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M~imum-entropy analysis of the electron-pair density in many-electron systems
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The maximum-entropy formalism is used to obtain approximations to the spherically averaged

electron-pair density h(u) in terms of the first few interelectronic moments. This method leads to
the least biased results by the information not used. In particular, tight analytical and numerical

approximations to the electron-electron repulsion energy E„and to the central electron-pair density

h(Q) are obtained. Chebyshev inequalities are also applied to obtain bounds on h(u), showing the

complementarity of both methods. For illustration, the accuracy of the bounds and approximations
obtained are studied by means of Hylleraas-type wave functions.

PACS number(s): 31.10.+s, 31.15.+q

I. INTRODUCTION

The intracule or electron-pair density I(u), i.e., the
probability density associated with the interelectronic
vector u = rq —r2, is a fundamental ingredient in the
study of the electron-electron correlation problein [1,2].
Moreover, it is a quantity of great utility for construct-
ing energy functionals within a density-functional theory
framework [2] and it is related to several experimentally
measurable quantities, such as x-ray scattering cross sec-
tions [3].

For central field atoms, it is sufficient [1] to deal with
the spherically averaged electron-pair density, namely,

h(u)—:— I(u) dO„.1

4m

Some interesting physical and chemical properties of
atomic and molecular N-electron systems can be de-

scribed by means of the radial expectation values of h(u):

The major problem in studying physical properties of
many-electron systems in terms of the electron-pair den-

sity h(u) is that, even for very simple systems such as
two-electron ions, it is really difFicult not only to obtain
rigorous structural properties of h(u) but also to perform
a numerical treatment based on realistic models.

The main rigorous property known about h(u), apart
from the quantum-mechanical non-negativity, is proba-

bly the so-called electron-e1ectron cusp condition [4], i.e. ,

the equality between the electron-pair density and its erst
derivative at the origin, h (0) = h(0), which has been
derived &om the Schrodinger equation in the in6nite nu-

clear mass approximation.
Other rigorous known results [5] are the variational

lower bounds to the maximum value 6 „ofthe electron-

pair density h(u). These bounds are expressed in terms

of two or three low-order radial expectation values (u ).
Recently [6], the so-called extended cusp condition has

been observed for two-electron light ions, by means of
Hylleraas-type wave functions [7]. This property is ex-

pressed in the form

h'(u) & h(u),

(u ) = u I(u)du = 4~ u + h(u)du =—4vrp~+2
0

(~& —3) (2)

where the normalization is (uo) = i l (the number
of electron pairs). It is worthwhile to point out here
that the radial expectation value (u i) is equal to the
electron-electron repulsion energy E,.

which becomes an equality (the usual cusp condition) for

u = 0. The above mentioned expression has been essen-

tial in obtaining bounds to the central electron-pair den-

sity h(0) [8] (which is a measure of the probability of the
electron-electron coalescence) as well as to the electron-
electron repulsion energy E„[6],in terms of the first few

radial expectation values (u ).
Within the Hylleraas framework, it has also been

shown that the electron-pair density is unimodal [6,9]
(i.e., it has a single maximum, located not necessarily
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at u = 0) for some two-electron atomic systems. This
fact has allowed [6,9] the determination of a bound from
above for location u of the absolute maximum of h(u),
in terms of radial ((u })and logarithmic ((lnu)) expec-
tation values.

In summary, only a few rigorous or approximate prop-
erties of h(u) are known up to now. In this work we

obtain tight approximations to the electron-pair density
by using very limited information: the first few moments
of the pair density. In doing so we apply the maximum-
entropy (ME) method, based on information theory [10],
which chooses, among all admissible densities, the least
biased function compatible with the information we ac-
tually have. The choice is made by maximizing the in-
formation entropy functional, defined by

ble distributions compatible with our information have
entropy very close to the maximum. So entropy maxi-
mization protects us against spurious details for which

there is no evidence in the data.
The ME technique follows the ME principle [13], i.e.,

it chooses, among those compatible densities, the most
plausible in the sense that it is the least biased density for
the unmeasured moments. This choice can be performed
if h(u) is interpreted as a probability density and the
corresponding information entropy [see Eq. (4)] is maxi-
mized under the conditions that the first M+1 moments
be known.

Therefore, we have to solve the following Lagrange
multiplier problem:

Sg =—— h(u) lnh(u)du
0

(4)
b — h(u) lnh(u)du

0

for the whole set of densities which satisfy the constraints
imposed by the knowledge of some of their moments.

The calculated moments of these ME densities can be
used as approximations to the unknown moments of the
density. In particular, the method provides very simple
approximations to h(0) and E„in terms of the xnoments
used as constraints. This ME analysis is complemented
with the construction of lower and upper bounds on h(u)
by using moment theory and Chebyshev inequalities [11].

In Sec. II we briefly review the way of obtaining the so-
lution of an underdetermined moment problem by means
of the ME technique. In Sec. III this technique is applied
to the electron-pair density and the main results are ob-
tained.

+ ) X,
~

~, — h(u)u'du
~

= 0 (5)
(

0

with the convention that A; = 0 if the moment p; is not
considered. This functional variation with respect to the
unknown h(u) gives the following expression for the ME
solution:

M

h, , ~(u) = exp —) (A,u'+ b';Oj

where the subscripts 1, 2, . . . , M give the list; of moments
included in the constraints for Eq. (5) and the Lagrange
parameters Ao, . . . , A~ must be calculated from the con-
straints

II. THE gLECTRON-PAIR DENSITY
AND THE MAXIMUM-ENTROPY APPROACH f hi 2 ~(u)u'du = p,; (i = 0, 1, . . . , M)

0
(7)

The ME approach to the solution of underdetermined
inverse problems was introduced some time ago in the
literature [12,13]. Since then, diverse techniques based
on this general formalism or on related concepts of infor-
mation theory have been successfully applied in a great
variety of fields including radioastronomy [14], parame-
ter spectral estimation [15], particle physics [16,17], sig-
nal theory [18],atomic physics [19],or density-functional
theory [20]. See Ref. [21] for more recent applications.

We are interested in obtaining information on the
electron-pair density h(u) in terms of its first M + 1 mo-
ments p;, closely related to the radial expectation val-
ues (u' 2) by Eq. (2) as p; = (u' 2}/4m. Therefore we
are faced with an undetermined inverse moment prob-
lem. Clearly there exists an infinite variety of functions
whose first M + 1 moments coincide, and a unique re-
construction of h(u) from this limited information is not
possible.

Jaynes studied (in his entropy concentration theorem
[13]) in what sense the distribution of ME has a favored
status and showed how strongly distributions of lower en-
tropy are ruled out. Given incomplete information, the
MK distribution is the one that can be realized in the
greatest number of ways and the majority of all possi-

so that the considered moments of h(u) and hi 2 ~(u)
are the same.

The ME solution of generalized moment problems,
such as this one, leads in general to difBculties which de-

pend on the type of moments we are going to deal with

[22], the interval of integration [23], and the eventual in-
clusion of statistical errors in the moments [24].

The ME solution must be numerically calculated for
M ) 1, solving the extremely nonlinear system of equa-
tions (7). This solution always exists in the case of a
finite integration range owing to the monotonicity prop-
erties of the moment sequence which in turn leads to the
convexity of the potential function [25]:

M

U(A„A2, . . . , AM) = ) A;p;+ ln V, (8)

where we use normalized densities, such that p0 ——1 and
the partition function is

( M

V(Ai, . . . , AM) = e "'+ = exp —) Au* du,
0 i=1

(9)
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TABLE I. Value of the electron-pair density at the origin h(0) and the radial expectation values
(u") with n = —2, —1, 0, 1, and 2, for the two-electron ions with nuclear charge Z = 1, 2, 3, 5, and
10. The calculations were performed by means of Hylleraas-type wave functions [7]. Hartree atomic
uaits are used throughout.

Z

2
3
5

10

h(0)
0.0028
0.1068
0.5352
3.3162

32.6619

(u ')
0.1553
1.4651
4.0829

13.3080
59.6975

E..=(u ')
0.3111
0.9458
1.5677
2.8147
5.9372

(u')

1

1
1

1

(u)
4.4065
1.4221
0.8623
0.4824
0.2295

(u')
25.0595

2.5165
0.9271
0.2908
0.0659

which unique minimum is the ME solution

(i,2, ...,M)
P~ —Pg

where

p,
' '' -=u'h (u)du

0

The above important result is not valid in our semi-
infinite integration range, and the ME solution does not
always exist. The non-negativity of h(u) does not guar-
antee the existence of a ME solution, and extra conditions
must be fulfilled. In fact, for several particular number
of moments considered, some analytical and numerical
conditions are known.

Apart &om the elementary case M = 1, the following
relation has been proved for the case M = 2 [26]:

Pi (POP2 & 2P»2 2 (i2)

where the first inequality is a consequence of positivity
and the second one is an extra condition for the existence
of the hi, 2 density.

There are no proven conditions when the order of mo-

ments is changed (i.e. , for hq s, h2s, etc.) except for
densities such as h2 4, for which the moment conditions
can be related to those of the density

normalized moments in order to have a ME density.
Then, some numerical computations are needed. Ko-
ciszewski [27] found the allowed region in the space of
moments and in a recent paper this result was also ob-
tained and generalized by Tagliani [28]. This latter work
shows that for M & 4 there exists a distribution of ME
which is different &om those for the cases M = 2 and
M = 3. The mutual relations between the moments are
just those imposed by non-negativity.

We have checked that the radial expectation values
for the heliumlike systems with nuclear charge Z
1, 2, 3, 5, 10 fulfill the conditions for M = 2 but not the
numerical constraints for the case M = 3. Therefore
the ME density hi 2 3 does not exist as well as h2 4 since
the moments do not verify Eq. (14). As we do not have
conditions for the existence of ME densities with no con-
secutive constraints we have tried to find these solutions
seeking a maximum of the entropy functional.

In the following section this technique is applied to the
electron-pair density h(u), obtaining model-independent
estimations of this function as well as of important quan-
tities such as the central value h(0) and the electron-
electron repulsion energy E„.To have an idea of the ac-
curacy of the bounds and approximations to the electron-
pair density h(u) and other related quantities, a numer-

ical study by means of Hylleraas-type wave functions [7]
is carried out for some two-electron ions.

P2 & POP4 & 2@2
2 2 (14)

There are no analytical conditions for the first three

having normalized moments p~ = p2 and p2 = p4 so that
the conditions become

III. MAXIMUM-ENTROPY DENSITIES

A. One normalired constraint

ME densities constructed by using only one constraint
(besides the normalization imposed by the knowledge of

TABLE II. Value of the one-moment ME approximation h~ (0) to the electron-pair density at
the origin h(0) and relative errors of the one-moment ME approximations h~ (0), (u )( l, (u)( ),
and (u )i l for the two-electron ions with nuclear charge Z = 1, 2, 3, 5, and 10. The calculations
were performed by means of Hylleraas-type wave functions [7]. Hartree atomic units are used

throughout.

g
1
2

5
10

hME(0)

0.0065
0.1806
0.8462
5.0070

47.7658

la(o)-h, , (o) I

a(o)
131.45
69.10
58.10
51.20
46.23

1pp I( ) ( ) I

(~)
69.84
66.90
60.79
56.56
53.52

1pp l(tt ) (tt ) I

141.02
142.80
125.43
138.31
112.44
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TABLE III. Value of the one-moment ME approximation h2 (0) and (u )( ) to the electron-pair density at the origin

h(0) and to the electron-electron repulsion energy E„= (u ), respectively, and relative errors of the one-moment ME
approximations h2 (0), (u ), (u), and (u ) for the two-electron ions with nuclear charge Z = 1,2, 3, 5, and 10. The
calculations were performed by means of Hylleraas-type wave functions [7]. Hartree atomic units are used throughout.

Z
1
2
3
5

10

hME (0)
0.0041
0.1126
0.5238
3.0822

29.2863

100 Ih(0) h (0) I

h(o)
46.42
5.43
2.13
7.06

10.02

E(2) (
—1)(2)

0.3144
0.9658
1.6122
2.9107
6.1648

10pl&~ '& —(~ ') '
I

1.06
2.11
2.83
3.41
3.83

1pp I &~& &~) I

&~)

9.32
7.32
8.38
9.41

10.02

100I&~ ) —&~') '
I

30.17
18.76
20.72
22.63
23.77

TABLE IV. Value of the one-moment ME approximation hs (0) and (u ')(2) to the electron-pair density at the origin

h(0) and to the electron-electron repulsion energy E„= (u ), respectively, and relative errors of the one-mpment ME
app«ximatipns hs (0) ('+ ), (44), and (u ) for the two-electron iona with nuclear charge Z = l. , 2, 3, 5, and 10. The
calculations were performed by means of Hylleraas-type wave functions [7]. Hartree atomic units are used throughput.

2
1
2
3
5

10

hME (p)
0.0031
0.0914
0.4231
2.4834

23.5257

1pp Ih(0) —hs (0) )

h(o)
11.48
14.48
20.97
25.11
27.97

E(s) —(u &)(2)

0.3447
1.0557
1.7679
3.2056
6.8034

100 l&~ '& —&~ ')
&~ ')

10.78
11.61
12.77
13.88
14.71

1QQ I &~) —&~) I

&~)

12.15
11.04
12.27
13.14
13.65

1ppl&~'&-&~'& '
I

22.07
18.71
19.60
20.22
20.80

TABLE V. Value of the two-moment ME approximation h~ 2 (0) to the electron-pair density at the origin h(p), optimal values
pf the parameters Az and A2 (see text for further details), and relative errors of the two-moment ME approximations hME(p),

(u) ', and (u ) ' for the two-electron ions with nuclear charge Z = 1) 2, 3) 5, and 10. The calculations were performed by
means of Hylleraas-type wave functions [7]. Hartree atomic units are used throughout.

z
1
2
3
5

10

hME(p)

0.0047
0.1291
0.6262
3.8018

36.9358

Ag

0.1604
0.4139
0.9033
1.9157
4.8748

Ag

0.0549
0.5368
1.3334
3.9580

15.2988

Ih(0) hy, g (0) I

h(o)
66.67
20.79
16.98
14.64
13.07

1pp I &~& —(~)
(~)

4.5
3.2
2.9
2.7
2.6

1OO
I("'&-&"'&"'I

15.5
10.3
9.2
8.7
8.3

TABLE VI. Value of the two-moment ME approximation h~ 2 (0) to the electron-pair density at the origin h(0), optimal
values of the Parameters Aq and As (see text for further details), and relative errors of the two-moment ME approximations
h~ 2 (0), (u) ', and (u ) ' for the two-electron ions with nuclear charge Z = 1,2, 3, 5, and 10. The calculations were
P«prmed by means of Hylleraas-type wave functions [7]. Hartree atomic units are used throughput.

Z
1
2
3
5

10

hME (p)
0.0048
0.1442
0.6918
4.1664

40.2568

Ag

0.2980
0.9680
1.7335
3.2958
7.2309

A3

0.0047
0.1288
0.5266
2.7853

24.3416

Ih(0) hx s (0)l
h(o)

70.21
34.95
29.25
25.64
23.23

1PP I &~&- (
&~)

3.12
1.90
1.76
1.67
1.62

]pp l(~ &
—(
(ts~)

11.58
6.91
6.50
6.23
5.97

TABLE VII. Value of the two-moment ME approximation h~ 4 (0) to the electron-pair density at the origin h(p), optimal
values of the parameters Ax and A4 (see text for further details), and relative errors of the two-moment ME approximations
h],4 (0), (u) ", and (u ) ' for the two-electron ions with nuclear charge Z = 1,2, 3, 5, and 10. The calculations were
performed by means of Hylleraas-type wave functions [7]. Hartree atomic units are used throughout.

Z
1
2
3
5

10

hME (p)
0.0053
0.1538
0.7328
4.3927

42.3114

Ag

0.3800
1.1766
2.0471
3.8122
8.2574

A4

0.0004
0.0350
0.2356
2.2162

40.4389

I h(0) hy 4 (0) I

h(o)
87.94
43.65
36.91
32.46
29.54

1QQ I(~& —(~&
(&&

6.84
4.10
3.90
3.73
3.62

1QQ I( )—( &
'

I

(~~)
8.23
4.96
4.71
4.48
4.35
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(u ) = 4rrpo) can be easily obtained in an analytical
way. The most interesting cases are the following.

f. p, = (u ')/4rr constraint

(15)

h(u)

h(u) (Hylleraas)

hME(

hME(

hME(

which predicts the expectation values

—1 le+2

( ")- ( ")(') = r(I + 3) ",„„(~~ -3)

and the approximation for the central value of the
electron-pair density

2 2

l (0) I ME(0) (u ) (17)
4rr(u —') '

In Table I the Hylleraas values of the electron pair den-
sity at the origin, h(0), and the radial expectation values
(u") (n = —2, —1, 0, 1, 2) are included for some two elec-
tron ions. Table II shows a numerical comparison of the
above model-independent results with those obtained by
using Hylleraas wave functions. As can be seen, this very
simple approximation does not lead to very tight results
and the information content of (u ) alone is not large.

&. ys —(u )/4rr = hT(N —I)/Brr constraint

0.2 0. 4 0. 6 o. e 1

u (a.u. )

FIG. 2. ME approximations to the B + electron-pair den-

sity in terms of two normalized constraints (see text for fur-

ther details). Hartree atomic units (a.u. ) are used.

as well as to the electron-electron repulsion energy E„

, (2 (N N —l)(u ))
rl

(20)

Table III shows how the above predictions have an av-

erage relative error with respect to the Hylleraas param-
eters of 6% (except Z = 1) and 3%, respectively. The
predictions for the following moments are also good: rel-
ative errors of 9% and 23%, respectively:

In this case the ME solution is

( 2 ) '(( '))
iN(N —I)) i 2rr

(u ')
N(N —1)

and we call its corresponding expectation values (u")(z).
This ME density produces the following analytical ap-
proximations to h(0):

rr(u-')

12
N2(N —l)z(u 2)

(21)

(22)

10

The quality of the preceding results can also be com-

pared to the rigorous bounds on h(0) obtained in [8] by
using much more numerical information on the mono-

I (0) - h, E(0) =
i i i

(1.9)
iN(N —I)y i 2rr )

6.

(a.u. )
h{u) (Hylleraas)

hME(

hME(

hME( )

0 0.5 1.5 2. 5 3.5

0. 2 0. 4 0. 6 0. 8

u (a.u, )

FIG. 1. ME approximations to the 8 + electron-pair den-
sity in terms of one normalized constraint (see text for further
details). Hartree atomic units (a.u. ) are used.

FIG. 3. Existence conditions for ME distributions having

prescribed the 6rst three moments in terms of relative mo-

ments p~ = pz/p~ and p~ = pq/pz. Regions I and II rep-

resent the positivity inequalities for these relative moments.

Moreover, region I is allowed and region II is forbidden for

the existence of a ME distribution in accordance with the
Kociszewski [27] conditions. Hartree atomic units (a.u. ) are
used.
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h(Q)

(a.u. )

3

h(u) (Hylleraas)

«Q)

(a.u. )

3

A(Q) (Hylleraas)

4 moments

6 moments

2

8 moments

0.2 0. 4 0.6 0.8 1
u (a.u. )

0.2 0.6 1 1.4

u (a.u. )

FIG. 4. ME approximations to the B + electron-pair den-

sity in terms of four normalized constraints (see text for fur-

ther details). Hartree atomic units (a.u.) are used.

FIG. 5. Test of the Chebyshev bounds accuracy for the B +

electron pair density by using four, six, and eight moments

obtained by means of Hylleraas-type wave functions. Hartree
atomic units (a.u.) are used.

8. gaq ——(cs)/4w constraint

The form of the ME density in this case is

hs (u) = A exp( —Bu ), (23)

where

4~1'(4/3) g 3(u) ~
'

3(u)
(24)

tonicity properties of h(u). It is worthwhile to remark on
the simplicity of the preceding results as well as their gen-
eral validity [based only on the non-negativity of h(u)].

are of an average error of 37%, 4.4%, and 5.3'%%uo for h(0),
(us), and (uz), respectively.

Similarly, Table VII shows the results for h~4 (u),
which leads to less accurate approximations of 46%%uo,

4.4'%%uo, and 5.3'%%uo for h(0), (u ), and (u), respectively. One

can see how the approximation h~ 2 (u) has a larger in-

formation content than that of its companions.
The ME density hz 4 does not exist for Z = 1, 2, 3, 5, 10

as we have remarked in Sec. II.
For illustration, in Fig. 2 we show the ME approxima-

tions for Z = 5 obtained in this subsection, i.e., hMzE,

hz s, and h~ 4. Clearly, our ME solutions do not verify
the cusp condition because the information we use is very
limited.

Table IV collects the numerical approximations obtained
for h(0) and for some expectation values of the electron-
pair density. These results show that the information
content of this constraint is lower than that of pz. We
have also checked that the information content of the y,4

constraint is clearly lower than that of the previous cases.
Figure 1 shows these three ME densities and the pair

density constructed using Hylleraas wave functions. It
is observed that hz(u) is a better approximation to h(u)
compared to hq(u) and hs(u).

B.Taro moment constraints

In this subsection we construct the numerical ME ap-
proximations by using two constraints besides the nor-
malization. The ME approximations have the following
expression:

h;,. (u) = A,, exp( —A;u' —A, u'),

where the information used is (u 2), (u' z), and (u~ ).
In Table V the results for hM&2E(u) are quoted and av-

erage relative errors of 16'%%uo (except for Z = 1), 3%%uo, and
10'%%uo are obtained for h(0), (u), and (u2), respectively.

Table VI shows the results obtained by h~ s (u), which

C. More than thoro constraints:
ME densities and Chebyshev bounds

The values (u z), (u ~), (uo), and (u) do not verify the
Kociscewski [27] or Tagliani [28] constraints as shown in
Fig. 3, where the points close to the edge of region II cor-
respond to the relative moments obtained from the afore-
mentioned expectation values of the electron-pair density
for the five ions we are considering here (Z = 1,2, 3, 5,
10). So, the hM~zEs(u) density does not exist for them.

For the sake of completeness, we have constructed the
h~ z s 4(u) density in order to have s more accurate ap-
proximation of h(u) but at the price of using more in-

formation. This ME approximation has been plotted to-
gether with the Hylleraas electron-pair density in Fig. 4,
where its accuracy is apparent. It is also observed that
the value of h(0) given by this approximation does im-

prove the results of hM2E(u) or hM&2E(u), which were the
most predictive ME densities for this parameter by using
less information.

On the other hand, it is interesting to point out that
the knowledge of' some moments of the electron-pair den-

sity allows one to obtain complementary information to
that given by the ME method. In this sense, the well-

known Chebyshev inequalities [11] provide upper and
lower bounds on h(u) on the assumption of decress-
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ing monotonicity of this function. Figure 5 shows these
bounds when four, six, and eight moments are used. It is
observed that the upper bound goes below h(u) around
the nucleus. The reason is that the electron-pair density
is not a monotonically decreasing function everywhere.

Finally, let us remark that the results obtained in this
section show the powerfulness of the ME method when
inferences &om very limited information has to be made.
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