The
neutralization process has been envisaged as an electron
capture process &om the Bee-electron gas. Based on a
classical description of the projectile and a quantum jel-
lium model for the electron, these authors calculated the
first and second perturbative orders to the probability.
TB found that the second-order estimate is about two

orders of magnitude greater than the first. The dominant
mechanism was shown to be Thomas type [8] in which the
electron first collides with the projectile and afterward,
in a second step, it diffracts through the lattice atomic
cores emerging Rom the surface with the same velocity
as the projectile. This diffraction, found in the theory
of TB, was related to the low-energy electron diffraction
process (which resembles the Bragg law) producing step-
like structures at the level of the total probability not
found in the experiment [6].

In a recent article, Winter et al. [6] have measured
the neutral fractions of protons scattered grazingly from
an Al(111) surface carefully prepared. The impinging
energies, ranging &om 50 keV to 1.25 MeV, were typical
of high energy; the incident angle was 3 mrad, i.e. , as
for grazing conditions. When compared with the theory
of TB, no firm conclusion can be drawn since the data
lie between the first and second perturbative orders. It
is observed that the experiments do not show steplike
structures as predicted by the Thomas-type process.

In this work, we study the capture process by heavy
projectiles &om crystal surfaces. Our formalism (de-
veloped in Sec. II) is fully quantum, not only for the
electron, but also for the projectile. We would like to
emphasize that a quantum picture is not very impor-
tant to describe a heavy projectile as studied here, but a
quantum treatment will certainly lead us to correct de-
scriptions of all the momentum transfers involved. The
crystal is considered as an ensemble of parallel planes.
The S-e and S-P interactions are modeled in Sec. III
after approximating the two-particle Moliere and Lind-
hard potentials [9]; the jellium model is also studied. In
Sec. IV, some approximations commonly used in atomic
collision theory are applied (or adapted. to the new geom-

etry). These include the first-order Born approximation
[12, 13] and a variation of this including the S Pinterac--
tion to all orders. Instead of the second. -order Born ap-
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proximation investigated by TB, we use two well-known
theoretical methods used for three-particle atomic col-
lisions, namely, the impulse [14, 15] and the Vainstein-
Presnyakov-Sobelman [16]approximations. In Sec. V, we
present the results, which are examined in Sec. VB after
6nding some closed forms to compare them with. Con-
clusions are presented in Sec. VI. We anticipate that none
of the approximations developed here agrees with experi-
ment [6]; capture &om the f'ree-electron gas is found to be
very small. As explained in the following paper [17], the
experiments can be explained as an electron capture pro-
cess from bound electrons of atoms on the solid surface
and not &om the free-electron gas. The work is orga-
nized in such a way that the details of the calculations
are presented in the Appendixes. Atomic units are used.

II. THE MODEL COLLISION

Let us consider a heavy projectile P of charge Z~ and
mass M~ impinging on a solid crystal composed of an
ensemble of horizontal parallel planes 8 and an electron
e (by heavy Projectile, we mean M~ ) Mo ——1836, with
Mo the proton mass). The projectile with initial mo-
mentum K; captures an electron and the resulting atom
emerges with final momentum Kf (see Fig. 1). The en-

ergy conservation reads

Ky2
+Ei = +Ey) (2.1)

where v, = M~, vf ——M~ + 1, and ei f are the initial
(bound to the solid) and final (bound to the projectile)
electronic energies (e; f ( 0). The mass of the surface is
considered in6nite; consequently the 8-e and P-e reduced
masses are p; = 1 and pf = M~/(M~ + 1). The initial
and 6nal momenta are

K; = (K;, K;„, K;,) = K; (sine;, 0, —cost); ),
(2 2)Kf = (Kfz& Kfy& Kfz)

= Kf (sin Hf cos pf, sin Hf sin pf, cos f)f).

The coordinate systems are chosen in the usual way of
atomic collision theory (see Fig. 2): (R, , r;) and (Rf rf ),
and the corresponding reduced masses are (v;, p;) and
(vf p f), respectively. Due to the geometry of our prob-
lem, it is convenient to separate all the coordinates into
components parallel and perpendicular to the surface
(see Fig. 2); in this way we have R; = (R;„Z;),
Rf = (Rf„Zf), r; = (r;„z;), and rf —(i'f zf).
The components R(;,f). and r(;,f). ~e parallel to the sm-
face and Z; f and z; f are perpendicular to the surface.

We write the Hamiltonian of P, 8, and e as

1
H = — '(7R.

2vi
1

&R
2vf

V, + Vs, (r;) + VsI (R;) + VJ, (rf)
2@i

V, +Vs, (r)+Vs'(R)+Vp, (rf) =H;+V; = Hf+Vf,
2pf

(2.3)

with V; = Vsz + Vs& and Vf = Vsz + Vsp. Accord-
ing to the symmetry chosen we have the S-P interac-
tion Vs~(R;) = Vs~(Z;), the S-e interaction Vs, (r;) =
Vs~(z;), and the P eCoulomb p-otential Vj, (rf)

ZI /rf-
The transition-matrix element reads

FIG. 1. Schematic diagram of the momenta involved. FIG. 2. Schematic diagram of the coordinate systems.
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T = (&~1&~1@.') = (@'g Iv I@*) (2.4)

where the unperturbed (Born) wave functions are given
in the usual form:

(z' '
P(k) = — dK't 2vr bji I 2+f

xs'(w, , —k, ) l~l'.

K;
2V

&i +&f

(2.11)

exp (iK,"R;) exp (iK f'Rf)
(2vr)'~'

* ' ' (2vr)'~'

(2 5)

p( 8 RB) y+
(2m)

(2.6)

where we decompose k = (k„k,) = (k, cos y„
k, sing„k, ), and k, and k, are the components of the
electron momentum k, respectively, parallel and perpen-
dicular to the surface. Due to this separation of coordi-
nates, we can always write

T=b(W;, —k, ) ~, (2.7)

where w is now a one-dimensional transition-matrix ele-
ment in the (z, Zj space given by

and iIt,.
&

are the (generally unknown) exact wave func-

tions. Following TB [2], the electron-gas wave function
P;(r, ) characterized with the initial momentum k can be
separated into two components, namely, a transverse (in
terms of r;, ) and a longitudinal (in terms of z;) function:

The first b function gives the energy conservation fixing
the value of IKt I

in accordance with Eq. (2.1).
The object b is very common in the formal theory

of scattering [18] where it takes into account the conser-
vation of linear momentum [19]. The manipulation of
the distribution 8 requires some explanation, as indi-
cated next. Following the formal theory of scattering,
we should prepare the incident incoming particle and
the electron wave function P;(r, ) [Eq. (2.5)] with wave
packets. After the collision, we should integrate on the
corresponding distributions and, in this way, one finds
that h2(W, , —k, ) reduces to 8(W, , —k, ). An equiva-
lent and simple way of dealing with the distribution b is
the prescription of Joachain [19] to deal with the on-the-
momentum-shell transition matrix, as summarized next.
By using wave packets, we find h(W;, —k, )h(W, , —k', )
instead of 82(W;, —k, ), where k', is the variable intro-
duced by the wave packet. Using the identity 8(W;, —
k, )8(W,, —k', ) = 8(W,, —k, )h(k, —k', ) and integrating
with respect to k'„ the distribution b(k, —k', ) is finally
removed. We can then write

P(k) = (2x)
'

d&p& d0& sin 0& 8(W, , —k, ) lv
I

IJg

= (~yLI pl@,L, ) = (@yr, lV'I~*L, ) . (2.8) (2.12)

The suKx I in the subscript indicates the correspond-
ing one-dimensional wave functions. In Sec. IV, we will
present these linear functions depending on the particu-
lar approximation used. The momentum transfer vectors
W; f are defined in the usual way of atomic collision the-
ory: W; = Kf —K, , Wf ——K, —pf Kf, satisfying P(k) = P (k)+P+(k) (2.i3)

The b function fixes p& and 0& to give two possibilities
for a given value of k, . In other words, the angular dis-
tribution (differential probability) is composed of two 8
functions producing

KfW;+ Wf —— ——vf,
Vf

PfK,Wf+pfW, = = pfv, ,
&i

(2 9)

at the angles

cos 0

W,2

2

Wf

2Pf
(2.10)

- i/2
(K; sin0; + k, cosy, ) + (k, sing, )

K2f

E is given'by e, = —Vc, + k /2, Vc', = EF + E~ is
the confinement energy, E~ is the Fermi energy, and E~
is the work function. We separate W, = (W,„W,,),
Wt = (Wt„Wt, ), v; = (v;„v,,), and vf = ( fvvf ),
where the subscripts ending with s and z represent, re-
spectively, the parallel and perpendicular components
to the surface. Due to the momentum conservation in
the surface direction [Eq. (2.7)] we have W, , = k, and
Wf, ——vf —k, .

A. The probability of transition

The total probability of electron capture is defined as
the probability per unit time integrated over the density
of final states dK'f ——Kf sin0f dKf deaf dyf divided by
the density Bux J; perpendicular to the surface, i.e. ,

k, siny,
tan yf ——

Ki sin oi + k, cos y,
(2.i4)

:Kf cosOf + K cos0

Wf ——K, cos 0, —pf Kf cos Of .
(2.i5)

The second term in Eq. (2.13) P+ (k) is the grazing colli-
sion, where the projectile is scattered at (yt, 0& j, i.e. , it.

The first term P (k) is the transmitted probability where
the projectile is scattered at (&pt, 0& ), i.e. , it penetrates
the surfaces under consideration. The probability P (k)
is relevant where the component of the energy along the
z axis is larger than the repulsion barrier. Here we have
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returns without penetrating the solid (see Fig. 1). P+(k)
is simply the integration of the b' function at yf and 8&,
and it is the one we are interested in. The probability
P+(k) is relevant where the component of the energy
along the z axis is smaller than the repulsion barrier.
The z coordinates of the momentum transfer vectors are,
in this case,

W;+, = Ky cos8& + K; cosB; = (Mp + 1)vy, + MpIv;, I,

(2.16)

~&+, = —K; cos 8; —pyKy cos 8&
—— Mp—(vf, + Iv;, I).

For grazing collision, we have v;, & 0, vf, & 0, and

vga = pyv~z + eiz ey + z(vga —ka)2 = 2 1 2

Mg+1-
(2.17)

with e;, = —Vc, + k, /2. A very important point that
should be noted from Eq. (2.17) is the inequality vy, &

Iv;, I, which makes the refiection angle with respect to
the surface larger than the incident angle. For instance,
for the case observed by Winter et al. (Ref. [6], Fig. 1),
corresponding to 525 keV protons impinging at 3 mrad
with respect to the Al surface (v,, = —0.0137), Eq. (2.17)
gives vy, = 8Iv;, I. This is a very important difFerence in
relation to the semiclassical specular description where

vf, ———v,, is assumed.
After some algebra with b functions, we find from Eq.

(2.12)

P~(k) ( ) ~ t
I

+I2 ( )
~~ Ky I

cos By I
Iv;, v y~ I

(2.18)

From now on, we shall concentrate on grazing collisions

and the superscript + will be omitted.

III. THE MODEL POTENTIALS

In this section, we proceed to model the S-e and S-P
potentials. In Appendix A, we study two simple solu-
tions of the Thomas-Fermi potential of a Coulomb charge
interacting with an atom, namely, the Moliere and Lind-
hard closed-form potentials [9]. Also the Hartree-Fock
static potential was calculated. After integrating the ef-

fect of the whole surface, we fitted them with exponen-
tial and Coulomb-type one-dimensional potentials valid
at short and medium (but not very large) distances (Fig.
3). In a more general and accurate case, we can use a
more sophisticated interatomic potential, make the sur-
face integration [Eq. (Al)], and then fit it with a po-
tential, preferably having a known solution of the corre-
sponding Schrodinger equation.

A. Surface-electron potential

The most elemental interaction has been proposed by
TB [2]:

V~( )
—Vce, z&0
0 z)0 (3.1)

This is called the jellium model and it has the great ad-
vantage of having closed forms, not only for the wave
function but also for the first-order T-matrix element.
This model will serve us as a useful reference.

For the short range Moliere II potential (see Appendix
A for details), we propose

where w is the one-dimensional transition matrix calcu-
lated with W(+, &)

. Equation (2.18) has a similar form to
that of the one-dimensional capture process studied by
Dettmann and Leib&ied [Ref. [20], Eq. (9a)]. Equation
(2.18) holds if Bt is real; otherwise P+(k) = 0. Imagi-
nary Hf implies that energy and momentum are not con-
served. It is interesting to note that when cos &y

——0,
P+ presents a singularity, and this is because the final
atom finishes trapped on the surface. This situation is in
between transmission and grazing collisions.

Finally, the total probability, integrated over the whole
electron gas momentum distribution, is given by

2' +kF (a' —r,')'~'
P+ = 2 dy, d k, dk, k, P+(k),

0 —ky 0

-0.00 1

-0.01

qj -0.1

O

-10

r (a.u.)

10

(2.19)

where kp = (2 Ep)i~2. The factor 2 in front of the
integral accounts for the two states of the spins.

It should be noted that if the Bnal velocity parallel
to the surface is much larger than the Fermi velocity,
i.e., vf, )) k„ then 7 becomes independent of y, and
the integral on the azimuth can be performed to give a
closed form in terms of the complete elliptic integral K.

FIG. 3. Surface-electron interaction as a function of the
distance. The surface considered corresponds to an Al crystal.
Solid lines correspond to the Moliere I (MI) and Lindhard I
(LI) expressions [Eq. (A3)] and the Hartree-Fock static poten-
tial (HI). Dashed lines correspond to the Moliere II and Lind-
hard II approximate expressions [Eq. (A4)] with tc = 0.917
and ~~ ——2.14, respectively. Also the surface-electron Hartree-
Fock static potential is shown by a solid line (HI) and the
approximated formula 1.4 exp( —1.3 Z) is shown by a dashed
line (HII).
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Vs (z) = —&s o ) exp[—~ lz+ jdl],
j=0

(3.2)

where Vs,o and r are defined in Appendix A [10].
For a long range potential, such as the Lindhard II (see

Appendix A), we propose

—Vs,o [1+~iz], z & 0,
—Vseo Q o [1+~ilz+ jdl] '8d(z+ jd),

~ ~

z & 0, (3.3)

B. Surface-projectile potential

To start, we can describe the broken line trajectory
posed by TB [2] by considering an unpenetrable barrier
at Zp, Zp being the distance of closest approach,

where the cutoff function Og(z) = 1 if lzl ( d and zero
otherwise. In Fig. 4, we plot the model potentials.

P Seo& &M = K~, and ~I. ——p.~. However, other val-

ues of Vs~o, K, and K can be used instead if there are
solid physical arguments to support them.

The quantum treatment of the projectile also takes
into account tunnel penetration, which is neglected in a
classical description, including intermediate planar chan-
neling. Anyway, for grazing incidence the description of
the S-P interaction well within the solid should not be
very important, even less if the projectiles are heavy ions
as in our case. Therefore, to simplify our calculation,
we have considered only the outside part of the potential
(Z & 0) and let it be zero otherwise, as shown in Fig. 4

[see also Eq. (C2) and discussions below].
In summary, besides the well-known jellium model, we

have introduced in this section two other models based
on the simple-form Moliere II and Lindhard II potentials.
Accordingly, we will designate as Moliere and Lindhard
models the ones describing the S-e attractive interactions
by Eqs. (3.2) and (3.3), respectively, and the equivalent
expressions to describe the S-P repulsive interactions.
In Fig. 4, we show a schematic picture of the potentials
involved in each model.

IV. APPROXIMATIONS

For Moliere II and Lindhard II potentials, to be con-
sistent with the preceding subsection, we use the same
expressions as Eqs. (3.2) and (3.3) with Vspp, tcM, aild

x~ instead of Vs,o, K, and K, . We consider Vspo ——

In this section, we proceed to use the time-independent
distorted wave formalism to solve the Schrodinger equa-
tion. For simplicity, we consider heavy projectiles. We
shall investigate several theoretical methods: the Grst-
order Born approximation to start with and two distorted
wave methods based on the impulse approximation to
take into account higher perturbative orders.

A. First-order Born approximation

Z,z

By first-order Born approximation, we mean the first
perturbative order to the T matrix in the residual poten-
tials, either V, or Vy.

d. BrinIcman-Kv amer 8 approximation

-2d

(c)

-d 0 ~ d

/r ~ r
(

I
V

Z, z

The most elemental approximation in an electron cap-
ture process is the neglect of the internuclear interac-
tion, Vs~ in our case (i.e. , Vy V~, ), to give Ts~
{QflVs, lg;) or rs„= (ajar, le, lg, l, ). This is called the
Brinkman-Kramers (BK) approximation [12]. Although,
as we shall see, its contribution is irrelevant for grazing
collisions involving heavy projectiles, it provides very use-

ful insight of the pro6les and basic parameters involved in
the collision. After simple algebra, we find the following
one-dimensional wave functions:

I

d -d d Z, Zj
/ I II

exp (iK,z Z, )
(2 )1/2 &x

exp (iKy, Zy)
A(vx —k lzx)

27r i~2

(4.1)

FIG. 4. Electron-surface (dashed lines) aud proton-
surface (solid lines) potentials as a function of the distances
z aud Z, respectively, for {a) jellium, (b) the Moliere model,
aud (c) the Liudhard model.

where py(vy, —k, lzf) is a one-dimensional profile of the
final wave function Py(ry) expressed in terms of a two-
dimensional Fourier transform. In Eq. (4.1). Z; y is the
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component of R~;fl perpendicular to the surface. In
general, for a given function in the coordinate space r
P(r) and its three-dimensional Fourier transform F(K)
in the momentum space K, we denote the partial or one-
dimensional Fourier transform as

dr,
X(K, ]z) = '

exp( —iK, .r, )X(r)
27r

dK,
exp(iK, z)E(K„K,),

2vr '/'

(4 2)

where r = (r„ z), K = (K„K, ), etc. Conversely,

proximation. Mathematically, it can be seen that for

a ls final state v oc pf(Wf) oc Wf, oc MJ, . As we

shall see in Sec. V, the matrix element including V» pro-
duces a dependence M& . Therefore we expect the BK
to be important for the transmitted or forward capture
but irrelevant for grazing collisions or backward capture.

S. Jacheon Sc-hip or $r at ord-er Borra approaimatios

Certainly, the first order includes the S P-term
(Qfz, ]V»~g;t, ), which cannot be neglected for grazing
collisions. The full first order is then

'ra (~fL I+se + +sPIW&L) (4.9)

F(K) = exp( —iK r)F(r)
2x '/'

+"
exp( —iK,z)F(k, ~z).

(2z.)'/' (4.3)
(4.10)

+st + i/z +sP(u) pf (v f~ —k, ~Wfg + u)

x&s (W' -u)

Z / exp ( z(Z2 + K2)1/2)

/ (Z +K)
1

(Z2 + K2) i/& (4 4)

For a pure Coulomb potential, and for the ground
state, the profile or one-dimensional wave function is
given by

and 7~~ is negligible, as mentioned before. The integral
over u is a variant of the Feynman integral and it repre-
sents the Jackson-Schiff approximation [13] in the tradi-
tional capture formalism. Note that it is fully equivalent
to the one-dimensional integral obtained by Dettmann
and Leibfried in their one-dimensional model [Ref. [20]
Eq. (16)]. For numerical reasons that will become evi-
dent later, we re-write the preceding equation as

satisfying a one-dimensional Schrodinger equation with a
linear pseudopotential

g2 +K2
1+z (Z' + K') i/2 ' (4 5)

Note that this linear potential is Coulombic at large but
finite distances as z ~ 0.

After using the Schrodinger equation in momentum
space,

+ du
(W)=,/2q „+(u) Vs, (W —u)

= (e;, —W /2j P~+(W)
+ dz

„/, exp( —iWz) P~+(z) Vs. (z),

(4 6)

(4.7)

we can write the 6rst-order BK in closed form:

= (P~(Wf)II, (W;, )

= Pf(Wf) [e; —W;, /2 P~+ (W;, ), (4.8)

where Wf = (Wf„Wf, ) = (vf, —k„Wf, ), W;, and
Wf are given in Eq. (2.16), and the asterisk denotes
the conjugation operation. Equation (4.8) has the same
structure as the atomic collision counterpart [20]. In Ap-
pendix B, we evaluate the magnitude Ig .

Our experience in atomic collisions teaches us that at
backward angles the 6rst-order BK is negligible. The
dominant interaction is the internuclear interactions,
translated here as Vg~, not considered in the BK ap-

+Br 1 2DB1 B f VfS e fZ + +

xIi,, (W;, —u), (4.11)

where we have used Eq. (4.6) and

D„(u) = V»(u) (4.12)

B. Surface Born approximation

It is obvious that the S Pinteractio-n is essential to
describe the projectile refiection and in this way the
capture process. The S-P interaction should then be
treated to all orders by building up this interaction in
the corresponding wave functions. Atomic collision ap-
proximations related to this method are, for example,
the Coulomb Born approximation in the electron-atom
excitation [21] and the Coulomb Brinkman-Kramers ap-
proximation [22] for capture. In a similar fashion to these
approximations, we distort the projectile plane wave in
Eq. (4.1) by the full S Pcontinuum, nam-ely,

exp (iK;zZ, )
(+spo& Zi) i/2 Dgp(+spo& Ki; Z~)

(4.13)
exp (i Kf,Zf)(+»O, Zf) =

2 / DsJ, (V o, Kf, , Zf) .

The Fourier transforms of the potentials are displayed in
Appendix C.
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The distorting factors D&& are evaluated in Appendix C.
The corresponding T matrix, which we will call surface
first-order Born (SB1), is then

rsB1 (0 fL'Dsp(+spo)l&s~lk'IDsp(&sf o))

l l ) r I f t I $ I

=( ~,, ( s~p)&f( f —k.)IVs. lC'~„(V»p)&~, )

, ,D„,(u)pf(vf, —k, lWf, + u)

xIi, , (W, , —u), (4.14)
(b)

where Dsni(u) is the Fourier transform of the function

DsBi(Z;) = Dse(Vseo) K;, ; Z;) Dsp(Vsf'o) Kfi)'Zf)
(4.15)

I

l tl (
I )i, t (

I ll
I

( l(
I

and where we have assumed Zf —Z; since we will
be dealing with heavy projectiles. In Appendix C, we

present details of the calculation of DsBi(Z;). Note
that if the S Pinterac-tion is dropped, then we obtain
Dsni(Z;) = 1 and D, , (u) = (2m) fzb(u), recovering the
first-order BK approximation, as expected.

The function Dsni(Z) has an equivalent counterpart
in three-particle atomic collision theory representing the
internuclear distortion, namely, the well-known factor
exp[(2iZT Zp/v) lnp], where p is the impact parameter
[see, for example, the striking similarity to Eq. (C10)].
Mathematically, the oscillatory behavior as p -+ 0 can-
cels the contribution at close distances; physically, it can
be ascribed to the internuclear repulsion. A similar in-
terpretation applies for D», (Z). In Fig. 5, we plot real
(Re) and imaginary (Im) parts of Dsni(Z) as a func-
tion of Z [see Eq. (C6)] for protons colliding with on an
Al crystal at 525 keV (corresponding to Fig. 1 of Ref.
[6]) considering the Moliere model. The oscillations as
Z ~ 0 cancel the exchange contributions at P Sdis--
tances shorter than the turning point Zo. This effect is
well known in planar channeling where a classical cut-
off function is generally used to neglect P Sdistances-
shorter than Zp, which is unity for Z ) Zp and zero for
Z ( Zp [23]. This crude approximation is essentially the
"unpenetrable wall model, " which we study in Appendix
C. This simple model should be equivalent to the broken
classical trajectory used by TB [2].

I I l I I I I I I I

8 10

Z(a, .u.)
FIG. 5. Plot of (a) real and (b) imaginary parts of D»,

as a function of Z for 525 keV protons colliding vrith an Al

crystal at 3 mrad (corresponding to Fig. 1 of Ref. [6]) within
the Moliere model. Solid lines, expression Eq. (C5); dashed
lines, the eikpnal approximation Eq. (C6). The parameters
are Vs~p 1 66 K 0 917 Ic 0 and the distance of
closest approach or turning point is 2.46 a.u.

C. Surface impulse approximation

In the three-particle atomic collision theory, the im-

pulse approximation considers the distortion of the elec-
tron cloud by the projectile, neglecting the forces due to
the target nucleus. The simplest application, to our case
consists of distorting the initial wave function g, by

0,"= O' Dsp(Vsro)K). ) Z') Dp, (Zs, v. ; rs),
(4.16)

where v„ is the relative velocity of the electron with re-
spect to the projectile, v, = pf (k —v;) = (v„, v„,)
pf (k, —v;„k,—v, ,), and Dp, is the well-known Coulomb
distortion factor given by

D&, (Z~, v„; r) = exp(ma~/2) I'(1 —ia~)iFi(+ia, 1; iv„r —iv„r), (4.17)

with a = Zi /v .
En fact, this approximation is not the exact impulse approximation but a peaking version. Its validity in the present

case should be very high because the impact velocity considered here is much larger than the Fermi velocity of the
electrons in the solid. We construct the surface impulse (SI) approximation as

&. = (@',, (Vs~o)If(vf —k ) IVs-l@~,.(&»p)&~, )

Ds) (u) Ilf'(vf. —k. lWf, + u) Ii, (W,, —u),
27r 'f' (4.1S)
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Fy(rf) = pf(rf) Dp '(Zp, v„; rp) = pf(rf) DP, (ZP, —v„,. rp), (4.19)

and Dsy = DSB&. Here the function Ff (vf, k—, ] zf ) plays the role of a one-dimensional final state just as pf (vf, —k, [zf)
does in the SB1 approximation in Eq. (4.14). For a 1s final state we can write

F;.(Vf. —k.]Wf. + u) = p .(Vf. —k.
I Wf. + u) M~. (") (4.20)

with the modulating function

0

Mq, (u) = exp(xa /2) I'(1 —ia ) Ap (1 —ia )+
Ap

(4.21)

(vf —pf v; —(Mp + 1) k, ) + (pf (k, —W,,) + u)2 —(u„+ iZP)2

(vf, —k, )2 + (Wf, + u)z + ZP2
(4.22)

Note that the presence of Mq, (u) is the only difference
with respect to the SB1 calculation.

D. Surface Vainstein-Presnyakov-Sobelman
approximation

~f ~fDSP(VSPO& f» f) & (4.23)

with Vspo ——(Zp —1)Vspo/Zp. The remaining pertur-
bation is therefore Vs, + VsP/ZP and after some algebra
we 6nd

svr s (@Kg, (VSPO)F( f —ks] zf ) ~Vss

+ z le+ (v, ,)4„+)

+

xIg, (W;, —u). (4.24)

Note that for Zp = 1, Dsp(Vspo) is unity and the plane
wave is recovered. The full expression for D»» is

In relation to the SI approximation, it may be ar-
gued that for proton impact the S-P interaction can-
cels the S-e interacting at large distances in the final
channel. So to satisfy the asymptotic conditions, for
proton impact, for example, one should better use sim-

ply the unperturbed (Born) wave function. We are here
revisiting a situation very well-known in three-particle
atomic collision theory, where one has to deal with a large
range potential. In this respect, we should recall some
boundary-corrected perturbative approximations such as
the true [24] and boundary [25] first-order Born approx-
imations. In our case, however, we are correcting short
range potentials and so we do not expect large correc-
tions to the SI approximation. The theory that we pro-
pose here is termed the surface Vainstein-Presnyakov-
Sobelman (SVPS), originally developed in the context
of electron-atom collisions 30 years ago [16].

The initial wave function used in this model is again
g;, as in Eq. (4.16), and the final is

OO

D»» (u) = dZ exp( —auZ)

DsP (VsP0 +f Z)DSP(Vspo +' Z)

2 Vsp(Z)
(W. u) 2 2eqs Zp

(4.25)

An approximation for D»» is presented in Appendix D.

V. RESULTS AND DISCUSSIONS

All of the r-matrix elements developed in the preceding
section have the following form:

(5 1)

) T„MHg (f&:,) + R,Hg (—k, )
n

+j, L&„{u)P&(w&. —k. )s'& +u)

x2q (W;, —u) (5.2)

or 4&f instead of Ff if first-order theories are considered

instead. In practical terms, we use D„(see Appendixes
C and D) and I& (see Appendix B).Here the superscript
X denotes the model; X = J, M, L correspond to the
jellium, Moliere, and Lindhard models, respectively. The
subscript Y represents the approximation Y=B1, SB1,
SI, and SVPS, corresponding to the first-order Born, the
surface first-order, the surface impulse, and the SVPS
approximations, respectively. Although we have made
rigorous numerical calculations, we found that there is no
appreciable difference if we factor out the integral D(u)
evaluated at u = —TVy„which is evaluated where Ff'
peaks.

Integrating the b functions contained in 11, (see Ap-
pendix B), we obtain
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xI"f*(vf, —k, [vfz —k —2n7i'/d).

Here we summarize the sources of the quantities used:
Ll, R, and 7 are defined in Appendix B [Eq. (B3)] and
represent the normalization, the reHection, and the trans-
mission coefBcients, respectively; I"f' has closed form for
any final state being given for the ground state by Eq.
(4.20); D was derived in the eikonal approximation
[Ref. [19], Chap. 9], namely, Eqs. (C4) (with Zo ——0),
(C8), and (Cll) for the jellium (X = J), Moliere (X =
I), and Lindhard (X = I) models, respectively; D
was derived also in the eikonal approximation, namely
Eqs. (Dl) and (D2) for the Moliere (X = M) and Lind-

hard (X = I) models, respectively; Xi, was derived in
first perturbative order, namely, Eqs. (B6), (B15), and
(B18) for the jellium, Moliere, (X = M) and Lindhard

(X =- I) models, respectively; and T„are given in Eqs.
(B7), (B16), and (B19) for the jellium (X = J), Moliere

(X = M), and Lindhard (X = I ) models, respectively.
The eikonal approximation consists simply of modify-

ing the phase of the undistorted plane wave (see [19],
Chap. 9, for details). The numerical calculation involves

a single integral on u (which is very cumbersome due to
the oscillations introduced by the principal parts; see Ap-

pendix B) following a three-dimensional integral over k
space [Eq. (2.19)]. A total probability takes about 1 h in
a 10 MBop computer, the greatest part of the time being
spent in the evaluation of the incomplete p functions.

At this stage, we should we mention a priori the com-

10 10'

0 0 0 0

10 10-'

SB1

10-9— 10-9

v(a. u.) v (a.u. )

10' 100

10 10

10
—6

10 10
—9

v (a.u. ) v (a.u. )

FIG. 6. Total probability for capture by protons from an Al crystal as a function of the incident velocity in a.u. The grazing

angle is 3 mrad. The curves are labeled by the corresponding theory and the experiments (open circles) from Winter et al. [6]

are displayed in all figures. (a) Results of the first- and second-order Born approximations of Thumm and Briggs [2]. (b) Our

results for the SB1 and SI, for the jellium model. (c) Our results for Bl, SB1, SI, and SVPS for the Moliere model. (d) Similar

to (c) for the Lindhard model.



50 QUANTUM FORMALISM FOR ELECTRON CAPTURE FROM A. . . 2419

parative qualities of the approximations and interactions.
In our opinion, the hierarchical order is SVPS & SI & SBl
& Bl for the approximations and M & L & J for the in-
teractions (with the symbol & we mean "better than").
Therefore, the SVPS approximation with the Moliere in-
teraction should be the best approximation in the present
work.

In Fig. 6(a), we plot the results of TB [2] along with
the experiments [6]. In Figs. 6(b), 6(c), and 6(d), we

report our results for the jellium, Moliere, and Lindhard
models, respectively, again including the experiments. As
a first observation, we can definitively affirm that there
is no agreement at all with the experiments [6], except in
the velocity region 2—3 a.u. where the theory crosses the
data. In the next subsection, we find some theoretical
guidance to discuss in more detail our numerical results.

I

A. Theoretical tendencies

In this section, we obtain a simple closed form for the
probability of electron capture by making very mugh ap-
proximations, &om which we will be able to get useful in-
formation about the dependence on the main parameters.
Let us start with the first order in the B1 approximation
as given by Eq. (4.11). We use here the most elemen-
tal jellium model to describe the initial electronic wave

function, i.e. , Ii, as given by Eq. (B4), a Moliere II po-

tential to model the S Pint-eraction, i.e., D, , given by
Eq. (CS), and final ls state Fourier transform, which is
known to be &pf(K]k) = (8'/ z)f'/(Zp + K + k ).
The resulting integral can be calculated with the Cauchy
technique by contouring the complex u plane to give, af-
ter some algebra, the following expression:

7s~ = —27liV~ Vzspp(Zp/x) [LIH2(kz) + RH2( —kz)]) (5 4)

H2(k) = 1 1 1 1

2v (vfz + iv~) + pp vfz —k + iv~ Wfz + llcM + iv~

1 2(vf, +iv ) 1 1
X + . 2 + +

'iv~ (vfz + 'iv~) + 7p vfz+ tv~ k Wfz + iKM + wj~ )
1 1 1 1

[(vf, —imp)'+ v2]' imp k —imp vf, —imp —Wf, —i~M
' (5.5)

where v~ = ZP2+ (vf, —k, ) and 9, R, and pp are
defined in Appendix B.

To obtain a manageable expression in the high velocity
limit we proceed to make the following approximations:
M~ && 1, v v;, )& 1, ~Wfz] )) ~v;z~, to obtain

2iVsI pZp
s/2

v, , Wf,
(5.6)

(5.7)

The total probability then behaves as

Vs~oZ~ k.'
15vrSV~ M& v. v' '

where we have introduced the factor
- 2

S= ' 1+
viz viz

(5.8)

(5 9)

The factor S depends on the projectile mass and incident
angle evaluated at around k = 0. Note that the total

where 7 = R+ 9 is the transmission factor. This latter
parameter takes into account the tunneling mechanism.
Integrating ~7

~

over k space as in Eq. (2.19), one obtains

probability involves a ratio of energies and velocities giv-
ing a dimensionless magnitude.

B. Discussion

With the help of the preceding closed-form probability
Eq. (5.8), we are able to study the dependence of our
numerical results on the collision parameters. We sum-
marize the main features.

(i) For ls-ls electron capture in ion-atom collision, the
first-order BK approximation behaves in the high-energy
limit as ZpsZ2s, , where Zy is the target charge [8]. Our
model predicts the same dependence on k~ instead of Zy.

(ii) At the level of the differential probability dP/dk„
we have found that our numerical calculations (not shown
here) follow indeed a shape similar to k (k, —k~), as
predicted by Eq. (5.7).

(iii) If we consider, as in the experiment of Winter et al.
[6], that the transverse velocity satisfies v;, oc v;, we dis-
cover that the probability varies as v,, v,, oc v,. v,.

v,- in a similar fashion to the Brinkman-Kramers coun-
terpart in ion-atom collisions. The first-order SB1 curves
as plotted in Fig. 6 vary as v,- ', v,-, and v,-
for the jellium, Moliere, and Lindhard potentials, respec-
tively, in the range v; = 6 —7 a.u. So the dependence
v,- seems to be quite near the numerical one.

(iv) Furthermore, the probability falls off as v,, in
agreement with the prediction of Dettmann and Leibfreid
for backward capture in their one-dimensional model [Eq.
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(22) of Ref. [20]].
(v) From Fig. 6, it can be observed that the distorted

wave methods SI and SVPS fall off faster than the first-
order B1 and SB1 approximations. The explanation is
simple. The only difference with the first order approxi-
mation is the presence of the modulating factor M(u) [see
Eq. (4.20)]. It is composed of three terms: the Coulomb

factor [exp(era j2) I'(1 —ia )] and the term Ap, both
of which tend to unity as v, , + oo, and the third factor
within squared brackets, which contains a key variable
Ap. This can be approximated by

(k, —W,, + u) —(v, +i Zp)
v2+ Zp2+ (Wt, + u)2

(5.10)

where we have considered, when convenient, v, , vy, —
v„)) k, and M~ )) 1. The main contribution to the u
integral Eq. (4.18) comes from the region u = Wt„so
Ap takes the value

1+ia
Ap(u = Wt, ) =

1 —ia P

(k, —v,, )2

V
(5.11)

and we find

1
M(u = Wt, ) oc —= O(v, , ).

r
(5.12)

We conclude that the T matrix may fall off faster than
the first order approximation (either Bl or SB1) because
of a factor O(v, , ). Investigating our numerical results
in the range v; = 6 —7 a.u. we fit the SI values with

v,. ', v, , and v, , for the jellium, Moliere, and
Lindhard potentials, respectively. So at the level of total
probability, our distorted wave results fall off faster than
the first order approximation, in total contrast to the
finding of TB [2].

Of course, the SI and SVPS also include two-step pro-
cesses due to the Thomas mechanism (occurring when
ReAp = 0), but it does not give rise to steplike struc-
tures at the level of total probability as found by TB [2]
[see curve B2 in Fig. 6(a)].

VI. CONCLUSIONS

In this article, we have developed a quantum formalism
to treat electron capture Rom crystal surfaces by heavy
projectiles at grazing incidence. After modeling the inter-
actions involving the surface, we have adapted some the-
oretical methods commonly used in three-particle atomic
collision theory, namely, two first-order approximations
(Bl and SB1) and two distorted-wave methods (SI and
SVPS), taking into account part of the second-order Born
approximation, which is known to be dominant in rear-
rangement collisions. In synthesis, our work adapts the
outstanding distorted-wave methods developed in atomic
collision theory during the past sixty years.

Approximations were used to evaluate the quantities
D (see Appendixes C and D) and Ig (see Appendix B),
and these are uncertain points. Much should be done
to better calculate D, which, we suspect, is the weakest
aspect of the evaluation.

As far as capture by protons from the electron gas
of the Al crystal is concerned, we summarize the main
points of this article.

(i) The outgoing transverse velocity vt, is found to
be larger than the incoming one ~v;, ~, in contrast to the
specular trajectory approximation. This point would be
interesting to study if the final angular distribution were
measured.

(ii) First-order approximations such as Bl and SBl fall
off approximately as ~ v

(iii) Higher-order approximations such as SI and SVPS
fall off faster and always run below the first orders.

(iv) There is no substantial difFerence whether we use
the Lindhard or Moliere potential.

(v) Huge difFerences are observed when compared with
the experiments of Winter et aL [6] and the theories
developed by TB [2] in the high-energy tail. Furthermore,
steplike structures as in the theoretical work of TB [2] are
not observed.

(vi) The only theory that overlaps the experiments of
Winter et at. [6] is the SVPS approximation using the
Moliere model and even then only in the region v, = 2 —3
a.u. It is significant that this involves the most elaborate
theoretical method and the trustiest potential. At higher
velocities v, ) 3 a.u. , the theory presents no impediments
to be used; furthermore, the larger the impact velocity,
the more reliable the theory should be. At lower veloc-
ities v, & 2 a.u. , all the theories developed here are out
of the range of validity, and a proof of that is that the
probability is larger than unity.

In summary, we show that theoretical estimates for
capture from the free-electron gas at high energies largely
underestimate the experiments Winter et al. [6]. Other
mechanisms should be studied to explain these experi-
ments. In the following article [17] we study the capture
from bound states of atoms which form the surface.
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APPENDIX A: EVALUATION
OF THE SURFACE POTENTIAL

The S-e interaction can be approximated by
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V,.(.) =

0

—Vs,p/c) —exp( —
bz z/a, ), Moliere I

j 2

2- Z/2

vs.o
g

ca,

where a, = 0.8853/(ZT +1) ~ and c —3. The Moliere
parameters are a~ ——0.35, a2 ——0.55, a3 ——0.10, bg ——

0.30a„bz ——1.2a„and bs ——6.0a, . The Moliere form
has been one of the most popular potential used in the
past and it is known to fail at large separations. On the
other hand, the Lindhard expression gives a good account
of the potential at intermediate and large distances and
it has been largely used in string and planar channeling
[23]. It fails at very large separation because it falls off
as 1/rs while the exact Thomas-Fermi falls off as 1/r4
This failure has serious implications here because, as we

shall see, the corresponding planar potential falls off as

1/z, giving rise to a confiicting Coulomb potential [see
Eq. (A4) .

After doing the surface integral (Al), the S-e interac-
tions then read

For an aluminum crystal, Vg, = 0.59, and d = 3.8 a.u. ,

and so r = 0.92 and r~ = 2.47. In Fig. 3, we show the
S-e Moliere II and Lindhard II potentials using these pa-
rameters, which agree quite well with the original Moliere
I and Lindhard I potentials, respectively.

We have also explored the Hartree-Fock approximation
producing the following the static potential:

ZT ). d 14„, (x)l
r x —r

n, l,m

(A6)

APPENDIX B:EVALUATION OF I
IN FIRST PERTURBATIVE ORDER

By using the single z function [11]to represent the bound
states P„~ and performing the integral (Al) we obtain
the surface potential labeled with HI in Fig. 3. The
curve can be fairly fitted with the simple expression
1.4exp( —1.3 z) as shown in Fig. 3 with a dashed line
denoted with HII. For z & 2 all the curves run near each
other, but for z & 2 huge differences are observed.

Lindhard I,

(A3)

where Vs, p
——2+Zzb'~a, c . Results for electrons in

aluminum crystal are shown in Fig. 3; the parameters
are ZT = 13, h~ = 0.0337, and a, = 0.3464, and
so Vg p = 1.66. None of those potentials have known
quantum-mechanical solutions. Some approximations
are performed next.

In the Moliere case, we approximate
az/bz exp( zbz/a, )—= c exp( —z z), where c =
a~/bz. In the Thomas-Fermi potential z oc 1/a, .

The use of a single exponential is equivalent to the Bohr
potential [9]. This potential decays very rapidly with in-

creasing r, becoming invalid at separations greater than
few atomic units (Ref. [9], p. 58). In the Lindhard case,
we replace the expression within squared brackets by a
Coulomb-type expression.

In this way, we will work with two approximate po-
tentials (labeled with II to differentiate them &om the
authentic ones, labeled with I) given by

We have to solve the Schrodinger equation of the elec-
tron interacting with a one-dimensional crystal through
a semiperiodic potential Vs, (z) as described in Sec. III.
When obtained the solution P& (z), the magnitude of in-

terest here is

dz
Il, (W) =,( exp( —iWz) P~+(z) Vs, (z)2x '~'

e;, —W /2 Q„+(W). (Bl)

1. Jellium model

+&,&
M exp(ikz) + R exp( —ikz), z & 0
7 exp( —p, z), z & 0,

(B2)

where

We start calculating II, in the jellium model, where the
wave function is simply [2]

—Vs' p exp[—r z], Moliere II
—Vs, p [1 + r~z], Lindhard II. (A4)

1Q=
(2vr)'~' '

k —ip, 2k

k+i~. ' k+i~. '

2 2Vseo 2 (2',p
—V~,).

Ce

(A5)

As we shall see in Appendix C, the continuum wave func-
tions corresponding to the Moliere II and Lindhard II po-
tentials can be related to the hypergeometric functions
os and qFq, respectively

Now we proceed to determine K~ to satisfy the ex-
perimental confinement potential V~ ——E~+E~, where
E~ and E~ are the Fermi energy and the work function.
According to the model used (see Sec. III and Fig. 4), we
impose Vs, (d/2) = Vc, and then

&. = (2V~. —k')'~', (B3)

and M, 7, and R denote the normalization, transmission,
and re&action coeKcients, respectively. After simple al-
gebra, we find

I„(W) =—iV~ M R
(2m)~&2 W —k+ig W+ k+iq+

(B4)

Since II, is within an integral operation, it is convenient
to extract the b functions to give
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I& (W) = T—, [Mh(W —k) + Rb(W+ k)] + Z„(w),

(B5)
p,'+'(w) = p

i —i exp[i(W + k)]d]
(B13)

with e,d ~ 0. Factoring out the b functions, we obtain,
in similar fashion to Eq. (B5),

I„(W)= —) T„[M(W —k —2n7r/d)
~=o

Tp
——V~. (m. /2) '~', (B7)

+Rb(W + k —2n~/d)] + T.„(W), (B14)

1 W 6k
(B8)

with

where P denotes the principal part.
X

For any other potential V&„we can iterate the
Schrodinger equation starting &om the jellium potentialI
Vs, as developed by Bethe and Salpeter [28]. In general,
we can write

iVseo

(2vr) '~'

1
x Q 8 —k —iK

+ 2~ Mp2 (W)M (W)

Xq (W) =
(2m)'~'[W —i(K y pp)]

Ii, (W) =I&(W) +
&

exp( —iWz) P+l ~(z)
27r '~'

x[V,.(z) —V,'.(z)] (B9)

2. Moliere model

where X = J, M, and L denote the potential, namely,
the jellium [Eq. (3.1)], Moliere [Eq. (3.2)], and Lindhard
[Eq. (3.3)] models, respectively. In this way, we obtain

X
I& in first perturbative order in the potential Vs, (z)—
Vs. (z).

+RW+ It.. —iK

y2K R'P2 (W)M (W),

M
Tn

Vs.p(2~)i~2

Kmd 4n2vr2+ K2 d2

3. Lindhard model

and M~+l(W) = [(W + k) + ~ ]

(B15)

(B16)

ivs. p

(2m)'~' W —i(K + p )
'R

(W —k) —inc (W+ k) —ie

2Vs.« - uC' '(W)
(2~)'&2 (W —k)2+ ~2

RC (W)
(W+ k)2 + K2 . ' (B1O)

where Cl+l(W) are the one-dimensional crystal factors

In this case, the integral (B9) can be easily perforined
and we find, after some algebra,

Iq (W) = —) T„Mh(W —k —2nvr/d)
n=o

+Rb(W+ k —2n7r/d) + Zl, (W), (B17)

where

X„(W) = — '
[7Ep —ME(z ) —RE(z )

(2m ) '~2m (

+2iLlP, (W)ReE(z )

+2iRP, (W)ReE(x )], (B18)

Following the same pattern as before, we obtain, after
tedious algebra,

C~+l(W) = ) exp( —[e, —i(W 6 k)]jdj
j=O

(B11)

and we have introduced e ~ 0+ to make the series con-
vergent. The sum on j can be then solved in closed form
to give

xp ——(p, +iw)/r„x "& = [gd+ i2nm]/(K, d), x~+~ =
[g + i(W + k)]/K, ,

Ep ——exp(zp) Ei(xp),

C + (W) = (1 —exp [
—e,d + i(W + k)d])

=iP,'+'(W)+ —) S(+k —2m~/d),
N

(B12)

E(x) = exp(x) [Ei(x) —Ei (x + xd ~()],

(B20)

Eq is the exponential integral and Re denotes the real
part.
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APPENDIX C: EVALUATION OF D, ,
IN THE EIKONAL APPROXIMATION

mentum transfers, i.e. , u —Wy, » 1, both models
should coincide.

To obtain this magnitude, we first solve the one-
dimensional Schrodinger equation

( K')
, + sJ ( ) — l@a(V»p ) = o

2M 2M)

1. Unpenetrable wa11 model

First, we consider the S-P interaction described by an
unpenetrable wall at Zp used by TB [2]. In this case, one

simply finds

If we then write

(c1) 1 exp[—(rl+ iu)Zo]
D u

(27r)1/ g + iu
(C4)

4~(Vs+p Z) = exp(iKZ)Dsp(VsJ o K;Z)/(2x) ~,
the function D», (Z) is defined as D», (Z)
Dss, (VsJ o K;, ; Z)DsJ'(Vspo, Ky, , Z). Dsr(Z) is gen-
erally a diKcult expression to handle. For Z & 0,
DsI, (Z) is composed of four terms: two of them con-
tain very oscillating functions, such as exp(2iK, ,Z) and
exp(2iKy, Z), and so they can be dropped, as far as heavy
projectiles are concerned. The third term takes into ac-
count interferences between the incoming and outgoing
projectile waves giving rise to an exponential of the type
exp[2i(K;, —Ky, )Z], and it will also be neglected The.
remaining term is the product of the incoming distor-
tion for negative times and the outgoing distortion for
positive times; throughout this work, we have evaluated
only this term. For grazing collisions, the most relevant
contribution comes from the interaction of the projectile
with outermost surface of the crystal and so we define

dZ
D», (u) = ] exp( —iuZ) D,s, (Z), (C2)

p 27K

where Dss, (Z) is the solution for Z & 0. We integrate
&om Z = 0 simply because the transmission is small
and therefore the probability of penetration is negligi-
ble. Mathematically, this can be seen by inspecting the
eikonal approximations [see Eqs. (C6) and (C10)]; the
strong oscillatory behavior cancels most of the informa-
tion for Z less than the turning point.

Accordingly, we define the corresponding Fourier
transform, of the potential also in the outside region
(Z & 0) to obtain

We are going to use this model to describe the 8 Pin--
teraction with the jellium model describing the S-e inter-
action, which is why we use the superscript J. For sim-

plicity, we consider Zp = 0, that is, the projectile refiects
in the outermost surface coinciding with the contention
barrier of the electrons in the jellium model.

2. Moliere model

D„(Z) = pFr 1 + in', P exp( —Z~ )
x oFr 1+in;, P exp( —ZK ), (C5)

with n; y = +21K'.,y. I/KM 0' = 2MJ Vspo/~, and the
superscript M denotes the Moliere model used.

The partial Fourier transform of Eq. (C5) can be ex-
pressed in terms of the generalized hypergeometric func-
tion sF4 [26], but its manipulation is very cumbersome
to deal with. It can be shown that the eikonal approxi-
mation produces (see Ref. [19], Chap. 9)

D, , (Z) = exp [
—AM exp( —~M Z)] (c6)

with

.P'~ f 1 1

2 glK;. l K~, y
(C7)

and AM = (g+ iu)/zM. The Fourier transform reads

For this case, Dsr, (Vspp, K;Z) has closed form in
terms of the hypergeometric function pFi. For lZl & 0,
and neglecting the interferences with the refiected waves
as mentioned before, we obtain

V„( )=
(27r)'~2(~ + iu)

'

(C3) D„,(u)=,i A p(A, A ), (cs)

)
V exp(iu/~ )

for the Moliere and I indhard cases, respectively, and Ei
is the exponential integral. In mathematical terms, this
is equivalent to considering Vs~(Z) for Z & 0 and zero
otherwise (see Fig. 4). Note that both V and V tend
to V»o/[(2n. )i~~iu] as u ~ oo. Therefore, for large mo-

where p is the incomplete gamma function [Eq. (6.5.12)
of Ref. [27]]. This is an expression relatively simple to
manipulate within an integral operation.

3. Lindhard model
LD, (Z) can be calculated in closed form and it is ex-

pressed in terms of the hypergeometric functions ~Eq

D, , = —exp [ (Ny + N;)m/2] I'(1—+ i')I'(1+ iN; )

xc2Kf, (Z+ 1/~~)iFr [1 —xN~, 2, 2iKf, (Z+ 1/tc, )]
xi2K;, (Z+ 1/K )iFi [1 —iN;, 2, —2iK;, (Z+ 1/K~)], (c9)
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with N;, y
= MVspo/(]K;, y [rz) and Z ) 0. This ex-

pression is again difBcult to handle. The eikonal form
produces a simpler one given by (except a factor phase)

1 Moliere model

D„=[1+K, Z]'l~+~&l

and so

(C10) 2 Vs po

(w, , —u) —2... Z, K (2~) &

I

xA
' '~(A', A' ),

—A
DsB~(u) =

( A, ' exp(A )I'(A„A, ),
K o 2 Il'

(C11)

where I' is the incomplete gamma function [Eq. (6.5.3)
of Ref. [27]], A, = (rl+iu)/~„and A, = I+i(N;+Nf).
Obviously, one can show that the eikonal expression Eq.
(C10) is simply the asymptotic limit of Eq. (C9) for large
z.

DSKPS
IN THE EIKONAL APPROXIMATION

Pz~ & 1 Zp —1)
A' = i —

(
+

2 ([K,, [
ZpKf ) '

and A' = (K + iu)/r.

2. Lindhard model

—A'

Dsvps (&)=, A, ' exp(A, )I' (A', , A, )
Ko 27l

2 &s~o

(W —u) 2 —2e;, Zp r, (2vr) '~2

II

xA, ' exp(A, )I' (A", , A, ),

(D2)

(D3)

If we use the eikonal approximation as developed in

Appendix C, closed forms can be obtained as follows.

Zp )
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