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Semiclassical three-charged-particle system in the framework
of the Pechukas self-consistent method
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To describe the rearrangement channels for three-particle atomic reactions and for three-particle
muonic processes a semiclassical formalism of the Faddeev-Hahn equations is applied. The relative
motion of heavy particles is treated from the classical point of view while the motion of the lighter
particle is described from the quantum-mechanical point of view. To find correct trajectories of
heavy particles the self-consistent Pechukas method, based on the I'eynman path-integral theory, is

employed.

PACS number(s): 34.10.+x, 34.20.Cf, 34.70.+e, 36.10.Gv

I. INTRODUCTION

A quantum three-charged-particle system is of a par-
ticular interest for muon-catalyzed fusion problems [1,2],
some problems of atomic and molecular physics [3], and
astrophysics [4].

The well known Faddeev equations [5] are not valid
for Coulomb three-body systems due to the long-range
character of the Coulombic forces. That is why various
alternative approaches to this problem have been devel-
oped. In this regard some attention should be given to
articles [6, 7].

According to Ref. [8] three-dimensional Faddeev equa-
tions have been solved in the configuration space for some
atomic and p-mesoatomic bound states. It should be
noted that great computer resources have been used in
these calculations.

In the meantime, to consider some collision problems in
atomic physics a semiclassical model has been employed.
The motion of atomic nuclei (their masses M;, i = 1, 2)
has been described by classical trajectories R;(t), while

dynamics of electrons (their masses are m, m/M, (( 1)
has been treated from the quantum-mechanical point. It
is necessary to point out that in this approach one deals
with time-dependent quantum equations.

In the case of short-range potentials, all three
channels (elastic, rearrangement, and break-up) have
been described in the unified manner by the time-
dependent Faddeev-type equations [9]. To solve the time-
dependent Faddeev-Hahn equations a modified strong-
channel method has been employed for some atomic and
p, -mesoatomic collisions [10].

Note that in various semiclassical models correct tra-
jectories of heavy particles have to be taken into account.
Nevertheless, to solve most of atomic problems straight-
hne trajectories have been chosen. It is necessary to indi-
cate that the problem of choosing correct trajectories is

of importance for low-energy collisions when the straight-
line trajectories are not correct.

Revai [ll] pointed out that in order to solve a trajec-
tory problem the self-consistent Pechukas method might
be used [12]. It is based on the Feynman path-integral
theory.

In this work, to examine low-energy collisions for
the three-charged-particle systems, a semiclassical self-
consistent approach has been used in the &amework of
the nonstationary Faddeev-Hahn (NFH) equations [10].

This paper is organized as follows. In the next sec-
tion we describe NFH equations, a method for solving
them, and a brief description of the Pechukas method. In
Sec. III the results of calculations for resonance charge
exchange of protons on hydrogen atoms with the cor-
rect classical proton trajectories taken into account are
shown. The conclusion is given in Sec. IV.

The atomic (e = ji = m, = 1) and p-mesoatomic
(e = h = m„= 1) units are used.

II. FADDEEV-HAHN EQUATIONS
AND SELF-CONSISTENT METHOD

(1) We shall examine the rearrangement reactions

1+ (23) -+ (13) + 2

in the framework of a semiclassical model.
Let us write down the nonstationary Faddeev equa-

tions

(2)

i g jgk=1, 2, 3.
Here, Ho is the kinetic-energy operator of particles,

IIO ——T„- +TR
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where r;~ and RI, are the Jacobi coordinates; V,.~ are
paired potentials of particle interaction;

l
@r,) are the Fad-

deev components.
Heavy particles are numbered by a label j = 1, 2. We

consider pure Coulomb three-body systems where the
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charge of one of the particles is of opposite sign with
respect to the others. We have a specific mass relation

m~

mj

with a = 3 being the number of a particle with the unlike
charge.

According to (4) the motion of heavy particles could be
treated classically, while the motion of lighter particles is
described quantum mechanically. Putting mi m2
oo, we come to Tz ~ Tz 0 and obtain the following

2
semiclassical equations:

where p~. are the reduced masses of targets {(2.j)
m~ mj

Pj m~+mj (1o)

the label j = 1 stands for the interaction pair {23)and

j = 2 for {13).
To solve Eqs. (5) a modified strong-channel coupling

method is applied. In a regular manner we expand the
wave function components over the eigenfunction of the

A

subsystem Hamiltonian h'

V13 a22
I

l@2) (V13 ail)l@1),Bt

where

(5)

(here summation is done over the whole discrete spec-
trum, and integration over the whole continuous spec-
trum).

Functions I4„(t)) satisfy the Schrodinger equation

(12)

2m3

is the kinetic-energy operator of a light particle, p is the
momentum operator, and m are masses of the particles,
and arbitrary operators aii and a22 allow the construc-
tion of equations with the preset properties [10, 13, 14].

Thus, the total Hamiltonian of the system may be writ-
ten in the form

A2

+ v»(lr —Rll) + v23(lr —R2l) + U(R12)

It is easy to show that for the case of Ri(t) = const
[15]

'2
I4'„(t)) = exp{iy, R~(t)r —i(E„' —21IJ2R (t)]tj

where functions y~ are defined by the following equations

= H(t) + U(R'„), (6) (14)

where r, R; are the coordinates of particles, R12 ——R' =
Ri —R2. U(R') = V12, the constant number in the r:
Hilbert space. Therefore, in Eqs. (5) we can also put
Vi2 = 0 and 4'3 ——0.

Hence, the total wave function of a three-particle sys-
tem has to be presented by two components,

l@(t)) = I+1(t)) + I@2(t)) .

Let us assume that a» —— p /(2m2) and a22

p /(2mi). Then, in the left-hand sides of NFH Eqs. (4)
we obtain proper Hamiltonians of {23) and {13)atom
subsystems, i.e., instead of

A2

h, = + V(l —R(t)l),

we have
A2

h,
' = + V, (lr R, (t)l), —

2'

Then, the initial conditions for the wave function com-
ponents are written in the following way:

where IC'1,) is the ground state of the bound particles

Substituting (11) into Eqs. (5), we can obtain for the
unknown expansion coefficients C~ (t) a set of equations

) y M" (IR(t)l) &»&C'(t)
m

) + M"„(IR(t)I)q~"l*C„'(t), (16)

where M~" (IR(t) I) are the matrix elements of the poten-
tial V, (Ir R~(t)l) and chann—el functions, i.e.,
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(j k) (t)
t(E'„—R )t E„' = —p, /(2n) .

Taking into account that mz m2 )) m the opera-
tors aii and a22 may be omitted in the right sides of Eqs.
(16)

In line with (15) one can write the initial conditions
for the coefflcients C~ (t)

"natural" limit for de6ning the amplitudes, i.e. , t m oo;

D[R(t)] is the measure of continual integration.
One should note that the time behavior of the amp¹

tudes T t3 is determined by the Hamiltonian h(t) [12]

I = ——a„-+ V»(lr- —R', I) + V»(lr- —R', I) + U(R») .
2p

C„'(t) - S„i., C„'(t) -0, (19)
So, in accordance with the method a basic variational

principle is

In order to obtain capture probabilities IC„(t oo)l
one should solve the Cauchy problem Eqs. (16)—(19).

For the low-energy collisions (in the center-of-mass
E 1—50 eV) the relative velocity of nuclei motion is
v (( 1 (in atomic units). That is why the translation
factor is equal to unity.

Thus, the matrix elements M( l (R, ) are expressed in
the following way:

b(So[R(t)] + him in T @[R(t)]) = 0 . (23)

M + V~V(R(t)) = 0,82R(t)
Ot2

(24)

In turn, the variation of Eq. (23) gives us a classic

equation of motion in the potential field V(R(t)) while

taking into account quantum corrections [12]

M-"-"'(IR(') I) = d'r v'. [Ir —R'(t) ll

and may be calculated in the explicit way [10].
(2) Let us now apply to a classic part of the prob-

lem. Due to quantum transitions of the light particle
some amount of the energy must be absorbed by a clas-
sic motion of heavy particles. That is why the state of
the classic motion must be changed. In accordance with
Eqs. (16)—(19), the influence of the classic relative mo-

tion upon the light particle have been taken into account.
However, taking account of the reaction in the opposite
direction is completely ignored. Beyond doubt this fact
is of concern for the low-energy collisions, for instance,
for (Lt-mesoatomic processes.

In order to take account of the interplay of classic
and quantum &eedom degrees and to determine correct
classic trajectories one should employ the Pechukas self-
consistent method [12]. It is based on the Feynman path-
integral theory [16 .

In accordance with the self-consistent approach a re-
duced propagator containing exact information about the
reaction P -+ n may be written in the form of the con-
tinual integration

G p(R2t2IRiti)

let(t", t")) = ln), (26)

t!h —,IP(t t')) = h(t)IP(t t'))

Then

IP(t', t')) = IP) (»)

T-~[R ] = (~(t t")l&(t t')) . (28)

Bearing in mind that the potential U(Rt) is a constant
number in the v-Hilbert space [11] we can write down

V(Rt) = U(Rt) + ~quant (Rt) (29)

R & (t, t")IH(t)l&(t, t'))
piquant +t

T tt[Rt]

R (&(t t")l~(t)l&(t t'))
(~(«")l&(t t'))

where ln(t, t")) and IP(t, t')) are two solutions of
the time-dependent Schrodinger equation with different
boundary conditions

D[R(t)]e*"( ('l~~"T.,[R(t)] (21)

where So[R(t)] is the classic action of the heavy particle
motion along R(t); T p[R(t)] are transition amplitudes
used for Gnding a quantum particle at t2 in the state
ln) if at ti it was in the state IP). Consequently, T t3 is
related with the model which was discussed above and
determined from Eqs. (16)—(19). Of course, we use a

Thus, the problem of interplay of the classical and
quantum &eedom degrees has been solved in the self-
consistent manner. In practice, it may be realized by
iterations.

To solve a quantal part of the problem one must solve
Eqs. (16)—(19) and define C„(t ~ oo) for some arbitrary
R( l(t), for example, for a Coulomb trajectory. After
that a classic-quantum potential V(R(t)) is obtained.

To determine a trajectory R( l(t) a classical formula

[17] is used,
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MR
/2MR2[E —V~ l(R) —J ]

(31)
with the initial conditions

Ci,"l
(—oo) 1 and Ci~'," (—oo) 0, (40)

M1M2

M, +M, (32)

where J = /2MEb; b is an impact parameter; E is an
impact energy; and M is a reduced mass of the heavy
particles

E(~&) E(t&)E 1 1 ~

As we consider the Coulomb problem, a subsystem po-
tential Vi(z) in Eq. (12) is, of course, Coulombic. That
is why the p~~, (i), for n = 1 may be written in the form

Thus, de6ning R~ as a function of t~ and calculating
spline

R~'l(t) = $ Z, (t —t,), t, & t & t, +, ,

we obtain R~il(t) and so on.
A cross section for the reaction is determined using

Refs. [12] and [17],

(p~i, (2:) = p ~ x '~ e

Thus, the matrix elements in Eqs. (39) look like

M "'(8 ) = —(p p )'~'/w f d're "'"
1 —pg IP—Rg(t) Ix er-- Ri(t) I

(41)

(42)

IT ~[R(t)]f'
~dO) qdA) „
(do ) b(8) csc(8)

qdA) „ Id8/dbl

where the deviation angle is

(34)

—~& I~=R1 (t) I (43)
R, (—t) I

These integrals are analytically calculated [10] to have
the form

OO dR
8(b) =~ —2

V
(35)

is maximum of R when the root is zero.
(3) The most interesting and challenging problem in

mesic atomic scattering is the isotope exchange reaction

(dp)i, + t m (tp)i, + d, (36)

LE = Et„—Eg„——48.042 eV .

At low-energy collisions to solve the NFH equations
one can make use of the two-level approximation. In
expansions (11) the la state is kept only,

(38)

Thus, we obtain a set of two "hooked" equations for
the unknown eoefBcients C( ") and C( ")

dCi~,"~(t)/dt =i exp( —ist)Mii (Rq)Ci, (t), (39)

where d and t denote hydrogen isotope nuclei deuterium
and tritium, respectively, and p is muon.

There are a lot of publications devoted to this problem,
for instance, Refs. [1], [18], or [19 . By the way, the NFH
Eqs. (5) were also employed in [10]. The nuclei d and
t move over the straight-line trajectories. Making use of
the Pechukas method one could change the trajectories so
that the energy balance between classical and quantum
motion would be kept. We would like to note that the
isotope energy splitting in the reaction is

M (R)—11 t 2 2
P1 P2

(2@2 e»+ —e»&
xl ~ 2 +e

E R& )
Hence, to obtain Mii one should do transformations(td)

pi -+ pz and p2 ~ pi in the formula for Mii' .
Thus, we obtain the following result:

(44)

l~) = I@'."'(Ir-R'l))l~ -. (47)

In turn, IP(t', t")) corresponds to the total wave function
of a three-particle system,

l&(t' t"» = l@(t»l~-
= ci"."'(~)l@i."'(l~ —Ril) & l~~-

+Ci."'(~)l@i'."'(Ir —R'I) & l~~ (48)

Consequently, for the rearrengement channel the fol-
lowing result can be written

T p[R, ] = C,'."'(oo), (49)

M( )(R,) =11 t 2 2
P2 P1
(2 e

—»R e
—»R

As regards the quantum effective potential V(R(t)) be-
tween deiterium and tritium one should note that the
limit t ~ oo for defining amplitudes is equivalent to
t = t". Hence, from Eq. (28) we have

& u[R~] = (~l&(t' t")) . (46)

The quantum state In& falls in line with the moving
(tp) i,-atom wave function when t m oo,
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cled

A2

~....V4) =« ',; ™ol".(u) +&i(*) @",."'(*) +(c'l".(v)l&(v)l@",."'(*)))
A 2

+Re @z y +V2 Q @i y + C'" y Vi x 4i. y
2@2

(50)

where

y=r —R2 )

Thus,

z=r —Ri.

(~) (2)~ = E„—E~, .

Bearing in mind that a mass of proton mz » m„one
can put e = 0 and then for slow collisions

C'""'(~)
piquant (Rt ) = Re

Ci".(~)
d r(4',",(y))' —4I,")(x)

y

M„(Rg) =- Mi, (Rg) = exp( —Rt)(R, + 1),
where

ds„(C,I'~)(„))
~

C, I'~I(„) (51)

In so far as such integrals are calculated analytically
[10], we can obtain a final result

R, =R, —R, .

Hence, atomic units are used: e = 6 = mo ——l.
Fortunately, in such a case Eqs. (56) are solved ana-

lytically and we obtain

Cz, (t) = cos
I

exp( —Rt)(Rt + 1)dt
I

(59)

x M,'", (R,)—
—2pg Rt

2B.,
(52)

C„(t) = i sin
I

exp( —Rr)(R~ + 1)dt
I

l(2)

—oo
(60)

III. RESONANCE CHARGE EXCHANGE
OF PROTONS ON HYDROGEN ATOMS

In the preceding section a method for solving the
Faddeev-Hahn equations is offered in the framework of
the self-consistent approach [12].

Let us now consider the resonance charge exchange of
protons on hydrogen atoms,

MRdR
dt =

/2MR2[E —U(R)] —J2 ' (61)

As a consequence of the Pechukas variational princi-
ple (23) we find that for the two-level approximation of
the quantum task a correct trajectory of heavy classical
particles is Coulombic.

Taking into account that

pi + (p2 e)1 ~ (p2 e)1 + pl (53)

The proton motion is described classically while the elec-
tron dynamics is treated quantum mechanically by means
of the time-dependent Faddeev-Hahn equations (5). To
solve the equations the two-level approximation is em-

ployed.
In expansions (ll) only the 1s state is kept,

(do) ( 1

),dfI r .) &4&»n'(t)/2) ) (62)

where U(R) is the Coulomb potential between protons
U(R) = 1/R, for Coulombic classical scattering a cross
section is [17]

I+.(t)) = c,'."(t)~',.'(I —R'I)

I+.(t)) = c,'.) (t)+',.'(I —@I)

(54) A Anal result for the three-particle rearrangement cross
section may be written in the following way

dCI, (t)/dt =i exp(ist)M~~r )(R~)CI,)(t),

dCI, (t)/dt = t'exp( —ist)Mr~r )(R~)C~~,)(t), (56)

with the initial conditions

CI,') (—oo) - 1 and CI', )
(
—oo) —0, (57)

Thus, we obtain a set of two "hooked" equations for
the unknown coefficients Cz, and Cz,(~) (2)

F (eV)
1.0
5.0
10.0
100.0

4.7 x 10

40.7ma()

29.1mao

4.5 x 10
3.7 x 10

Present paper
4.5 x 10
3.8 x 10

40-2~&o
28.67r a2o

TABLE I. Values for cross sections of the resonance
charge exchange of protons on hydrogen atoms (cm ),
ao ——0.529 x 10 cm.
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do f 1 ) . ( + e R(R+ 1)dR
sin 2M

&4E»n'(8/2) ) ( . /2MR (E —1/R) —2MEb (8) )
where the impact parameter b(8) is [17]

cot(8/2)
2E

Of course, the total cross section for the exchange reaction is

(64)

e +R R+1 dR

i,4Esin (8/2)) ~ „/2MR (E —1/R) —2MEb (8))
(65)

Table I lists the results of calculations of total cross
sections o,„(E)for resonance charge exchange of protons
on hydrogen atoms (53) at low energies in comparison
with the results of other authors [20, 21].

IV. CONCLUSION

In conclusion, we can state that the proposed time-
dependent semiclassical description of the Coulomb
three-particle systems is decomposed into two one-
particle tasks.

(i) A quantum task —NFH Eqs. (5) for a light particle
dipped in the field of two heavy moving particles.

(ii) A classical task for determining the trajectories of
heavy particles having a reduced mass M and interacting
by means of the quantum potential (29) and (30).

It is necessary to point out that a self-consistent solu-
tion of these problems leads to a correct description of
the three-particle scattering process, and the energy bal-
ance between classical and quantum motion in the time-
dependent theory is kept.

Moreover, to calculate the total cross sections of the
exchange reaction o,„and elastic scattering o,~ one has to

integrate over the whole scattering angle 8 in expressions

(34), (35), or (63). As a matter of fact this method ef-

fectively takes into account the whole quantum momenta
between heavy particles.

The main problem arising in solving Eqs. (5) is the
number of states to be taken into account in expansion

(11). It is quite reasonable to expect that for low incident
energies only a few functions P with little n values are
dominated.

In addition, the pseudostates [22, 23] or Sturman rep-
resentation [24] can be used to effectively take the con-
tribution of the continuous spectra into account.

We hope that this semiclassical method could be ap-
plied to four-particle systems (two light particles and two

heavy ones) in the framework of the Yakubovsky equa-
tions [25].
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