
PHYSICAL REVIEW A VOLUME 50, NUMBER 3 SEPTEMBER 1994
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This study is devoted to the general properties of pole strings and string curves of the eigenvalues
of complex scaled Hamiltonians; in detail, it is our aim to correlate parameters of the Hamiltonian
(mass and parameters of the potential) to the shape and location of the corresponding string curve.
In the present contribution, which considers one-dimensional Hamiltonians, we show that every
string curve can be decomposed into a few, very simple "primitives. " The latter are associated with
certain subunits (or parts) of the potential in such a way that each subunit gives one and only
one string curve. If a potential under investigation contains more than one subunit, then one will

6nd multiple or composite string curves. The corresponding Hamiltonian will posses an additional
symmetry that can be expressed by introducing a combined index (n, m), where n numbers the
subunit and m the resonant eigenvalue belonging to the subunit. Furthermore we show in this
contribution phenomenologically which kind of string curve emerges from which type of subunit;
one is able to predict the general shape of the string curve and some of its inherent information.
The mass dependence (or nondependence) of the string curves is explicitly discussed and parallels
with the semiclassical WKB theory are addressed. In addition we present material concerning the
possible "wiggly" behavior of pole strings; we show explicitly on the the semiclassical level why
certain potential features wiggle while others do not. Employing semiclassical concepts, we are
even able to "explain" the corresponding string curves in terms of simple integrals. We also give
a condition —depending only on the zeros of the function E —V(z)—for the possible emergence
of wiggles. Numerical experiments that are partly reported here show that all potentials with a
Gaussian damping factor posses wiggles, while those with exponential damping (e ) do not.

PACS number(s): 34.10.+x, 03.65.Nk, 11.55.Fv, 11.55.Bq

I. INTRODUCTION

In the years since the discovery of complex scaling [1—4]
many articles on very de'erent aspects of the complex
scaling method and its applications have appeared (see,
e.g. , [5—8], and references therein). Missing, however, is
a more general description of resonance strings. Though
resonances are naturally not connected with complex
scaling exclusively, the latter being a theory that we find
to be very clean and almost "natural, " we will use this
theory always as our reference point in the sense that
here we will regard results of complex scaling as "true, "
i.e. , we have not taken upon us to check whether other
approaches like complex angular momentum or a rigged
Hilbert space theory, to name only two other possibilities
(see, e.g. , [5,9—11], and references therein), will give the
same results. For the present contribution therefore we
will only talk of the spectra of complex scaled Hamilto-
nians, disregarding the fact that the same results might
well have been produced by other theoretic approaches.

So what we do want to do is to go a step in the di-
rection of describing somewhat more general resonance
strings and to try to understand how they come about. In
the present paper we will focus on one-dimensional prob-
lems, since —as we know &om our experience —higher di-
mensional problems are substantially more complicated.
More speci6cally, we present material mostly from the

following classes of potentials: (1) P(x) with uneven or-
der or negative leading coefficient, (2) P(x)e ', and (3)
P(x)e ', where P(x) is a polynomial.

Since the work of Rittby, Elander, and Brandas [12—14]
it is a known fact that the eigenvalues of the complex
scaled Hamiltonian (see Appendix B for a short summary
of our nomenclature) are not scattered "at random" in
the complex plane. Rather they occur in a very ordered
manner, in so-called strings; cf. Fig. 1. Let us clar-
ify briefly the terminology that will be used throughout
this article. We will call a string the set of eigenval-
ues belonging to the discrete part of the spectrum of a
specific Hamiltonian and a pole trajectory will denote
the "path" that a specific eigenvalue undertakes, when
changing parameters like mass or potential height, etc.
We will use the words "resonance" and "pole" synony-
mously (for some numerical details, see Appendix B).
Furthermore, we will use the term string curve as the
(parametric) function that comes about by connecting
the resonant poles in the complex plane. Korsch intro-
duced the term string curve [15] and defined it in a WKB
manner as

with the function q(z) in its simplest form being (we are
using atomic units throughout, so ft = 1)
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FIG. 1. Two of the most common string curves. (a) shows

a smooth string curve, while (h) shows a wiggly string curve.
Indicated in the figure are the detachment point ("dp") and

the localization threshold ("lt"). See text for further details.

with

q(z) = /2p[E —V(z)]

where E is complex [for physical reasons Im(E) ( 0]
and V(z) is the analytical continuation of the potential
into the complex plane (p, is the mass of the system).
Higher order results can be found using the phase integral
method [16,1?] or higher order WKB approximations.

The integral in Eq. (1) extends &om one so-called tran-
sition point, i.e. , a point of the complex plane where

q (z) vanishes, to another. The definition (1) is correct
if and only if one pair of transition points is relevant,
(see below); it uniquely defines a curve in the complex
energy plane. If 9l is not only real, but also integer,
it is identical with the quantum number describing the
eigenstates. At those points Eq. (1) reduces to the gen-

eralized Bohr-Sommerfeld formula for (complex energy)
resonances (see, e.g. , [15,16]).

Note that the applicability of Eq. (1) is somewhat lim-

ited, because one may well have to include more than
one pair of transition points. The generalized definition

reads for a symmetric potential

parameters and possibly the mass of the system; see be-
low. Naturally, this question could never be answered in

terms of individual poles, because that would mean find-

ing a way around solving the Schrodinger equation. Be-
sides being interesting on its own, a study of pole string
curves seems important to us, because of several reasons.

Almost all studies employing complex scaling use
model Hamiltonians to calculate eigenenergies and/or
states for physical problems. There are very few ex-

amples of Hartree-Fock (HF) or even configuration-
interaction (CI) calculations (see, e.g. , [18—20], and ref-

erences therein). The usual problem with model Hamil-

tonians is the question of the choice of parameters to fit

the experimental situation. By choosing a specific repre-
sentation (i.e. , analytical form) and a set of parameters
one always introduces a certain amount of arbitrariness
into the calculation. Therefore one should ideally be able
to distinguish between a physical result and a result in-

troduced into the system by the choice of form and pa-
rameters. Thus it is necessary to know how a change iii

the parameters will acct the results, and to know what

special eKects one can expect by choosing a specific rep-
resentation.

Secondly, there exist claims that pole strings are con-
nected with the microcanonical (unimolecular) reaction
rate, when the dominant reaction mechanism is tunnel-

ing (for shape resonances that we consider here only);
see, e.g. , [21]. The usual interpretation of the half of the
negative imaginary part of the energy as inverse lifetime
(divided by 5; this interpretation goes back at least to
Gamow [22]) gives us a chance to evaluate this rate with-

out receding to quasiclassical concepts like the usual "fre-

quency times transmission coefficient" (see, e.g. , [23]).
That the interpretation as lifetime and therefore as rate
constant is essentially correct has been claimed by Moi-

seyev et at. [21] and also by Seideman and Miller, who

have published recently on the intimate connection of
complex poles and the microcanonical rate [24]. Natu-

rally, the rate is a continuous function of the (real) en-

ergy, while the set of eigenvalues is discontinuous. We

believe that the string curve corresponds to the contin-

uous rate vs energy curve; work along these lines is in

progress [25]. For studying the tunnel eff'ect one might
draw the conclusion that it appears more natural to study
string curves instead of poles.

q(z) dz,
II. INFLUENCE OF THE MASS ON STRING

CURVES

where n is the number of relevant transition points t„.
Equation (2) simply follows from the outgoing wave

boundary condition embedded into the WKB formalism

[15,16], if % is a half-integer multiple of 7r.

Though the definition in non-WKB terms is somewhat
less obvious, we found that the concept of a string curve
is a very promising and intuitive one for handling more

general descriptions of the spectra of Hamiltonians; see
below.

Our goal is an as complete as possible characterization
of a string curve via "physical" terms, i.e. , the potential

What makes the study of pole string curves especially
rewarding is the fact that the part of the string curve

having a clearer physical interpretation (the one we will

call later on regular; see below) does not —in first order

depend on the mass for (real) energies above the poten-
tial height. Naturally the position of the eigenvalues in

the complex plane does depend on the mass, but in such

a way that they stay on the string curve. For energies
below the potential height (the detachment point, see

below) and above the localization threshold (see below

and Fig. 1), however, the string curve is not indepen-
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dent of the mass. In Fig. 2 we show the spectrum of
V(z) = (az —b)e (a = 35, b = 5.6), a potential whose
analytical form (though not the parameters) has been
used frequently in the literature [12—15,26], for different
masses. Please note that due to the plot scale the first
parts of the strings (up to the detachment point) seem
to be identical. For a more quantitative check we cal-
culated the imaginary energy for different masses, which
were chosen in such a way that the real parts of the en-
ergies are—with three to four digits —the same. As can
be seen Rom Table I the imaginary energies for a reso-
nance below the detachment point differ by about three
orders of magnitude when changing the mass by about
two orders of magnitude. The same procedure applied to
a resonance above the detachment point gives a change
by about 4%, which is considerably less.

This rather surprising result is consistent with the
WKB analysis of the problem (especially with that
of Andersson [27]). For energies below the potential
height (= barrier maximum) —but above the threshold
[= limi i~ V(z), by convention set to zero]—it is nec-
essary to include all four transition points, if one thinks
of a double barrier potential for the moment, in order to
get a nonvanishing imaginary part of the energy; see, e.g. ,

[15,16). (Because of symmetry, though, the calculations
can be reduced to using two of them. ) For energies above
the potential height, Andersson has shown in his paper
[27] that only two (one if symmetry is considered) tran-
sition points need to be considered. That is, to find the
approximate resonance energies one considers the (gen-
eralized) Bohr-Sommerfeld formula Eq. (1) (naturally, %
is here required to be integer) with zero as lower and ti,
which lies in the first quadrant of the complex coordinate
plane, as upper limit.

If one now considers string curves instead of individual
poles it is obvious Rom the definition Eq. (1), namely,
that 9l must be real, that the mass —being real —does not
play any role. That is, whenever only one transition point
must be considered the string curve as defined by Eq. (1)
is not mass dependent. Or, to reverse the last sentence
(which is preferable because of the approximative nature
of the WKB ansatz), whenever the string curve is mass
dependent one must consider more than one transition
point. Otherwise the predicted (non-) mass-dependence
is incorrect.
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FIG. 2. Pole string curves of V(z) = (35z —5.6)e ' for
different masses (m in the plot) in the range of 0.4 to 1.0. De-
picted is the regular and (wiggly) irregular part. Below the
detachment point ("dp" in the figure) and above the localiza-
tion threshold the string curve depends on the mass, while it
is to first order independent of the mass elsewhere. See also
Table I for numerical details.

III. NOMENCLATURE FOR POLE STRINGS

Let us start the phenomenological description of string
curves by introducing a nomenclature for them, which
will be explained in the next section.

If one has in mind a potential that consists of at least
one well plus a "minimal" environment, i.e., two barri-
ers (one of which may be nontransparent, i.e. , of infinite
height) the typical string curve looks like either Fig. 1(a)
or Fig. 1(b). For certain reasons that will be described
below we divide these string curves in two parts, namely,
the one up to the localization threshold (lt in Fig. 1),
which in this case coincides with a threshold in real en-

ergy, and the one after that. We will refer to these parts
as primitives of which a string curve consists. The primi-
tive below the localization threshold ("below" always re-
ferring to the smaller quantum number) will be called
regular, while the other will be called the irregular part

TABLE I. Comparison of the mass dependence of complex eigenvalues below and above the
—0 1mdetachment point for the potential V(z) = (0.5z —0.8)e ' The mass was chosen such that

the real part is constant to three to four digits. Below the detachment point ("dp" in the table)
the imaginary part changes by about three orders of magnitude when the mass changes by two
orders, while for energies above the detachment point the imaginary part is almost independent of
the mass. In the table (—n) means 10 ";units are atomic.

Mass
0.3330
1.0000
5.0600
9.5050

12.2500
15.2500

Below dp
ReE

2.1265
2.1272
2.1273
2.1243
2.1228
2 ~ 1261

ImE
5.8999(-2)
1.5447(-2)
7.4147(-4)
1.1214(-4)
4.4281(-5)
2.0630(-5)

Mass
0.2724
1.0000
3.3500
6.4550

10.6560
14.7700

Above dp
ReE

4.0554
4.0554
4.0556
4.0557
4.0559
4.0553

ImE
3.40819
3.29864
3.27009
3.26444
3.26276
3.25931
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of the string curve. An irregular part can be of smooth
type, as in Fig. 1(a), or of wiggly type, as in Fig. 1(b).
One of those "peaks" in Fig. 1(b) will be called here a
spike. Another important feature of string curves is that
they "detach" at a certain real energy from the real axis,
i.e. , below the detachment point (dp in the figure) the
string curve stays very close to the real axis, while after
it moves rapidly into the complex plane; see below.

More generally speaking, the spectrum of a Hamilto-
nian can contain no, one, or multiple string curves. One
of the string curves can consist of an irregular part, a
regular and an irregular part, or one regular and two ir-
regular parts (see, e.g. , Fig. 6 below). The first two types
will be called simple, while the third one will be called
composite,

-g l

M

Q3

Q

l I l I

0. 5 j 1.5 2 2. 5 3
Re E

IV. A MORE DETAILED DESCRIPTION
OF STRING CURVES

dn 2
p(E) =

I@+i —&'-iI

(note that we chose the modulus in order to measure the
"real" distance between the poles). As one can see from
Fig. 3, the density has a sharp peak at Vo = 2.36 hartree,
so we can speak of a detachment point. The solid lines
in Fig. 3 are the result of a WKB calculation. There we
evaluated the density of states via

t1

g(~)
(5)

Note that we have used real energies for this calculation.
One sees that the excellent agreement before the poten-
tial height of 2.36 hartree is somewhat diminished after
it. Nevertheless, the "predicted" WKB density clearly
has the correct shape.

Let us for the moment think of a simple double bar-
rier or a one-barrier —one-wall ("wall" means a barrier of
infinite height) combination. The potential might have
one or more bound states. The corresponding wave func-
tions are naturally localized in the potential well having
one or more nodes. If we move up with the energy above
the threshold [i.e. , the lim~ ~~ V(x); usually set to zero]
tunneling is possible and the static description using the
real axis fails. By using complex scaling [2,3,28] we "filter
out" certain quasibound states that one calls resonances,
since if the imaginary part of the corresponding energy
is small, they coincide with sharp peaks in the scattering
cross section or in the transmission coefficient [29]. As
mentioned, these quasibound states belong to complex
energy eigenvalues of the complex rotated Schrodinger
equation. The imaginary part of the energy rises with
the quantum number (in a single string curve). Up to the
detachment point, however, it stays rather small, while
after it it rises rapidly. We found that this detachment
point coincides with the height Vo of the potential above
the threshold. This is seen best if one calculates the
"density of states" p(E),

FIG. 3. Density of eigenvalues for V(x) = (0.5x
—0 1z—0.8)e " + 0.8 and p = 60 a.u. with a peak around the

potential height of 2.36 hartree. This indicates that there
is indeed a detachment point and not a smooth transition.
The solid line is the result of a WKB calculation evaluating
Eq. (5) using real energies. The agreement is good through-
out, although it necessarily diminishes for higher energies.

If one raises the real energy more and more, the life-
time of the resonances (proportional to the inverse of
the imaginary part of the energy) shortens ever more.
This is true until we reach a certain point, namely, the
localization threshold. From this point on the lifetime ei-
ther shortens with dropping real energy (smooth type)
or has a more complicated dependence on the real en-

ergy (wiggly type); cf. Fig. 1. The localization thresh-
old coincides very often with a bound in the real energy,
however, it does not necessarily: e.g. , for the potential

V(x) = (ax + b)e "*(a = -87, b = —5.6, c = 2), there
seems to be no threshold in real energy. Generally speak-
ing, this coincidence depends on the choice of parameters
of the potential. The localization threshold was called the
complex threshold by Rittby, Elander, and Brandas [13]
to indicate the "borderline" between primary poles (reg-
ular part) and secondary poles (irregular part). However,
we feel that the nomenclature of the present authors is
more to the point for. the following reason. We believe
the physical mechanism constituting the complex energy
eigenvalues to change at the localization threshold. One
should expect of a quasibound state that it is localized
between the barriers. This is true for all resonances up
to the localization threshold. At this point, however, the
localization pattern changes within a few quantum num-
bers from localization within the attractive region of the
potential (say, for a symmetric double barrier potential
—x „& x & x, where x „ is the position of the
potential maximum) to localization beneath that region,
i.e. , just outside the attractive region of the potential.
Figure 4 shows this behavior for the well-known poten-
tial V(x) = (0.5x' —0.8)e ' + 0.8, which has been
used extensively in the literature [13—15,26]. It should
be noted that in this figure we plotted I@„(0= 0.75)I
and we normalized g according to the "standard" i

way) l..e. ,
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FIG. 4. The absolute square ~@~ of selected wave func-

tions of V(z) = (0.5~ —0.8)e ' + 0.8 (p = 1) plus the
potential itself (scaled by a factor of 1/6). The quantum num-
ber n = 10 is equivalent to an energy below the localization
threshold, n = 15 is at the localization threshold, and n = 20
corresponds to an energy above the localization threshold.
As can be seen in the Sgure, the localization pattern changes
drastically from being localized within the well to being local-
ized beneath the barriers. Please note that the localization
pattern is quite independent of the angle 8. For graphical
reasons the wave functions are normalized in the standard l:
way instead of using the (correct) complex scaling method
(CSM) way [Eq. (B5)t.

[g(qx)j'g(qx) qdh = 1.

This is not the correct way to normalize, if one uses com-
plex scaling, where it can be shown that one has to use a
difFerent scalar product (see Appendix B); nevertheless,
the localization pattern does not depend significantly on
either the angle 8 (as long as it is large enough, natu-
rally) or the normalization procedure used. (Using the
correct scalar product has the "disadvantage" that the
resulting moduli of the wave functions difFer by orders of
magnitude, so comparison is very complicated. In order
to facilitate comparison —and since the resulting local-
ization pattern is not affected —we decided to use the in-
correct scalar product. ) We therefore conclude that this
is a meaningful procedure for our purpose at this point.

We assume that the physical mechanism leading to the
resonances is changing in the respect that, below the lo-
calization threshold, we have tunneling. Particles are
trapped "between" the barriers (note that the real part
of the energy is far above the potential maximum) for
a certain —near the localization threshold rather short
time. But every finite potential (i.e. a potential that
has no attractive poles) has a limited "localization abil-
ity, " i.e., it cannot hinder signi6cantly any particles with
an energy higher than a certain value. This value we
believe to be the localization threshold. We assert that
the states with higher quantum number correspond to
a (retarded) backscattering. Our assertion is supported
by the fact that a single barrier (like a Gaussian barrier,

0 'II '
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FIG. 5. Spectrum of a simple Gaussian barrier
—x2

V(x) = 21.944e for four difFerent masses (p = 1, 5, 10, 20;
rn in the figure). There is an irregular part only and this part
(up to a certain imaginary energy) does not depend on the
mass. For p = 5 the "complete" spectrum is shown, i.e., reso-
nances plus eigenvalues of the kinetic energy operator. Please
note that the string is wiggly.

e.g.) has no regular part at all, but only an irregular
part; see Fig. 5. Using our argumentation this behavior
is obvious: Since there can be no quasibound situation,
because of the missing well, there can be no regular part.
On the other hand, there might be both "&ee" states
and states that are scattered back that correspond to
the eigenvalues above the localization threshold. Look-
ing at the localization only is here clearly not sufficient.
A detailed dynamical study should shed some light onto
the matter.

Generalizing the discussion now, let us brieQy outline
what string curves one has to expect for what kind of
potentials. In the simplest case we have a single bar-
rier only. For such potentials we always 6nd an irregular
part starting at the height of the barrier, i.e., localiza-
tion threshold and detachment point coalesce. For Gaus-
sian barriers we found smooth irregular parts up to high
imaginary energies. Closer inspection revealed, though,
that they do have a wiggly irregular part starting only
relatively deep in the complex energy plane (see Fig. 5).
As mentioned above there can be no regular string curve.
We found irregular parts starting at the height of the bar-
rier also, if one has within a potential a very pronounced
single barrier; see below.

The next case would be a one-mell —one-barrier combi-
nation. Here we have both a pronounced single barrier
and some trapping because of the well. Therefore we
6nd a composite string curve consisting of both a reg-
ular string curve detaching at zero (the lowest barrier
"available" ) and an irregular string curve starting at the
potential height above zero. The two string curves co-
alesce. This "bifurcation" point depends on, e.g. , the
attractivity of the potential, i.e., the depth of the poten-
tial minimum. This eKect is shown in Fig. 6, where we
depict a number of resonance string curves for potentials
of the family V(z) = a(x+ b)e * (see Appendix A for
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the eigenvalues of these potentials when multiplied by a
"window" function, i.e., a function that is u»ty inside
some interval and zero outside. A possible representa-
tion is the arctangent or the error function. That is, we
found in [32] that the Hamiltonians

this) approximately lines in the complex plane where for
some i and j

Imcx;~. = q(z) dz = 0.

H=T+V,
H = T+mV,

where n is a window function, have a common subset of
eigenvalues, namely, those for which apparently the "cut-
ting ofF' of the potential is irrelevant. Since the "win-
dowed" potentials are dilatation analytic, we can use all
of complex scaling and can justly speak of resonances of
these "windowed" Hamiltonians. Now, since both have
a common subset of complex and stable eigenvalues and
what is more have identical wave functions [32] for these
common eigenvalues, we argued that the original, "non-
windowed" eigenvalues can be talked of as resonances.
The deeper reason for this behavior is that especially
for the first resonances the eigensolutions tend to zero
very quickly and therefore they depend very little on the
boundary conditions far out. If one chooses the window
in such a way that it stays (close to) unity in the interval
where the eigensolutions are sensitive to changes (i.e., are
not nearly zero) then it is immediately clear that using
a window is only a mathematical trick, and that nec-
essarily the eigenvalues and eigenfunctions are (nearly)
identical. So, in this somewhat approximate sense, we

may well speak of resonances of polynomials, especially
if one bears in mind the fact that we can envisage every
numerical calculation as using a window function simply
because of the trivial nonexistence of a numerical infinity.

Adding another barrier to the potential does not give

any new kind of pole string curve; it may well pro-
duce, though, an additional string curve (see below). We
therefore introduced the concept of irreducible units in
a recent publication [34]. There are two types of irre-
ducible units: a single barrier (or a rather pronounced
barrier), and a well and barrier(s) combination. A single
barrier —as seen above —gives an irregular parts starting
at the height, and a well and barrier(s) combination gives
a normal string curve consisting of regular and irregu-
lar parts with a detachment point at the lowest barrier
height (which, e.g. , for a potential with one barrier only
is the localization threshold). The assignment of irre-
ducible units to a potential, though, is not trivial. First
of all it may very well be that irreducible units over-

lap, like in the one-well —one-barrier combination where
the barrier serves both as single barrier and as part of a
well-barrier combination. Secondly, if one has more than
one irreducible unit, e.g. , three barriers and two wells,
one cannot by inspection of the potential decide a priori
whether the barriers are single or whether one has two
barrier-well combinations.

Looking at the above description from the semi-
classical point of view one observes the following. As
we argue also below (Sec. VIA) the important concept
is that of the relevant transition points. The string curve
always follows (the detailed analysis in Sec. VIA shows

(The more correct version, i.e., one that follows the
strings up to the error of the WEB method, is shown
later; for the present argument this form suKces, as
we are not about to explain the "wiggly" nature of the
strings. ) Now the question to ask is which i and j to
choose. For negative real energies, one obviously has to
choose the innermost transition points, i.e., those that
correspond to the classical turning points. Choosing
these and evaluating the above equation, we find a line
starting at the potential continuing from there with zero
imaginary part. In fact, to find a numerically satisfy-
ing result we would have to include at least the next
outer transition point(s) in the evaluation; as we know,
Im(E) = 0 is not the correct result even below the barrier
height; what we do know, though, is that the imaginary
part of the energy below the detachment point is rather
small. Additionally, we are at this point only interested
in the general shape of the string curve; therefore we

regard the above as a good qualitative approximation.
Crossing with the real energy now at least one of the
barrier heights (in the more general asymmetric case) we

have to include on that side at least another transition
point. This situation had been given above when consid-
ering the composite strings of asymmetric potentials. Be-
low zero energy the relevant transition points are the in-
nermost. As we cross the lower one of the barrier heights
we find that there are two string curves. If we concentrate
on the first four transition points lying next to the origin
of the complex z plane and if we number them consecu-
tively coming from the lower barrier side (i.e. , transition
points 2 and 3 correspond to the classical turning points)
then the regular part of the composite string can be found

by setting Images to zero, while the irregular part starting
at the potential height is due to Imo. 34

——0. Please note
that on the real energy axis o.34 corresponds to the in-

tegral over the (higher) potential barrier, i.e., by setting
Imo. 34

——0 we look for "bound states" within a potential
barrier. From the point where both string curves coalesce
all four transition points are relevant (i.e. , the string is
"identical" to the curve Imaq4 ——0). For higher quantum
numbers we even have to include more than those four.
Thus, for an asymmetric potential we have in a certain
region of the complex energy plane —an ambiguity: there
are in fact two solutions, which is why we find compos-
ite strings. For symmetric potentials this possibility does
not exist, which explains why we find only simple strings.
So the concept of an irreducible unit emerges quite nat-
urally also in the semiclassical approximation.

V. MULTIPLICITY OF STRING CURVES

Let us now consider the question how to find more than
one string curve for a one-dimensional potential (apart
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from composite strings). The simplest way of obtaining
multiple strings is the following. Assume that we have
two potentials Vi(x) and V2(x) with the corresponding
Hamiltonians and their eigenfunctions gi(z) and $2(x).
Assume additionally that Qi(x) is located in a region
where V2(x) is zero and vice versa [i.e. , the products
gi(x)Vq(x) and $2(z)Vi(x) are identically zero]. Then
the Hamiltonian

H = T + Vi (x) + V2(z)

possesses two distinct (orthogonal) sets of eigenfunctions,
namely, @i(z) and $2(x), so that the Hamilton matrix is
block diagonal. It holds that

Hg, (x)= Tg, (z) + Vi(x)gi(z) + V2(x)gi(z)
—:Hi/i(z),

HQ2(z)= TQ2(x) + Vi(x)$2(z) + V2(z)$2(z)
= H2$2(z).

and

(4i(z) lH42(z)) = (42(x) lHOi(z)) = 0 (8)

Therefore the discrete spectrum of H is simply the
union of the (discrete) spectra of Hi and H2

og ——oi U o2.

Thus, in order to get more than one string curve, one pos-
sibility is to use a sum of two potentials, which are located
far enough away from each other. (The "far enough, "
though, depends on the analytical form of the potential. )
The above precondition, namely, that gi(z)V2(z) and
$2(z)Vi(x) are identically zero, is naturally very strong
(too strong, one might argue). In fact, for the Hamilto-
nian to be nearly block diagonal it is sufIicient that the
corresponding mixed elements of the Hamilton matrix
are sufficiently small (i.e. , that the above products are
only approximately zero), so that we can deal with them
as a vanishing perturbation. For a concrete example, see
below.

Exactly the same argument is true for potentials
that have more than one barrier —or possibly barrier-
well combinations located quite far away from each
other, i.e. , the effect is not limited to sums of poten-
tials. Because suppose that a Hamiltonian H = T + V
has the solutions (g;(x)); i iv and there is a subset

(g, (z)); i,m ( X that is zero outside some range
which especially excludes some of the potential; then the
above analysis is valid as well, only that the potential is
defined piecewise

where the index 1 indicates a restriction to —oo & x & a.
It can easily be extended to the whole axis by defining
Vi(x) = 0 or g; (x) = 0 for x ) a. Another possibil-
ity would be to use the window function [32] that we

proposed earlier for use with polynomial potentials; see
above. Upon multiplication by the original V(x) we get
either Vi(x) or V2(x) depending on the sign of the argu-
rnent of the arctangent.

Then the Hamiltonians Hi and H2 are defined on the
whole axis and have eigenvalues E, or E, , respectively,
as indicated above. So again the Hamilton matrix is
block diagonal and the discrete spectrum of the complete
Hamiltonian is the union of the (discrete) spectra of Hi
and Hq provided that for all wave functions g, (z) and

g, (x) it is true that

V2(x)g'(x) = Vi(z)t('*. (z) = 0.

(And if this condition is only approximately valid then we
will find almost exact block separability, etc. ; see above).
In Fig. 9 we show an example of this behavior. This
potential

V(x) = Vo cos(az)e

0 C

(in the figure we used Vo ——20, a = 1, 6 = 0.15, and
y, = 1) features four to five overlapping barrier-well com-
binations that are independent of each other, as we have
recently shown [34] by comparing the union of the spectra
of the "reduced" Hamiltonians with the complete Hamil-
tonian.

Indeed we have not found a single counterexample to
this behavior. Even in situations where one might be led
to believe that there should be more than one string curve
one may not find them. For example, if one considers a
potential with two difI'erent thresholds, as in a chemical
reaction with intermediate species, one is tempted to be-
lieve in two distinct channels each having their "own"
string curve. As can be seen in Fig. 10 this is definitely
not true. We do find two continua at the threshold val-

V(x)
Vi (x), —oo & x & a,
U2(x), n ( x ( oo. -2. 5

—j5 —10 5 10 15
(For reasons of simplicity we chose two partitions; the
analysis can be trivially extended to more than two par-
titions. ) Now we have for i E [1,m] and —oo & x & a

Hg; = [T+ Vi(x)]g, —= Hip, '(x) = @,'g, '(x), (ll)

FIG. 9. Pole string curves of V(x) = 20 cos(x)e
(p = 1). There are at least three string curves visible in the
plot. These correspond to irreducible units that consist of a
well plus the adjacent barriers. See text for further details.
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FIG. 10. Pole string curve of piecewise de6ned poten-
tial—Eq. (A8)—with two difFerent thresholds (one at zero,
one at 15 hartree). Note that first there is one string curve
only and secondly this string curve is just as was to be ex-
pected, i.e. , it is a composite string curve showing no irreg-
ularities because of the additional threshold. Plotted also in
the Sgure are the two discretized cuts starting at the thresh-
olds.

ues, but there is only one string curve.
This means that one can envisage —as we have already

mentioned above —a given potential as being composed
of "irreducible" units in the sense that one irreducible
unit is the source for one string curue. As we have seen in
the last examples the irreducible units are not necessarily
disjoint intervals. Usually they consist of a well together
with a "minimal" environment, i.e., the surrounding bar
riers.

The above findings are not astonishing in the sense
that obviously when there is more than one string curve
there is a "hidden" symmetry in the form of an addi-
tional quantum number within the system. Surprising,
however, is the fact that one can correlate this quantum
number with an irreducible unit and that there seem to
be no wave functions g(qz) (i.e., after the CSM transfor-
mation) which are delocalized over the whole potential.
It may seem appropriate to mention again that finding
mostly single string curves is a typical property of the
one-dimensional Schrodinger equation. Already in two
dimensions the situation is completely reversed in the
sense that one does not observe single string curves read-
ily, because of the additional degrees of freedom.

UI. ABOUT %'IGGLES

Potential string curves with wiggly behavior have been
reported first by Rittby et al. [12—14]. This behavior has
caused considerable discussion, since Korsch et al. [26]
questioned the existence of wiggles. Their doubts were
based on calculations using the complex rotated Milne
method [35] and on semiclassical calculations [26], which
gave essentially the same results.

Recently, though, Andersson [27] was able to show
that %KB calculations give the correct results, if one
includes enough transition points. He was able to verify

the results of Rittby et al. using a first order phase inte-
gral approximation, but including four transition points.
The results of Rittby et al. have also been confirmed by
other authors using different methods. Using the com-
plex scaled Fourier grid Hamiltonian method [31], we
were able to achieve at least six digits of agreement.

One must conclude therefore that wiggles are not nu-
merical artefacts, though their interpretation is some-
what unclear. The following should be noted.

(i) In all cases wiggles occur after the localization
threshold so the oscillatory tail of the string curve con-
tributes (after "backrotation") to the (measurable) back-
ground at most [36].

(ii) "Resonances" constituting the wiggly tail are not
localized within the attractive region of the potential, so
the process underlying these eigenvalues is obviously not
tunneling. The real nature, though, is unclear.

(iii) The question of wiggly or nonwiggly cannot be
correlated with potential parameters. Rather it depends
on the analytical structure of the potential; see below.

(iv) The WEB analysis [27] shows that one has to
use more than one pair of transition points to calcu-
late the correct eigenvalues. Additionally Andersson [27]
has shown —see also Sec. II abov- that those transi-
tion points that on the real axis correspond to the clas-
sical turning points completely lose their importance. [A
short word of explanation: For (real) energies below the
potential height one has in this double barrier case four
transition points on the real axis. Going higher with
the energy one finds those zeros moved into the complex
plane in four different quadrants. Additionally there are
also "new" complex roots in every quadrant. The latter
have no analog on the real axis; they exist because of
the analytical structure of the potential in the complex
plane ]Since th.ose transition points that are necessary
for the correct results have no "analog" on the real axis
the wiggles seem to be a feature of the complex plane
only, i.e., their existence is due to the analytical contin-
uation.

Generally speaking, wiggles seem to be an effect due
to the comptez potential (i.e., its analytical continuation)
and less due to the potential itself; see below. Nev-
ertheless wiggles are a very interesting analytical phe-
nomenon, and it is fascinating to look into that matter,
because it shows the complexity of the analytically con-
tinued Hamiltonian.

Another word of warning may seem appropriate. Wig-
gles are hard to find in the sense that when employing a
basis set method —even such a good one as the Fourier
grid Hamiltonian method [31]—and using, e.g. , too small
values of the integration range or the basis set size one
may end up with resonance string curves where the last
resonances seem to be stable enough, but the string curve
is smooth. Upon enlarging the basis set size, though, we
found that wiggles appear (data not shown). The key
is the stability of the eigenvalues with respect to varia-
tion of 8; one should use a rather strict condition (e.g. ,
constancy of the eigenvalues to at least three digits upon
variation of 8 and integration range). If one finds wig-
gles, though, our experience is that they can be trusted.
We have found no example where with 1ow accuracy we
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found wiggles and with high accuracy found none. In
order to be absolutely sure whether there are no wiggles
one should use a direct numerical integration scheme at
the found eigenvalues (with a very small step size). We
rechecked our results when in doubt using a renormalized
Numerov or a log-derivative method [37—39].

Basically, we checked three different classes of poten-
tials. (1) P(x) with uneven order or negative leading

coefficient, (2) P(x)e '*, and (3) P(x)e '*, where P(x)
is a polynomial. Specifically, we checked polynomials up
to fourth order, because we had the impression that no
new insight was gained by going to still higher orders.
As mentioned above, we also checked damped periodic
potentials, but, since those are dilatation analytic in a
comparatively small portion of the complex plane only,
we have not even seen a localization threshold for the pa-
rameters we chose. The same is true for potentials that
have a polynomial in the exponent of order greater than
2: those are dilatation analytic only for angles

2~0(0
n

where n is the order of the polynomial in the exponential.
After this angle 0 „ the sign of the real part of z" =
e'" x" changes and the potential diverges exponentially.
Usually, though, we need the better part of the fourth
quadrant to include a portion of the spectrum that is
large enough to decide whether it belongs to the smooth
or the wiggly type.

Wiggles never occur before the localization threshold;
in fact, we tend to argue in the following way. Con-
sider the string curve as a function Im(E) vs Re(E).
Then the "spikes" are local minima surrounded by local
maxima. The first local maximum is always the local-
ization threshold, so very naturally there are no wiggles
before the latter. Pure polynomials therefore "cannot"
have any wiggles, because they do not have a localiza-
tion threshold. In the case of the symmetric potential
V(x) = ax + bx2 the WKB ansatz for resonances can
be solved analytically [40] in terms of elliptic functions
[41]. It can be verified in this case that the potential-—
or the corresponding Hamiltonian —has no localization
threshold at all.

We are left with two of the above mentioned classes of
potentials. As far as we can say, the class 2 (exponential)
has wiggles for no parameters or polynomials while class 3
has wiggles for all parameters and polynomials. Even for
n = 0 (simple Gaussian barrier) we found wiggles, though
only for rather high imaginary energies. It seems that

2
wiggles are an effect specific to the "Gaussian" (e )
type of long range part of the potentials.

Vj(x) = (-x —0.8)e + 0.8,

which was first used by Moiseyev, Certain, and Weinhold
[42], and the one called the Bain potential first used by
Bain, Bardsley, Junker, and Sukumar [43],

V, (x) = 7.5x'e *.

q(z)dz, z, jc [0, 1, . . .]. (14)

In the above formula we have defined the origin to be to.
The WKB conditions for complex energy resonances can
then be derived as [27]

2(xpi = (n + 2 )vr for 1 tp,

2noi —iln(1+ e ' ") = (n+ z)vr for 2 tp.

(15)

(16)

Formula (15) can be used up to a few quantum numbers
(three for mass 1 a.u. ) after the localization threshold in
the case of Vi and for the whole spectrum in the case of
V2.

As is known from the analysis of Andersson [27] the
Hamiltonian corresponding to Vi shows wiggles also in
the semiclassical approximation if (and if only) one in-
cludes more than two transition points. In fact, in order
to get a good approximation to the whole known string
one needs five transition points (considering symmetry).
But looking at Andersson's results, one observes that the
main qualitative correction is the inclusion of the second
transition point. Let us therefore take a closer look at
condition (16), but with a slight modification. We will
now consider string curves instead of strings, i.e. , the left
hand side of Eq. (16) is required to be real (instead of
half-integer multiples of vr). Rearranging Eq. (16) we get

2nIII —i ln (1+ e ' ") E R

i ln e ' "—i ln (1 + e—' "
)

e2inox (1 + e2 (17)

Since the latter must be real, the real part of the loga-
rithm must vanish. Since now (z = ~z ~e'~)

ln z = ln ]z
~

+ i (p + 2nvr ),I

condition (17) can be rewritten as

Both potentials are symmetric and therefore the transi-
tion points (tp) that are necessary for the semiclassical
calculations lie point symmetrically with respect to the
origin. As Andersson [27] has already remarked, of those
one needs to include only the ones in the first quadrant
of the complex energy plane. The integrals needed are
then

A. A semiclassical analysis
oi (1 + e z2)

~

~e»~ox (1 + 2 to)
—2im(uoq ) I1 + 2

—Im(nq2) yR y + —2im(caq2)]e o.'y2]

In this paragraph we shall analyze the situation from a
semiclassical point of view. In order to And the possible
cause for the wiggly nature of the spectrum we will here
concentrate on two potentials, namely, the potential used
by Rittby et al. [12—14],

cos~ e o.'z2]
—2Ixn(cxo1) + 2

—&~(~o1)—Im(no2 COSr Re 0

+ —2Im(no2)

(18)

(19)
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where the last equality follows &om o.02
——o.oq + n&2

(though when calculating this integral one has to be care-
ful to choose a path through the complex plane that does
not cross any cut; numerically we employ the equation
ap2 ——api + aiz in order to avoid crossing any cut). For
convenience we will define the square bracket of Eq. (18)
to be a function P.

Now we have three imaginary parts of integrals that are
of interest, namely, those of noq, nq2, and o;02. In Fig. 11
we show the exact resonances of Vq together with the lines
where the imaginary part of the mentioned integrals (and
additionally that of ap3 and a2s) vanish together with
the signs of those integrals to the right and left of the
corresponding line.

One observes the following. In the first part of the
string (up to the first wiggle) the imaginary part of ai2
(and also that of a2s) is positive. Therefore the only way
to fulfill condition (18) is that Im(api) = 0. This may
need some explanation.

Let us look at the portion of the complex energy plane
that is defined by

(E
~
Re(E) ) 0; 0 ) Im(E) ) zi2(E)),

where zi2(E) is the line defined by Im(ai2) = —ln2.
Here the latter is growing monotonically in the direction
of the real energy axis. We are faced with three possi-
bilities: Im(api) is negative, zero, or positive. If it were

(significantly) positive [so the string would deviate signif-
icantly from the line Im(api) = 0] then P would have to
be large compared to unity. This could be achieved only
when Im(ai2) ( 0, which (see Fig. 11) is a contradiction.
Now if Im(api) is (again significantly) negative then P
should be close to zero. The function P has only one
zero, namely, for Im(ai2) = 0 and Re(ai2) = n. This
condition is fulfilled for the resonances constituting the
first wiggle, as can partly be seen in Fig. 11. Andersson
had already observed [44] that the wiggles come close to
positions where

m +n
24Qrri j

ad=m+1

and he called them total transmission solutions. Please
observe also that the position of the spikes will depend
on the mass, although (a) neither of the lines in the figure
depends on the mass and (b) we are considering string
curves (as opposed to strings). The reason is simply that
the actual value of Re(ai2) is part of the condition. Since
this is mass dependent, the position of the spike wiB be
also; a fact that will be confirmed later in this contribu-
tion.

Now, if Re(ai2) is not an (odd) integer multiple of m,

the only possibility left to fulfill condition (18) is that
Im(api) is identical to zero. (To be inore exact: it inust
be very small. ) So the eigenvalues are distributed along
the line Im(api) = 0 until the resonances get nearer to
zi2(E), where one can observe the first deviation of the
real string from the above line [~lm(ai2)

~

grows rapidly
on either side of its zero, so zq2 is very near the zero
line. ] If now one crosses zi2 then the function P is larger
than unity [independent of the value of Re(ai2); zi2 was
chosen so that even for Re(ai2) = z'p ) 1; for other
values we could have chosen a line that is even closer
to Im(ai2) = 0]. This means that —in order to fulfill
condition (18)—the string must (a) deviate from the line

Im(api) = 0 into (b) that portion of the complex en-

ergy plane where Im(api) ) 0. This is exactly what one
observes; see Fig. 11.

Looking now at the next portion of the string one
sees that it follows —more or less—the line Im(apz) = 0.
This is clear, because a very similar analysis to the
above can be made now considering also Im(a2s) and
Re(a2s). We have more possibilities in this case, so that
the next wiggle does not have to occur when Im(a2s) = 0
[one finds, though, that Re(a2s) is again an odd inte-
ger multiple of vr at the next "spike" and that Re(a23)
is very small]. Please observe that the string is not

0-

-10—

-20—

-30—

-40—

FIG. 11. Resonances of the potential

V(x) = (1/2x —0.8)e ' + 0.8 for p = 1.
Additionally plotted are the lines on which
the imaginary parts of the indicated n, ~ van-
ish. The corresponding sign change (+ and
—) is also indicated. See text for details.
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Im(n) ~q[x(1 + im) + ib]
~
(m cos P + sin P) dx.

smooth, because Im(nps) is not that large in that re-
gion. One sees from Andersson's results [27] that one
needs to include the third transition point already after
very few quantum numbers in order not to deviate too
much from the correct results. After crossing the line
Im(n2s) = 0 the string again deviates significantly from
the line Im(caps) = 0, just as before it had deviated from
Im(np2) = 0 when crossing Im(ni2) = 0.

Thus, from the semiclassical point of view, the situ-
ation is quite clear. The string cannot be smooth and
tending back to zero real energy, because first of all we
are crossing the line Im(niz) = 0 and then there is an
"interference" between Im(np2) and Im(crps) ("interfer-
ence" meaning that the order of magnitudes are such
that none can be neglected). The latter is the cause also
for the mass dependence of this part of the string curve,
as we mentioned above.

Now let us turn to the Bain potential. What is different
here that prevents a mechanism similar to the above'
The answer is very simple (although astonishing): There
is no line Im(ni2) = 0. Im(a. i2) is positive definite. It
does have a minimum, as can be computed, but no zero.
Therefore the only possibility to fulfill condition (18) is
Im(ripi): 0 and this gives a smooth mass-independent
string curve, without any spikes.

The reason for this behavior can be tracked down to
the distribution of the transition points of the corre-
sponding potentials. Let us look at the function Im(a)
quite generally. The first transition point has the coor-
dinates (a+ ib) and the next (a'+ ib') with a' ) a and
b' ) b in the complex z plane (z = x+ iy). As the func-
tion q(z) under the integral has no singularities in the
interval, we may choose a straight line y = mx + b as
integration contour as long as we do not cross any cut,
which is always true when integrating between adjacent
transition points. Then

/{a)
m cos P + sin P dP

As m is positive this restricts P(a') + 2 to be smaller
than zero. One observes that between every two zeros
of E —V(z) lies one of Re(E —V) or Im(E —V), which
means that since

E —V(z) = ~E —V(z) ~e
'~ *

2$(a) must differ from 2$(a') by at least vr/2. Therefore
b ) vr/4. Consequently, one has a maximal m, namely,
tan(3n/8) 2.41. Values of m greater than this will
quite generally lead to Im(n) ) 0. [Please note that if
2$(a) should have to differ from 2$(a') by at least vr then
the maximal m is 1.]

Upon checking the distribution of zeros for the above
potentials one finds that for the potential Vi (x) this poses
no problem at all. For all resonance energies the value of
m for all of the diferent o.'s is well below 2, so that we can
find everywhere Im(n) = 0. We have shown that before.
But, turning now to Vz(z), we find that only the first zero
obeys the above restriction. This means very generally
that, e.g. , Im(ai2) is always positive, as we have already
mentioned above.

Please let us stress the fact that the condition m &
tan(3'/8) has been derived under very general conditions
and is therefore valid for every potential, i.e. , whenever
the slope between two consecutive zeros in the erst quad-
rant of the complex z plane is larger than the above value
the corresponding Im(n) is strictly positive.

4{~')
= m(sin[/(a)] —sin[/(a')]} + cos[P(a')] —cos[P(a)). .., &4()+4(")i„, )4()+4(")~

Now let P(a) = P(a') + b where b (0 & b & vr/2) is some
constant. It follows that (, bb—m = tan

]
@(a') + —[.

Now we are performing the integration outtoard, i.e. , we
are moving in a positive x direction. Therefore the real
part of q must be positive. This restricts us to —vr/2 &

P(z) & vr/2, which in the complex E —V(z) plane means
that the argument of E —V(z) is between —n and 7r (so
the whole plane is still available).

Since ~q~ is a positive function with no zero in the in-
terval under observation the condition Im(a) = 0 implies
that

Ia
mcosP+ sinPdx = 0.

Now let us approximate P(x) = —Cx [numerical experi-
ments show that this is a good approximation especially
between the "outer" zeros, i.e., those further into the
complex z plane; in fact, the only property we need is
that P(x) is a strictly monotonic function):

B. The transition from wiggly to smooth

We studied the transition from wiggly to smooth be-
havior with the help of the potential class

V(x) = 70(0.5x —0.08)e (20)

and varied a and b (p = 0.7). In the limit b = 0 we
end up with a variant of the Bain potential [43] and in
the limit of a = 0 we have a potential that is similar to
the one used by Rittby et aL [13]. While the first does
not show any wiggles, the second one does, as we men-
tioned above. As can be concluded graphically in Fig. 12
the transition is very smooth. There is no breakdown
at some quotient of a and b. Those eigenvalues that
constitute the "spikes" simply melt smoothly into the
string curve. Note, though, that all of the shown strings
are "wiggly;" only the spikes are not that prominent for
large a. We might conclude from this as can be seen
also from Andersson's [27] and the above semiclassical
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FIG. 12. The transition from wiggly to smooth for poten-
tial V(z) = 70(0.5z —0.08)e * *;Table VIII below for
the detailed choice of constants. As shown in the figure the
spike simply melts smoothly into the string curve. There is
no breakdown of any sort visible, neither have we found one
when changing the parameters in other different ways.

analysis —that the behavior of the "tail" of the potential
(i.e. far out) is important for the wiggles. Since this tail
is not affected very much by a—if not chosen too large
with respect to 6—we End such a smooth transition. Ac-
cepting the validity of the semiclassical approximation,
the reason for this smooth transition is the distribution
of the zeros or rather their dependence on a. That is,
since the Gaussian term e starts to behave rather vi-

olently around y = ix, i.e., m = 1, we find that even for
large a the zeros are distributed along or near that line.
This means that m is smaller than the critical value of
tan(3vr/8) and therefore we can have wiggles. We found
that the slope between transition points 2 and 3 (consti-
tuting n2s) is smaller than tan(3'/8) as long as a/b is
smaller than 100. For larger values of a/b there can be
no wiggles but only a smooth string.

C. The dependence on mass and barrier thickness

Let us turn now to look at the wiggles explicitly for a
specific example. Let us choose the family

V(z) = (ax'+ bx+c)e

with b = 0 for the moment (symmetric case). The choice
is completely arbitrary in the sense that we could have
chosen another family to find basically the same results.
The family we have chosen here is just very convenient
numerically.

Rittby et a/. have calculated the spectrum for this kind
of potential for different d [13] and found an increase of
the "frequency" of the wiggles for increasing d. By chang-
ing d only one alters the "strength" of the potential, i.e.,
the barrier thickness and the height, and the position of
the maxima. If one changes the thickness only one has

to change both a and d. This amounts to a (real) dilata-
tion of the coordinate and is equivalent to changing the
mass (one is reminded of the well-known concept of mass
weighted coordinates). In the following we will therefore
write "mass-thickness. "

As can be seen from Fig. 2 this variation of parameters
also changes the wiggles. The rest of the string curve

(i.e., the part before the localization threshold) is not
affected by this transformation. This is clear, since —as
mentioned above —changing the thickness is equivalent to
changing the mass and we showed earlier that the regular
part of a string curve does not depend on the mass —to
Erst order. As can be seen also Rom Fig. 2 the frequency
of the oscillations is not affected by changing the mass.

That the irregular part of the string curve is neverthe-
less afFected by the mass may seem surprising, since the
regular is not. We showed in Sec. II that one can un-
derstand the nondependence of the string curve on the
mass in terms of Eq. (1). Obviously, if this formula holds
the string curve cannot depend on the mass. But, as
we showed in some detail above, the irregular part for
these kinds of potential is governed by an "interference"
of more than one transition point. For example, con-
sider two pairs of transition points. The corresponding
generalization of Eq. (1) is [27]

2no, —iln(I+e" ") e IR. (21)

One observes that Eq. (21) depends nontrivially on the
mass; therefore the corresponding string curve is mass de-
pendent. Additionally, as we showed above, the "spikes"
occur at or near points where the lines Rea;z ——(2n+1)vr
and Imn;z ——0 (ij is, e.g. , 12 for the first spike). While
the position in the complex plane of the former depends
on the mass, the latter does not. Therefore the &e-
quency of the wiggles will not alter, but the position can.
Whether the position of the spikes alters or not rather de-
pends on the curvature of the lines Ren;z ——(2n+ 1)x.

D. The "frequency" of the oscillations

If we now keep the thickness constant, but change the
height of the potential (keeping the depth constant as
Rittby et al. did), we find that this affects the frequency
of the wiggles. In Fig. 13 this is depicted. For decreasing
height the frequency of the oscillations grows rapidly un-
til for nearly zero height there are no resonances at all,
but only bound states (the arrow in Fig. 13 indicates a
single bound state for a set of parameters such that the
potential height is 0.0064 hartree).

The same can be concluded from a difFerent set of cal-
culations where we kept the total height (height minus
depth) of the potential constant and altered the quotient
(height)/(depth). We find (see Fig. 14) again a drastic
increase of the &equency especially for small values of the
height.

We conclude that the potential height is responsible
for the frequency of the wiggles (within a family). The
potential depth seems to play no role, which is consistent
with our previous remark that wiggles seem to depend
rather on the "tail" of the potential.
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FIG. 13. Pole string curves for V(z) = a(0.5z —b)e

with constant potential depth (p = 0.7). As can be seen from
the figure the "frequency" of the wiggles increases rapidly
with lowering of the potential height above the threshold.

E. The position of the "spikes"

Let us now turn to the question of what parameters
affect the position of the spikes on the imaginary energy
axis. To gain insight into this point it is instructive to
look at the asymmetric case (b g 0) of the above men-
tioned potential family. We kept constant the height of
one of the barriers while lowering the other one. (Ac-
cording to our observations the change in position of the
maxima is not important; data not shown. )

In Fig. 15 we show this asymmetric case. The out-
ermost string curve corresponds to the symmetric case
(b = 0) and the string curves from right to left corre-
spond to a diminishing left barrier (see Appendix A for

FIG. 15. Pole string curves of asymmetric V(z)
2= a(4z —bz)e ' for different values of "asymmetry. " The

detachment points (this cannot be seen in the figure) become
lower with lowering of one of the barriers; they are in fact
identical with the smallest barrier height. As can be seen, the
position of the "spikes" is constant over a whole range of b.
Only one more spike might be added eventually, if the local-
ization threshold gets lower than the position of that "virtual"
spike.

the detailed choice of constants). One sees beautifully
that (for the same thickness-mass) the positions of the
spikes are constant within a certain range of the parame-
ter b. If one lowers the second barrier further one simply
gets an additional spike. As one can see in the figure
this happens rather discontinuously. This behavior may
be called surprising, if one bears in mind that changing
the height affects the &equency of the wiggles. It seems
that in order to increase the frequency of the oscillations
both barriers have to be lowered. Please note that (not
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FIG. 14. Pole string curves for V(x) = a(0.5z —b)e
with constant total height (height above threshold minus
depth); the quotient of height above zero and depth is
changed. Note the very similar behavior as in Fig. 13, in-
dicating that the frequency of the oscillations depends indeed
on the potential height (the mass was 0.7 here).

-200
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10 15

Re E
20 25 30

FIG. 16. Pole string curves for V(x) = a(0.5x —b)e
with constant height. Due to the change in the parameters the
barrier maxima get closer when the potential depth is raised;
in the end there is only one barrier left. This case corresponds
to the innermost string curve, which has an irregular part
only. Note also essentially the same behavior as in Fig. 15.
(See Tabie III below for the choice of constants a and b The.
innermost string corresponds to the first line in the table, etc. )
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—*2FIG. 17. Pole string curves for V(z) = a(0.5z —b)e
with constant height and constant position of maxima. As
can be seen in the 6gure the positions of the spikes are not
constant, so that it should be concluded that the positions
are a function of mass-thickness only.

easily seen in the figure) the detachment point is always
the lower one of the two barrier heights.

Keeping constant the height and altering the depth,
one gets essentially the same picture as can be seen in
Fig. 16. Again we find that the positions of the spikes are
constant over a large region of parameters and then there
is another spike added while the rest remain unchanged.
Note that this analysis is valid only for constant mass-
thickness. If one, for example, also alters the parameter
d such that the positions of the maxima are constant, one
does not get this feature; see Fig. 17.

We conclude that the positions of the spikes —within a
potential family —depend on the mass-thickness only. It
might be the case, though, that some spikes are "miss-

ing, " because the localization threshold lies below them
(with respect to the imaginary part of the energy).

The reason for this behavior can again be tracked down
(accepting the validity of the semiclassical approxima-
tion) to the dependency of the lines Imn;~ = 0 and
Ren, ~

= (2n+ 1)m. One finds numerically that the latter
(e.g. , Reni2) do depend very little on the potential pa-
rameters. In fact, the higher ij the less they depend on
the potential. Even doubling the potential height does
not alter them significantly. They do depend, though,
on the mass. Additionally these lines are almost parallel
to the real energy axis. Therefore, when mass-thickness
is changed then the possible positions of the spikes are
altered significantly. When we are changing the other
parameters of the potential, we change the slope and
position of the lines Imo. ;~ = 0, but, since the lines
Ren;~ = (2n + 1)n are almost parallel to the real en-
ergy axis, the position of the spikes, i.e., the imaginary
energy where those spikes occur, is almost invariant.

VII. SUMMARY

Let us now summarize our findings, which were in
this contribution based mostly on three difFerent types of

one-dimensional potentials, namely, the pure polynomi-
als, polynomial times exponential, and polynomial times
Gaussian damping.

For the phenomenological description of resonance
string curves we introduced qualitatively the concept of
irreducible units of a one-dimensional potential and that
of regular and irregular parts of the string curve of res-
onances. There are two diferent types of units, namely
a single barrier and a barrier-well combination (or one
well plus surrounding barriers). These two have diff'erent

spectra, namely, the first one gives an irregular string
curve starting at the potential height, while the second
gives a normal string curve with both regular and irreg-
ular parts. A potential consisting of more than one ir-
reducible unit will have multiple or composite (or both)
string curves. The concept of irreducible units amounts
to the introduction of a quantum number that labels
those units. The assignment of a combined index (n, m),
where n is the irreducible unit and m numbers the reso-
nances within the subset, gives a unique way of labeling
the complex energy eigenvalues. Please note that we have
not found a single example where this assignment was
impossible, i.e. , where the resonant state was delocalized
over two or more wells.

While the physical interpretation of the eigenvalues of
the regular part of a string curve is quite obvious, that of
the eigenvalues constituting the irregular part needs some
more work to be spent on it. In the case of wiggles we
mentioned some points concerning this question. Putting
together the results of Andersson [27,44] and our own
analysis seems to point in the direction that for wiggles
the analytic continuation of the potential to the complex
coordinate plane seems to play a major role. One of the
problems that we have with those states is that they are
not localized in the attractive region of the potential, but
rather beneath it. We showed briefly that the localization
pattern changes at the localization threshold &om being
localized within the barriers (although with real energy
far above them) to being localized outside.

Our presented numerical results give evidence for the
fact that the regular part of the string curve is always a
very smooth curve that has two important points: the de-
tachment point and the localization threshold. We briefly
mentioned without going into detail that the detachment
point coincides with the lowest relevant barrier height.
Relevant means here that this barrier must be part of the
irreducible unit that gives that particular string curve.

We have also dealt to some extent with the question
of the mass dependence of the string curves. We found
that the regular part above Vo does not depend on the
mass. This fact as we showed —is consistent with the
first order phase integral approximation [17],if (and only
if) it suffices to include one transition point only. If—as
in the case of the wiggles —one has to use more than one
pair of transition points the string curve will depend on
the mass-thickness. Or, to turn this statement around,
whenever we find that a portion of the string curve de-

pends on the mass, we cannot expect to explain the re-
sults using a one turning point WKB analysis. In this
formulation our result may be interpreted as a strong
support of Andersson's findings [27].
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Besides mentioning a few points on the interpretation
of wiggles we presented a semiclassical analysis show-
ing that from a semiclassical point of view the string
of the potential used by Rittby et al. [V(z) = (0.5z

—p 10.8)e + 0.8] necessarily has wiggles. We showed
that at least qualitatively the spectrum of the corre-
sponding Hamiltonian can be understood by inspecting
lines in the complex energy plane, where for some i and

q(z) dz = 0.

The string quite generally follows lines on which Imo. p~

is zero until one crosses a line where Imo, ~~+q ——0. The
wiggles are due to the "interference" between, e.g. , Im o.p&

and Im ap~+q and spikes occur where Re o.~~+q ——nx and
Imo.~~+q ——0. Numerical experiment revealed that for
potentials other than the above (but of the type polyno-
mial times Gaussian damping) the situation is the same.
We conclude therefore that one can indeed. "understand"
the spectrum of the complex scaled Hamiltonian in those
terms.

We also gave a reason for the absence of wiggle when
using potentials of the type polynomial times exponential
damping. In fact, we were able to show that for Imo, ,~

to be zero the slope between the corresponding transition
points i and j must not exceed the value of tan(3vr/8). If
it does then Im o.;~ is positive definite. This is exactly the
case for all but the innermost zeros of the Bain potential
[43] [V(z) = 7.5z2e *], which is why the corresponding
Hamiltonian has a smooth string and no wiggles. Let
us mention that we have made no assumptions on the
form of the potential when deriving that the slope is to
be smaller than tan(3vrj8), so that this result is valid
irrespective of the potential being used.

We were also able to show some interesting connections
concerning the wiggles. First of all, the positions of the
spikes seem to be a function of mass-thickness only within
a potential family. Changing the depth (and therefore
the "attractivity" of the potential) or lowering one of
the barriers (in a double barrier case) only shifted the
spikes parallel to the real axis. Eventually, when the
imaginary part of the localization threshold got smaller
than a critical value a new spike was added, but the rest
remained qualitatively constant.

The frequency of the wiggles seems to be correlated
solely again within a family of potentials with the bar-
rier height in such a way that the higher the barrier the
smaller the &equency. The thickness-mass does alter the
position of the spikes, but not the frequency. The posi-
tion of the maxima seems to play only a minor role. We
also studied the transition from wiggly to nonwiggly be-
havior by using a potential that includes the above men-
tioned cases as extreme ones. We found a very smooth
transition (see Fig. 12) and no indication of a breakdown
of some sort for certain sets of parameters. This might
indicate that the possible "mechanism" for the wiggles is
not turned on in a sudden fashion, but is rather a con-
tinuous process.

As we demonstrated, on the semiclassical level all of
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APPENDIX A: POTENTIAL PARAMETERS

Generally, for symmetric potentials, V„designates the
potential minimum, Vp the potential maximum, and V~

the total height, i.e. , Vq ——Vp —V„. The basis set size
and integration range were chosen such that we found all
resonances to be independent of 0 within at least three
digits. Atomic units are used throughout.

1. The symmetric double well

V(z) = a(-z —b)e (A1)

This potential has extrema at

xg ——0, z2gs
——jul + 2bc (2cb+ 1 ) 0), (A2)

with

the above can be understood by considering the men-
tioned Imo. ,~

= 0 lines and their dependency on, e.g. ,
mass-thickness, etc. One is tempted, really, to say that
in the semiclassical description everything is very clear.
The diKculty one has, though, is the question of the
relevance of concepts like transition points (on which ev-

erything depends rather heavily) in the full quantum rne-

chanical picture. Nevertheless, apparently the predictive
power of the erst order approximation to the full quan-
tum problem is large enough to account for all of the
"efFects" and to give even a good approximation to the
exact values of the spectrum.

One of the goals of this contribution is to stimulate
the discussion among mathematicians or mathematical
physicists about a general theory dealing with pole string
curves of the eigenvalues of complex scaled Hamiltonians.
We are well aware of the phenomenological character of
our numerical studies and the specific (limited) character
of the one-dimensional potential functions used, but on
the other hand quite certain that at least some of the
facts that we showed here may be proven rigorously. As
we demonstrated, the most promising approach is the
(multi-turning-point) WKB analysis, not because of the
numerical feasibility —which in our eyes is rather limited,
especially since one does not know a priori how many
transition points to use and what order of approxima-
tion is sensible —but because of the comparatively simple
analytic structure of the (generalized) Bohr-Sommerfeld
formula. Further work along these lines is in progress.
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TABLE II. Potential parameters used in the calculations
of Fig. 14. Basis set size was 901 and mass 0.7.

TABLE IV. Potential parameters used in the calculations
of Fig. 17. Basis set size was 901 and p = 0.7.

a
70.00000
57.89029
45.83412
41.33206
29.19317
16.16950
10.98097
8.27207

6
0.08
0.15
0.25
0.30
0.50
1.00
1.50
2.00

V„
-5.60
-8.68

-11.46
-12.40
-14.60
-16.17
-16.47
-16.54

Vp

10.97
7.89
5.11
4.17
1.98
0.40
0.10
0.03

Vg

16.57
16.57
16.57
16.57
16.57
16.57
16.57
16.57

a
310.98426
132.85361
70.00000
51.42247
29.58890
10.02430

6

0.30
0.20
0.08
0.00

-0.20
-1.00

C

1.78571
1.31579
1.00000
0.86207
0.64103
0.31646

V„
-93.30
-26.57
-5.60
0.00
5.92

10.02

Vp

10.97
10.97
10.97
10.97
10.97
10.97

V~

104.27
37.54
16.57
10.97
5.05
0.95

TABLE V. Potential parameters used in the calculations
of Fig. 13. Basis set size was 901 and p = 0.7.

V„—:V(zq) = ba, —

v, =v, —v„.
V( )

a —(l+2cb),'/' 2

(A3)

a
70.00000
32.94118
28.00000
11.20000

b

0.08
0.17
0.20
0.50

C

1.00000
1.21951
1.31579
6.25000

V„
-5.60
-5.60
-5.60
-5.60

Vp

10.97
3.28
2.31
0.00

V~

16.57
8.88
7.91
5.60

a. Constant total height and c = 1

Table II shows the potential parameters for potentials
of type (Al) with constant total height. The fraction of
the potential above and below the threshold is varied.
Mass thickness is constant.

TABLE VI. Potential parameters used in the calculations
of Fig. 15. Vi refers to the left barrier height, while Vii refers
to the right one. Basis set size was 901 and p = 0.7

b. Constant height and c = I

Table III shows the potential parameters for potentials
of type (Al) with constant height above threshold. The
depth of the potential is varied, while mass-thickness is
kept constant.

a
7.5
7.0
6.7
6.4
6.0

6

0.0
0.3
0.5
0.7
1.0

Vi

11.04
9.54
8.65
7.81
6.70

Vii

11.04
11.08
11.11
11.10
11.10

V„
0.00

-0.04
-0.10
-0.19
-0.37

e. Constant totat height and position of maximum

Table IV shows the potential parameters for potentials
of type (Al) with constant total height above thresh-

a
10.97000
18.50000
21.94403
26.80250
32.73665
39.98463
44.18986
46.92240
50.83043
59.65007
65.92352
70.00000
83.90522
98.34633

108.68951
146.71549

-1.00
-0.60
-0.50
-0.40
-0.30
-0.20
-0.15
-0.12
-0.08
0.00
0.05
0.08
0.17
0.25
0.30
0.45

V„
10.97
11.10
10.97
10.72
9.82
8.00
6.63
5.63
4.07
0.00

-3.30
-5.60

-14.25
-24.59
-32.61
-66.02

Vp

10.97
11.10
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97
10.97

Vg

0.00
0.00
0.00
0.25
1.15
2.97
4.34
5.34
6.90

10.97
14.27
16.57
25.22
35.56
43.58
76.99

TABLE III. Potential parameters used in the calculations
of Fig. 16. Basis set size was 901 and p = 0.7.

a
6.600
6.000
5.500
4.900
3.095
0.400

6

0.0
1.0
2.0
3.0
6.0

10.0

Vj

10.89
7.29
4.34
1.56

Vii

10.89
10.75
10.97
10.91
10.97
10.94

V„
0.00

-0.04
-0.18
-0.47

TABLE VIII. Potential parameters as used in Fig. 12. Ba-
sis set size was 701 and p, = 0.7.

0.10
0.30
0.60
1.00

6
1.00
1.00
1.00
1.00

V„
-5.60
-5.60
-5.60
-5.60

Vp

9.86
8.02
5.96
4.11

TABLE VII. Potential parameters used in the calculations
of Fig. 8. Vi refers to the left barrier height and Vii to the
right one. Note that for a ( 3.095 there is only one barrier.
Basis set size was 701 and p = 1.
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old. In addition to varying the fraction of the potential
above or below the threshold, mass-thickness is also var-
ied in order to get constant position of the barrier max-
ima (+pl + 2bc is constant).

and one barrier. The barrier height was kept (roughly)
constant and the depth of the well was varied in order
to study the composite type of resonance spectra. Mass-
thickness was kept constant.

d. Constant depth and position of rnazinauna 6. Piecewise de6ned potential with two thresholds

Table U shows the potential parameters for potentials
of type (Al) with constant depth. In addition to varying
the height of the potential barriers, mass-thickness is also
varied in order to get constant position of the barrier
maxima (kv 1+ 2bc is constant).

2. The asymmetric double well

V(z) = a (4z —bz) e (A4)

(see Table VI). Depending on the choice of the constant
6 this potential features two barriers of unequal height.
We kept one of them constant and varied the height of
the other. Mass thickness was constant.

3. The asymmetric x potential family

V(z) = —z +ax +bx (A5)

(see Table VII). Depending on the choice of the constant
6 this potential features two barriers of unequal height.
We kept one of them constant and varied the height of
the other. Mass-thickness was constant. Note that this
potential is not dilatation analytic, because it drops to
—oo for [z ~ +oo; see, however, Sec. IV.

( )
70(2z —008)e, x(0,
70 (-,'z' —0.294286) e * + 15.0, z & 0.

(AS)

This potential has two thresholds: one at 0 and one at
15 hartree. The mass was chosen to be 5 and basis set
size was 701. See Fig. 10 and the text for details.

APPENDIX B: COMPLEX SCALING

We do not wish to give a complete introduction to com-
plex scaling here; that has been done elsewhere [6,7,45].
The purpose of this section is to de6ne our nomenclature
and to remind the reader of the important theorems in
this context.

One could summarize the purpose of complex scaling
for this kind of application as the following. While stan-
dard time-independent quantum mechanics is clearly rel-
evant for all bound state problems, it cannot deal with
quasibound particles, i.e. , with resonant behavior, con-
sistently. This has been known at least since the Gamow
theory of o. decay [22].

Therefore an extension to the theory has been devel-
oped [1—3]. The main tool has been to transform the
Schrodinger equation by a nonunitary transformation,
which is (for uniform scaling) defined by

4. The transition from wiggly to smooth

V(z) = 70(-,'*' —0.0S) e- *-'
(A6)

which leads to
(see Table VIII). This potential includes as extreme cases
(a = 0 or b = 0) potentials which definitely show wiggles
or not, respectively. It is used to study the transition
between these two diH'erent types of spectra.

Uf(z) = rl'~ f(i1z), rI = e*s,

H(rI) = U(g)HU '(g)

(82)

(83)

5. First order polynomial times Gaussian damping
factor

V(x) = a (x+ b) e (A7)

(see Table IX). This potential family features one well

a
25.00
13.50
8.97
5 ~ 10

b

0.00
0.50
1.00
2.00

V„
-10.72

-2.48
-0.51
-0.01

Vo

10.72
10.51
10.72
10.79

TABLE IX. Potential parameters as used in Fig. 6. Basis
set size was 901 and p = 5.

OE OE
0,

Bq 80
(84)

The eigenvalues of the transformed Hamiltonian H(rj)
are complex numbers. The imaginary part is interpreted
as being proportional to the inverse of the lifetime. Via
the transformation the eigenvalues of the kinetic energy
operator, which constitute the branch cut of the resol-
vent, are rotated into the fourth quadrant of the complex
energy plane by —20, thereby opening the second un-

physical sheet. Eigenvalues on that sheet are called res-
onances. (One should mention here, though, that there
are indeed diferent ways to de6ne a resonance; see, e.g. ,

[46].) Those eigenvalues do not depend on the parameter
0,
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(0 l 0) —= fW(~'*)I'P(n*)n ~* (B5)

For a discussion of the scalar product see [49] and es-

pecially [50]. Let us note that there are numerous ways
to distort the path into the complex plane [46,51]. We
have used only uniform scaling —as defined by Eq. (Bl)—
because we found it to be numerically the most stable.

i.e., they fulfill a stationarity principle [47,48] and as is
known —a complex virial theorem [47].

When using complex scaling one has to use a "new"
scalar product (which, naturally, reduces to the standard
Z2 scalar product for 0 = 0)

For our numerical studies we employed the complex
scaled Fourier grid Hamiltonian method (CSFGH), which
was presented by Chu [31], and —when in doubt —direct
integration methods like the renormalized Numerov or
the log-derivative method [37—39]. The CSFGH method
is a very fast and very accurate method. Under our "ex-
treme" conditions (the angles 8 were rather large, namely,
between 0.7 and 0.775 rad; for the simple Gaussian type
potentials in Fig. 4 even up to 0.782 rad) the lowest reso-
nances were constant under variation of 8 up to eight dig-
its (direct integration methods perform better here). We
required for the higher resonances at least three signifi-
cant digits. Basis set size was generally 701—901 and the
mass was varied —depending naturally on the potential—
between 0.4 and 20 a.u.
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