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Semiclassical approach to Rydberg-atom intercombination transitions in collisions with electrons
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The intercombination transitions between l-resolved Rydberg levels due to collisions with fast elec-
trons are studied within the Ochkur approximation for principal quantum numbers n 20, where I is the

angular momentum. The use of the Heisenberg correspondence principle for radial integrals enables one
to obtain analytic expressions for any term in the multipole expansion of the cross section for collisions
with an arbitrary n and l change. For transitions involving angular momenta that are small compared to
the principal quantum numbers, the semiclassical and the exact results are found to be fairly close,
within the accuracy consistent with the Born approximation. As a result, the semiclassical approach
furnishes a ready estimate for cross sections, and its validity range proves broad enough to cover the re-

gion of large momenta transferred to the atom. The numerical results also con6rm that dipole transi-

tions have no dominance over the collisions with other b, l values, in accord with the general model of in-

tercombination scattering.

PACS number(s): 34.60.+z, 34.80.Dp

I. INTRODUCTION

The collision-induced intercombination transitions typ-
ically are substantially weaker than those without spin
change. Within I.S coupling, the spin-change transitions
are caused exclusively by the exchange interaction be-
tween projectile electron and atom. For lower levels in-
tercombination transitions have received comprehensive
consideration (see Henry and Kingstone [1], Ochkur [2],
and Sobelman, Vainshtein, and Yukov [3]), whereas for
highly excited states the experimental information is not
available. This is in contrast to spin-conserving transi-
tions, which have lately been a subject of active experi-
mental studies (for recent results see the papers of Sun
and MacAdam [4], Rolfes et al. [5], and references
therein). On the other hand, the account for spin-change
e8'ects requires, strictly speaking, partial-wave techniques
even for fast projectiles, as opposed to the simple Born
approximation for spin-conserving transitions. For these
reasons collision-induced spin-change transitions in Ryd-
bergs have not received an adequate theoretical treatment
as yet.

Recently Beigman and Matusovsky [6] presented nu-

merical results for intercombination cross sections in LS
coupling averaged over angular momentum 1 and in the
range of principal quantum numbers n ~ 10. Their calcu-
lations were performed within the framework of the
Ochkur approach [2], which is, in fact, a modification of
the Born-Oppenheimer method and is believed to furnish
about the same accuracy as the Born approximation does
for spin-conserving (bS =0) transitions. Also, the classi-
cal binary encounter approximation of Stabler [7] and
Webster, Hansen, and Duveneck [8] was shown to give a
reasonable estimate for the total cross section. Similar re-
sults have been obtained by Borodin, Kazansky, and
Ochkur [9] through the integration of a microcanonical
distribution function in a phase space.

Further considerations are concerned with the role of

angular momentum. First, the 1-averaged cross section
is, in general, insufficient as its validity is limited by an
assumption of statistical equilibrium over orbital quan-
tum numbers. In rari6ed plasinas or in experiments with
selective excitation the latter condition holds only in
close proximity to the ionization continuum. For the ma-
jority of a discrete spectrum, l-resolved cross sections are
needed. Second, as well as being of considerable interest
in themselves, 1-resolved cross sections are more sensitive
to the approximations employed than those integrated
over an angular momentum, and therefore present more
stringent tests of the major assumptions and computa-
tional routines.

The distinctive feature of intercombination transitions
is that the dipole transitions are no longer dominant and
it is essentially important to have a detailed account of all
nondipole nl~n'1' transitions. The reason for this is
that the typical impact parameters that most contribute
to cross sections are smaller than for the b,S =0 col-
lisions, and the momentum transferred to the atom is cor-
respondingly larger. As a result, nondipole interactions
become dominating contributors to the total cross sec-
tion.

This situation is in contrast to AS =0 scattering, where
multipole transitions have been traditionally considered,
at best, as small corrections to leading dipole transitions
(although the nontrivial contribution of nondipole in-
teractions has been repeatedly acknowledged: see, for ex-
ample, the early calculations of Omidvar [10], the sys-
tematic studies of Flannery and McCann [11] and also
Syrkin [12], which contains an analytical estimate of the
nondipole contribution to the cross section).

Direct numerical calculation of nl ~n'1' amplitudes is
feasible only for relatively small n and unsuitable for mas-
sive calculations required at large n. The alternative ap-
proach is based on the Heisenberg correspondence princi-
ple (HCP) for radial matrix elements (RME) (see the pa-
per of Sobeslavsky [13], the reviews of Percival and
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Richards [14] and Flannery [15]). So far this method has
been used only for ES=O collisions. In particular,
Sobeslavsky [13) obtained an analytic RME expression
for inelastic Rydberg-electron collisions hn =1, hl =0.
Naccache [16] solved the case b, l =1, Matsuzawa [17]
calculated RME for the quasi-elastic transitions hn =0,
hl & 0. The author [12] analyzed the general case of arbi-
trary hn )0, bl )0 and suggested a simple analytical
formula for Born nondipole cross sections.

The purpose of this paper is to apply the Heisenberg
correspondence principle to intercombination transitions.
We will first show that the accuracy of the semiclassical
approximation in this case is about the same as that for
AS =0 transitions, and, second, that such an approach
enables one to obtain analytic trends for matrix elements.
We will primarily consider transitions between levels
with angular momenta, small compared to principal
quantum numbers. For such I the multipole expansion
for the cross sections is employed and then the
correspondence principle is applied to the radial matrix
elements (large 1 values require another approach}. The
exact quantum calculations with hydrogenic wave func-
tions are used for an assessment of the quality of the
semiclassical approach. The results apply to transitions
in He with some restrictions to s levels because of nonhy-
drogenic corrections. In heavier atoms the corrections
for levels with the lowest angular momenta (s,p) should
be considered with respect to specific values of quantum
defects.

The material is organized as follows. In Sec. I we out-
line the Ochkur approach to intercombination transitions
and present the multipole expansion and radial integrals
for cross sections. Section II reviews the Heisenberg
correspondence principle technique for radial matrix ele-
ments. Section III contains analytic results for radial in-
tegrals and radial factors for arbitrary hn and multipole
parameter ~, supported by systematic comparison of
quantum and semiclassical calculations. It also illustrates
the data on collisional transition strengths for low 1. In
conclusion, we present summary of the results.

II. THE OCHKUR APPROXIMATION

Consider an exchange scattering of a fast electron on a
Rydberg atom. The singlet-triplet transition n 1 'L
~n'1' L' in a helium configuration may serve as a
canonical example for the process of this type (LS cou-
pling is assumed). The extension of the formalism for
more complex configurations does not cause a problem.
We use the cross section in the momentum representation

o =
kk, f Ifsol qdq ~!min

q;„,„=Ik —k'l, k+k',
where exchange effects are accounted for by the scatter-
ing amplitude fBo in the Born-Oppenheimer approxima-
tion (see, for example, Mott and Massey [18]},k and k'
being the projectile electron wave vectors before and after
collision. It has been shown by Ochkur [2], that for this
approximation to work correct1y only a leading term

1/k of the fao asyinptotic expansion needs to be re-
tained as k ~~. This reduces an exchange amplitude to
the factorized form, standard for the first-order plane-
wave approximation (see Flannery [15]):

2

lfso I

= ~I+! '!'(q) I'I T,!I',k
2'TEE 0

(2)

I+« .!I'=
1

1

m, m'
(3)

where F„&„.&. is a collisional form factor and where
T„=4m.e /k, in contrast to T„=4ne /q for AS=0
transitions; M is the spin-angular factor and will be
specified below. Therefore the exchange cross section in
the Ochkur approximation reads (from now on atomic
units with Ry for the energy will be used) as

M I'I „.& q q q,
k &min

(4)

Iln"i-'! =(nn'} 'f I&n! .i(Q)I'QdQ
0

A«
„

i,(Q}=f j„(Qr)P„i(r)P„,i,(r)dr,
0

a =61,b l +2,b l +4, . . . , 1+I',b l = Il' —l l,

(5)

where P„i(r)is a radial wave function, multiplied by r;
j„(Qr) is a spherical Bessel function; Q=nn'q; and
M =(2S+ I)/2(2Sr+ I), S and Sz being the spins of the
atom and atomic core, respectively, and where we have
introduced for convenience the collisional transition
strength Q. As we are interested in fast collisions and be-
cause the integral over Q in (5) converges both for small
and large momenta, we have also extended the range of
integration from Q =0 to ao.

Forinulas (5) present closed-form solutions for any 1-

resolved inter combination cross sections. When per-
formed with exact wave functions, however, the pro-
cedure (5) becomes laborious as n increases. In addition,
another aspect comphcates matters further for intercom-
bination transitions. The integration over momentum in
(5) is dominated by the region close to the major max-
imum of the radial integral, i.e., roughly speaking
Q &max(An, !i). This maximum changes with hn and a
relatively slow and as a result the same is true for radial
factors R„"I„.&.. Therefore, all multipoles ~ should be in-
cluded in (5), in contrast to the b,S =0 transitions where
the leading term xo= 6/ is already a good approximation.
Solving this problem, the Heisenberg correspondence

which scales as 0 -k 6 for fast collisions.
By expanding the plane wave in the form factor over

spherical harmonics we arrive at a standard multipole ex-
pansion over radial 8 factors (see, for example, Sobel-
man, Vainshtein, and Yukov [3]):

8m 1
n! n !' '6

21 1
n! n'!' &

k +
Qn! „!=(21.+. 1)(21'+1)

2
1 1'!i

X g (2K+ 1)
p p 0 En!~
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principle can serve as an eScient alternative, consistent
with the spirit of highly excited levels.

III. HEISENBERG CORRKSPONDENCK PRINCIPLE
FOR RADIAL MATRIX ELEMENTS

The Heisenberg correspondence principle (HCP) evalu-
ates matrix elements at the limit of n~ ~ as classical
Fourier components of the dynamical variable along the
trajectory of Rydberg electron. It has been used on vari-
ous occasions, for example, in Refs. [13—15].

As we consider here low orbital numbers, HCP is
utilized not directly to the complete matrix ele-
ments ( nlm e'~"l n 'I'm '), but for radial elements
( ni

lj„(Qr)ln'I') in accordance with multipole expansion
(5). This yields one-dimensional Fourier components of
j„(gr)over the angular variable 8„,conjugate to the ac-
tion I„=nb,i.e.,

(ntlj {Qr)ln'I') — f "g„(gr)e "d8„,
2K 0

r =(1—e, cosu),

g„=g—c sinu,

( 1 I2 yn 2)1/2

1.5

D 1.4
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6 L=O

&=0

1 .0 — ~ '::
I

0

o 1.4—
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1.2
R, = 1.67[—1]

~ '10-r
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R. =5.si[-y]
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. .&
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10L—)11L
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under the conditions that max(4n, At) «n, n,
l, h' «n, n', u and c being the eccentric anomaly and ec-
centricity, respectively. It should be emphasized that the
correspondence principle in form (6) does not represent,
strictly speaking, the exact limit of radial matrix elements
as n ~ ae (see [14]),but rather the semiclassical estimate,
valid for 61~0. Indeed, the matrix element
(nl lj,(gr)ln'I') depends both on I and /', whereas the
semiclassical integral (6) does not. An analytical evalua-
tion and numerical results given below show that the
semiclassical approximation (6) furnishes the best accura-
cy in the case of small hl and l « n.

IV. RESULTS AND DISCUSSION

initiaL orbitaL number L

FIG. 1. Quantum radial factors as a function of I for different
n, in units of the semiclassical factor for the same hn and ~.
The numbers in brackets denote multiplicative powers of ten.
(a) An =0, El=0, ~=0; and (b) hn = 1, b,I=0, v =0.

afFect on the results. Consider erst the extreme cases,
~=0 and An=0.

A. a=0, arbitrary n change

With the aid of the Poisson representation of Bessel
functions (see, for example [19]), (6) immediately in-

tegrates to

Quantum-mechanical calculations for radial factors
8„'I

„ I were performed with hydrogenic wave functions.
For semiclassical matrix elements we used (6) with s = 1,
since for small ortital numbers I «n where the present
formalism is efBcient the deviation of c from unity has no

l

lAz„'(Q)l

=—sin q bn tan—
i

X ~J„[(b, n+Q )' ) (7)

TABLE I. Semiclassical radial factors (nn') It ~„in units of ao [Eq. (6)]. Power of 10 notations are

used, e.g. , 5.81[—1]=5.81 X 10

10

0
1

2
3
4.

5
6
8

5.81[—1]
3.18[—1]
2.25[—1]
1.76[—1]
1.46[—1]
1.28[—1]
1.10[—1]
8.66[—1]

1.67[—1]
1.08[—1]
8.45[—2]
7.09[—2]
6.17[—2]
5.50[—2]
4.98[—2]
4.35[—2]

1.11[—1]
7.34[—2]
5.84[—2]
4.98[—2]
4.40[—2]
3.96[—2]
3.63[—2]
3.18[—2]

8.62[—2]
5.76[—2]
4.62[—2]
4.00[—2]
3.52[—2]
3.19[—2]
2.94[—2]
2.68[—2]

7.18[—2]
4.82[—2]
3.89[—2]
3.35[—2]
2.99[—2]
2.72[—2]
2.51[—2]
2.28[—2]

6.22[—2]
4.19[—2]
3.39[—2]
2.93[—2]
2.62[—2]
2.39[—2]
2.21[—2]
1.98[—2]

5.52[—2]
3.73[—2]
3.02[—2]
2.62[—2]
2.34[—2]
2.14[—2]
1.98[—2]
1.79[—2]

4.57[—2]
3.09[—2]
2.51[—2]
2.18[—2]
1.96[—2]
1.79[—2]
1.66[—2]
1.55[—2]

3.94[—2]
2.67[—2]
2.17[—2]
1.89[—2]
1.70[—2]
1.56[—2]
1.44[—2]
1.36[—2]
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R a„=(nn') (b,n) 9(,(hn), (8)

where the constant R,(b,n) varies only slightly with b,n.
Comparing (8) with the numerical integration of (7), one
has R, =1.67, 1.76, 1.79, 1.81, 1.81, 1.82X10 ' for
4n = 1,2,3,4,5,6, respectively.

where Ja„areinteger order Bessel functions. As indicat-
ed by Beigman and Syrkin [20], the identical result fol-
lows from a quantum treatment of (nl

~
j„(Qr)~n'l ) for

arbitrary hn by means of the Tricomi expansion for hy-
pergeometric functions. Details of calculations are given
in the Appendix.

Therefore, when I &&n, the semiclassical and quantum
calculations for radial factors R" should be in a fairly
good agreement as n increases. The comparison is illus-
trated in Fig. 1 for b,n=0, 1 T.hroughout all the figures
we present the quantum-to-semiclassical ratio of radial
factors. The semiclassical radial factors are identified by
An, ~, and absolute values R, . Also, the numerical data
for semiclassical radial factors Rz„are summarized in
Table I. The discrepancy between quantum and semiclas-
sical results rises as I increases, but remains within about
20% for all l up to I ln =—,'.

When integrating expression (7) over momentum the
major contribution comes from Q hn Thi.s yields an
analytical approximation for radial factors in the form

(nI~jz (Qr)~n'1')=j (Q)J (Q),

(nl~ j2 +, (Qr)~n'I') =j (Q)J +,(Q),
(9)
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B. h, n =0, arbitrary ~ change

The comparison between semiclassical and quantum
calculations is given in Fig. 2. The results show the good
quality of the semiclassical approximation especially for
1In « l. A difFerence exceeding —

10%%uo is observed only
when I becomes comparable with n.

The semiclassical expressions of RME readily follows
from (6) and were first obtained by Matsuzawa [17]:
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K=3

a, =~.93[-~]
1.0 —
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initial orbital number L
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Flax. 2. Quantum radial factors as a function of I for different
n, in units of the semiclassical factor for the same hn and ~.
The numbers in brackets denote multiplicative powers of ten.
(a) En=0, 51=1,~=1;and (b) En=0, 61=1,x=3.

FIG. 3. Quantum radial factors as a function of I for different
n, in units of the semiclassical factor for the same Ln and sc.
The numbers in brackets denote multiplicative powers of ten.
(a) En=1, 61=1,a=1; and (b) En=2, El=i, sc=l; (c) En=5,
61=1,re=3.
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c

K

K
( I + 1 i )—

n
(10)

so that for a= 1 (10) reduces to "natural" E from (6) and

1.011 -
~

1.010-
O
0 1 .009

1.008-
1.007-
1.006-

H 1 .005
~ ~
79 1.004-

1.003-
a = 5.81(-1]

1.002-

6 L=O
K=O

n, O —)n, O

1 .001
7 8 9

initiaL principaL number n

I

10

0.92

0.91 -
~

0.90 -,

8 0.89-
4

0.88-

0.87-

hn=1
6 L=1

K=3

= 7.ogi-2]

.~
n, 2—)n+ 1,3

[Equation (9) for m =0 results from (6) through the Pois-
son representation and the case I &0, in turn, comes
from expression for m=0 by means of integration over
the parameter method].

Using an asymptotic expansion of matrix elements
Beigman and Syrkin [20] showed the exact quantum re-
sult for Q & 1 to differ from (9) only by the "eccentricity"
type factor, namely,

' 1/2

for a & 1 we have a product of tc terms (the same expres-
sion has been later reproduced by Heim, Trautmann, and
Baur [21]).

For intercombination transitions the major contribu-
tion comes from Q & a. where quantum correction (10}is
not valid. An analytic estimate for the radial factor (5),
in this case, may be obtained either from (9) or directly
from representation (6). The latter proves somewhat
more convenient technically and, noticing that J, scales
as K

' at maximum, we have

R' =n a 9( (a),
where the constant %2(a } is again a slow function of K:

R2 =3.18, 3.57, 3.66, 3.68, 3.66, 3.64 X 10 ' for
K = 1,2,3,4,5,6, respectively.

C. Arbitrary hn & 0 and K) 0 changes

For arbitrary An and K the quality of the semiclassical
approach is illustrated in Fig. 3 for An=1, 2, and 5. The
typical errors are about 20%. The errors are smallest for
minimal possible Al and gradually increase with hl and I;
the maximal discrepancy of -40% occurs only in the
cases when I -n. In Fig. 4 we also present the accuracy
of semiclassical results as a function of n. It is seen, erst,
that the convergence to the classical expression (6) is not
necessarily monotonic and, second, that the ultimate pre-
cision depends on the actual parameters of the transition:
An and Al, I, and n. Also, these results enable the con-
clusion that overall, the accuracy of semiclassical matrix
elements for exchange transitions is quite similar to that
reported for the b,S=O transitions (see, for example,
[3,12,14,17,20]).

An analytical evaluation of RME in the general case is
not readily obtainable. Instead, consider an asymptotic
expansion of the radial integral, valid for Q » b, n, a'

0.86-

0.85-
'0

0.84 I I I I I I I I

5 6 7 8 9 10 11 12 13 14 15
initiaL principaL number n

~A" (Q)~= —sin Q
—(bn+bl)1

an
Q 2

XJ [(hn +Q )'~ ] (12)
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D
1.3-

1.2—
t9

1.1

D 10-

.~. . .

b, n=5
b, L=3

K=3

~m = ~.@a[-~]

n, 1—&n+5,4

The study of this expression along with formulas (8) and
(11) suggests the general approximation of radial factors
in the form

max hn '
K

K

TABLE II. Correction factor%'~(hn, x), 10 ' [Eq. (13)].

0.9 I I I I I I I I I

5 6 7 8 9 10 11 12 13 14 15
initiaL principaL number n

FIG. 4. n dependence of quantum radial factors, in units of
the semiclassical factor for the same hn and ~. {a) An=0,
51=0, x=O; (b) En=1, 51=1, re=3; and (c) An=5, 61=3,
K —3.

1.08
1.34
1.46
1.55
1.61
1.65

1.17
1.17
1.31
1.40
1.46
1.51

1.20
1.21
1.20
1.28
1.35
1.40

1.21
1.23
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1.26
1.31

1.22
1.25
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1.21
1.20
1.21

1.23
1.26
1.25
1.23
1.21
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The behavior of the quasiconstant function %'3(hn, a)
is summarized in Table II. As it follows from (11}and
(13}, the radial factors R undergo only relatively slow
change as functions of sc, namely as -~ ' or sc

Therefore, the important conclusion is that all terms in
the multipole expansion (5) are practically equally impor-
tant and as such should be taken into consideration.

D. Cross sections

In the limit of fast collisions the cross sections depend
on the projectile velocity as o -k . The dependence on
n, 1, and b, n and hl can conveniently be characterized by
means of the collisional transition strength Q. Some of
the results for low I are presented in Table III (the data

for 0 in this table do not pretend to provide ultimate
quantitative accuracy; the data rather illustrate the error,
introduced by the semiclassical approximation itself, in-
dependent of corrections for nonhydrogenic efFects, espe-
cially for s and p levels).

Two major conclusions can be drawn from these data.
First, for levels with low orbital numbers the semiclassi-
cal approach provides reasonable results for radial in-
tegrals and cross sections compared to direct quantum
calculations, the precision being consistent with that of
the Born approximation. Second, the cross sections of di-
pole transitions demonstrate no dominance over nondi-
pole transitions. Therefore, any calculation of the total
cross section should incorporate the contribution from
multipole interactions.

TABLE III. Quantum transition strengths (nn') II,„,„,and ratios A =0, „,/II, .

$~$

S~p

s~d

$~$

s~p

s~d

En=0
5$~5$

10$~10s
15$~15s
5$~5p

10$~10p
15s—+15p
5$~5d

10$~10d
15s—+15d
Ss~Sf

10s—+ 10f
15s~ 15f

En=2
5$~7$

10$~12s
15$~17s

5$—+7p
10$~12p
15s—+17p
5$~7d

10$~12d
15$~17d
Ss~7f

10s~ 12f
15s~17f

0.588
0.583
0.582
0.927
0.945
0.948
0.948
1.05
1.09
0.854
1.05
1.12

0.113
0.111
0.111
0.182
0.202
0.208
0.226
0.231
0.246
0.596
0.372
0.288

1.010
1.003
1.001
0.972
0.991
0.955
0.844
0.937
0.964
0.693
0.848
0.908

1.018
1.000
1.010
0.828
0.919
0.949
0.775
0.791
0.849
1.360
0.818
0.786

$~$

S~p

S~d

$~$

S~p

S~d

An=1
5$~6$

10$~11s
15$~16s
5$~6p

10$~11p
15$~16p
Ss—+6d

10$~11d
15$~16d
Ss~6f

10s—+ 10f
15s~16f

En=5
5$~10s

10$~15s
15$~20s
5s—+10p

10$~15p
15s~20p
5$~10d

10$~15d
15$~20d
Ss~ 10f

10s~ 15f
15s~20f

0.171
0.168
0.168
0.279
0.304
0.310
0.313
0.344
0.368
0.613
0.383
0.393

0.062
0.061
0.061
0.097
0.112
0.117
0.137
0.130
0.137
0.277
0.185
0.174

1.020
1.002
1.002
0.859
0.936
0.960
0.748
0.814
0.871
1.236
0.773
0.793

0.998
0.990
0.994
0.782
0.888
0.979
0.811
0.769
0.806
1.330
0.889
0.838

p~p
d~d

En=0
Sp~5p 3.309
Sd~51 7.546

1.071
1.182

En=1

Sd~6d
1.120
2.768

1.109
1.239

p~p
1~1

En=2
Sp—+7p 0.763
5d-+7d 1.908

1.115
1.243

p~p
d~d

En=5
Sp~ 10p 0.427
51~10d 1 ~ 104

1.095
1.241

En=0
Sp—+ 51 3.265
Sp~5f 2.838

0.936
0.752

p~d
f

En=1
Sp~6d
Sp~6f

1.005
1.635

0.781
1.090

En=2
5p~71 0 683
5p~7f 1.308

0.769
1.242

En=5
Sp~ 10d 0.348
5p~ 10f 0.872

0.783
1.410
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This last conclusion looks quite reasonable from the
viewpoint of the Ochkur approximation, relating the am-
plitudes of spin-exchange transitions to the spin-
conserving ones. We have already mentioned in the In-
troduction that the contribution of nondipole interactions
is significant for b,S=O transitions with large bn (as it
was particularly emphasized in [11]and, also, in [12]). It
is natural, then, that they are even more important for in-
tercombination transitions.

V. CONCLUSIONS

We have presented the treatment of intercombination
transitions in Rydberg atoms within the framework of
the Ochkur approximation, which allows for a transpar-
ent closed-form representation of the cross sections by
means of multipole expansion. Further, the Heisenberg
correspondence principle has been employed to evaluate
radial integrals. The results obtained shows that, overall,
for orbital numbers I, I' (and b, l) small enough compared
to n, n' the semiclassical approximation and exact quan-
tum calculations agree to within 10% to 20%. This is
about the same accuracy that is typical for semiclassical
methods for spin-conserving transitions as well as for the
Born approximation itself.

We have also shown that the validity range of the semi-
classical approximation proves broader than that of the
quantum asymptotic expansion for matrix elements. The
latter applies mostly only for relatively small momenta

Q (1 transferred to the atom, whereas the correspon-
dence principle provides reasonable accuracy also for
large momenta, which is important for intercombination
transitions.

The discrepancy between quantum and semiclassical
cross sections becomes significant for 1-n. This fact,
however, should not be considered as a failure of a semi-
classical approach itself, but rather as an insufficiency of
the semiclassical approximation for radial matrix ele-
ments for large I and bl. The correct approach for large
orbital numbers is to apply the Heisenberg correspon-
dence principle directly to the matrix elements
(nlm ~e'~"~n'I'm'). This will be the subject of a separate
work.

For a quality assessment of the above approach as a
whole and numerical results in particular, as well as for
further progress, it is of primary importance to have ex-
perimental results on intercombination cross sections in
collisions of electrons with Rydberg atoms.
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APPENDIX

The integral to evaluate is

I = J P«(r)J'0(gr)P„&(r)dr .

Since

(A 1)

P«(r) = 2
n'+ I (2I+2)

I/2

(2r)'+ 'e "i"F, n+ I +—1,21 +2,
1 {n —I) n

jo(x)=sin(x)/x and F&(a,b;x) is a confluent hypergeometric function and we have

I= C(n, n', I) .
2gi

1 1 . Q
, +——in' n nn'

' a+a' —y
1 1 . Q

ln' n nn'
1 1 . Q

l
n n' nn'

4nn'XF a, a', y, —
[(hn)'+g']' '

1 1 . Q 1
, +—+ln' n nn' n'

1 . Q+l
n nn'

—a
1 . Q

~
+E (

n nn

—a'

4nn'XF a, a', y, —
[(g )2+Q2]1/2

where a= n+I+1, a'—= n'+I+1, y=21+-2—, and F{a,b, c;x) is a hypergeometric function and C{n,n', I) is some
constant. Using then an asymptotic Tricomi expansion for F( n, n, y;s) f—rom —(A3) (see Beigman and Syrkin [20]),
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I (y)I'(n'+1) (n +y —1)(n +n'+1)
F( n, n, y;s}

2

—hn /2

e
—i(77 /2)n ( + ')/2

XJ~„
1/2

(n +y —1)(n +n'+1)
2

(A4)

valid for n, n'~ ao, (bn/n)~0, ~s~ n-After the series of elementary transformations we arrive at the result

~I~
=—sin Q A—n tan Q

hn [ ( gn 2+g 2)1/2]
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