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Orientation effects in charge exchange: Probing short-range repulsion

by interference patterns
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The orientation created in the charge-exchange process B ++He~B +(2p)+He+ is considered, em-

phasizing the problem of the formation of the angular distribution in the Anal state. The interfering con-
tributions to the orientation parameter are generated by the trajectories corresponding to the same

scattering angle but differing by the impact parameters. Such trajectories exist only when the short-

range repulsion on the initial diabatic potential curve is taken into account. Thus, the orientation effects

probe the core of the atom-atom interaction in the initial state.

PACS number(s): 34.70.+e, 34.50.Pi

I. INTRODUCTION

The effects related to electron orbital asyrnrnetry can
be observed in a wide scope of collision processes [1,2].
In particular, the orbital asymmetry effects in charge ex-
change have recently attracted much attention both in
theory and experiment (for a review see, e.g., Refs. [3,4]).

The simplest process is represented by the charge ex-
change between the atomic s and p states. One of the
three p substates is not coupled with the others (namely,
the p state orthogonal to the collision plane). Hence, at
least three states are involved in the process: the active
electron s state on one of the collision partners and two p
substates on the other center. For small collision veloci-
ties the quasimolecular description is applicable and the
minimal basis should include three molecular states
correlated with the aforementioned atomic states. The
physical features of the process are governed by the cou-
pling between these states which could be described by
various models.

The charge-exchange process

B ++He~B +(2p)+He+

typical in the experiments [5] (v=0.07 a.u. for the in-
cident ion energy 1.5 keV). However, the coupling be-
tween the exit 2po. X and 2p~II+ channels is crucial for
the understanding of the electron orbital orientation in
the final 2p state. This coupling does not lead to the
charge exchange but mixes the final p substates. Its effect
can be described as one-center depolarizing transitions.

A transparent physical explanation of the mechanism
creating the final-state orientation was put forward re-
cently [6] (similar ideas had also been suggested by Jaecks
et al. [8] and Eriksen et al. [9]). The basic point is that
the coupling between the quasimolecular 2po. X and
2pmII+ states is very strong due to their quasidegeneracy
at large R. The simplest picture is obtained in the space-
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observed by Roncin et al. [5] represents one of the sim-
plest feasible cases since a well-manifested Landau-Zener
pseudocrossing between the initial and final quasimolecu-
lar X curves occurs at quite large internuclear separations
R =R, =7.4ao. Figure 1 shows the diabatic potential
curves used in the calculations below; they cross at
R =R, . Thus, the charge-exchange transitions from the
initial quasimolecular state X,. (in the entrance channel)
to the 2po X state (in the exit channel) are well localized
at the internuclear separations R =R, . These transitions
are induced by the radial motion of the atomic nuclei.

The final 2p states are also correlated with the 2pmII+
potential curve (symmetrical under reflection in the col-
lision plane) which at large R is quasidegenerate with the
2poX curve (Fig. 1). The coupling between the X; and
2p~II+ states is induced by the internuclear axis rota-
tion. As shown by Ostrovsky [6,7], the rotation-induced
charge exchange is negligible for small collision velocities
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FIG. 1. The diabatic potential curves E(R) used in the inter-
pretation of the orientation effects in the process
B ++He~B +(2p)+ He+. Only the region of intermediate in-
ternuclear distances R is shown. The solid curve presents
quasidegenerate 2po.X and 2pmII+ quasimolecular states corre-
lated in the separated atom limit with the final state
B +(2p)+He+ (the related value of the energy is chosen as
zero). The dashed curve is the initial quasimolecular state X;
which lies at E =0.27 a.u. for R~~. The charge-exchange
transitions occur primarily at the crossing of the diabatic curves
R =8,=7.4ao.
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fixed frame where the electron wave function of the 2p
state is not changed when the internuclear axis rotates.

In the simplest approximation the 2po. state is popu-
lated at the well-localized regions, namely, at the mo-
ments of time when the Landau-Zener pseudocrossing
(R =R, ) is passed. After that, the electron cloud retains
its orientation in space that implies the efficient 2po. X-

2pmH+ transitions in the molecular basis. Since the
point R =R, is passed twice in the course of the col-
lision, two contributions interfere. The phase difference
between the amplitudes of capture at these points is the
sum of the well-known Stueckelberg term and the pure
geometric contribution. As a corollary of this interpreta-
tion, the orientation characteristic strongly oscillates as a
function of the impact parameter p. The manifestation of
these oscillations can be distinguished in the experimental
data (Ref. [5] and private communications). The oscilla-
tions are particularly well resolved in the process similar
to (1.1) but with an Ne atom instead of He [4].

However, this description appears to be incomplete.
Namely, the transition between the dependence of the
orientation features on the impact parameter p and on
the scattering angle 0 has not been considered carefully.
(Previously, this aspect of the problem was mentioned [6]
but not pursued in detail. ) We demonstrate below (Secs.
II and III) that, in fact, this point is necessary for the
proper understanding of the interference effects observed
in the charge-exchange differential cross sections for the
final states with the definite electron orbital orientation.
A new and appealing physical aspect of the problem is re-
vealed (Secs. IV and V): The interference oscillations
probe the repulsive region on the initial-state potential
curve which lies at the internuclear separations consider-
ably less than R, .

sages of the point R =R, and their interference in the
final p substates. The trajectory with the definite impact
parameter was considered but the results were presented
graphically as a function of the average scattering angle
00.

However, it is well known [10] that for various classi-
cal paths the interfering contributions to the final state
correspond to the same scattering angle 8 (in the channel
under consideration). Hence, generally these contribu-
tions are related to the diferent impact parameters p.
From the expressions (2.1), one can infer that the relation
8& &8& always holds (Fig. 2), i.e., the interfering trajec-
tories do not appear.

The interference becomes possible when the short-
range repulsion on the initial diabatic X; potential curve
is included in the calculation of the classical scattering
angle in the charge-exchange channel (the curve shown in

Fig. 1 was employed which accounts for the electrostatic
interaction between the closed electron shells of the He
and B + partners). This efFect enhances 8z(p) (Fig. 2),
and because of it, for the given scattering angle 6I, there
exist such impact parameters p&,p2 that the relation
8=8&(p, )=82(pz) holds. Since p, significantly exceeds

p2, the contributions of the classical paths to the
differential cross section differ substantially due to the
geometrical factor. Therefore, the interference oscilla-
tions in the differential cross section are shallower as
compared with the single-trajectory (fixed-p) calculations.

Accounting for the short-range repulsion in the exit di-
abatic channel enhances 8&(p), which does not lead to the
appearance of the interference pattern. Quantitatively,
its effect is small. Therefore, it is not included in the sub-
sequent analysis.

II. CLASSICAL SCATTERING ANGLE
IN THE CHARGE-EXCHANGE CHANNEL

8, 2=80(1+'I/ 1 —p /R, ), 8O=
Z

P lab

(2.1)

where E„b is the collision energy. The final-state orienta-
tion parameter was previously calculated [6] taking into
account the charge-exchange transitions for both pas-

We start with the analysis of the classical scattering an-

gle in the charge-exchange channel. At first, we assume
that the initial potential curve is horizontal. Both final
potential curves are assumed to be degenerate and ap-
proximated by purely Coulomb repulsive interaction
Z/R [Z =2 for the reaction (1.1)]. Actually, some split-
ting between 2poX and 2pmII+ potential curves exists
which is neglected below (for large R, it is related to the
charge-quadrupole interaction —R ).

As discussed in the Introduction, the charge exchange
occurs at the transition point R =R, on the ingoing or
outgoing part of the trajectory. In this moment the
Coulomb repulsion between 8 + and He+ is "switched
on." Considering small laboratory scattering angles 8 (in
the experiment [5], 8&,b=0. 1'), one easily calculates the
related angles 0&, 02..

8 (deg)
0.6-

0.2

0.0
0

FIG. 2. The classical scattering angle 0 in the laboratory
frame for the charge-exchange process (1.1) as a function of the
impact parameter p. The incident ion energy is 1.5 keV (col-
lision velocity v =0.07 a.u.). The charge exchange occurs at the
pseudocrossing point R, =7.4ao on the ingoing (0, ) or outgoing
( 02) part of the trajectory. Solid curves, the calculations
without accounting for the interaction in the initial diabatic
channel; dashed curve, 02 calculated taking into account the
short-range repulsion between 8 + and He; crosses, the elastic
scattering.
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III. FORMULATION OF THE QUANTUM
THREE-STATE MODEL

We present the Hamiltonian as a sum
H=T+Ho+V+Hc„, where all terms are 3X3 ma-

trices in the minimal three-state quasimolecular basis dis-
cussed in the Introduction. For large R the basis vectors
coincide with the separated atom states but with the an-

gular momentum quantized along the internuclear axis.
The nuclear kinetic-energy operatorT= —(1/2M„)V is

a diagonal matrix (M„ is the reduced mass of the collid-

ing particles). Ho is the matrix of diabatic electronic en-

ergies,

Ho=
E;+U;(R}

E/+ Ux(R)

E/+ Un(R)

(3.1)

The potential curves U;(R), Ux(R), and Un(R) for X;,
2pm X, and 2pn II+ states are defined with respect to the
separated atom energies E, in the initial and E& in the
final states [i.e., U, (R), Ux(R), Un(R)~0 as R ~ 00].
Thus the potential curves shown in Fig. 1 are
E (R)=E + U (R). The diabatic states are coupled by
the nondiagonal part of the electronic Hamiltonian V and
the Coriolis interaction Hc„..

0 V 0 0 0 0
V= V 0 0, Hco, = —a) 0 0 i

0 0 0 0 —i 0
(3.2)

where co(R ) =KR 2M„' is the angular velocity of the in-

ternuclear axis rotation for the collision with the total an-

gular momentum K. We neglect the Coriolis coupling
between X; and 2pm. II+ states. It generates rotation-
induced charge exchange which was shown to be small

[6] under the conditions of the experiments [5].
As discussed in Sec. II, we use the simplest approxima-

tion for the potential curves:

U; (R ) =0, Ux(R) = Un(R) =Z/R, (3.3)

and later add also a short-range repulsive term (core) to
the curve U, (R). The splitting of 2pnX and 2pnll+
curves at large R is due to the quadrupole interaction.
We neglect it here for simplicity although it could be
easily incorporated in the present picture.

We have started above with the quantum-mechanical
description of the relative nuclear motion in the center-
of-mass system. However, in fact the angular momentum
K is very large which allows us to consider K as an ordi-
nary number and neglect the difference between the total
momentum of the system (which includes the orbital
momentum of the electron) and the orbital momentum of
the relative nuclear motion.

Now we consider the Hamiltonian H, =Ho+He„
which has the eigenvectors ~X; ), ~m ). The first of them
coincides with the X; state introduced above and the
states

~
m =+1 ) are the final atomic p substates with the

orbital momentum quantized along the axis z perpendicu-
Lar to the colhsion plane. This basis can be described as

diabatic relative to the radial motion and adiabatic with
respect to the internuclear axis rotation. It was discussed

by Russek, Kimball, and Cavagnero [11]. The m =+1
eigenvalues are split by the Coriolis term mco(R). The
potential curves with inclusion of the centrifugal poten-
tial are

U;=E, p /R +U;(R),

U (R)=(E, p +mpu„)R +Ux(R) .
(3.4)

Here, K =M„u„p, u„=(E&,b/2M')' is the relative ve-

locity of the collision, Mz is the mass of the incident
(B +) ion, and Ei,b is its energy. The states ~m ) are
coupled with the matrix element +i2 '~ V T.hese rela-
tions would be somewhat modified if X-II splitting were
taken into account.

The splitting of the potential curves U (R) (3.4} for
the different values of m produces the splitting of the
classical turning points. In the simplified treatment [6]
this splitting was not taken into account and only the
phase effects were considered. This approach is reason-
able when the turning point R, for the relative radial nu-

clear motion lies at appreciably smaller separations than

R, . In the case of R, -=R, the splitting becomes impor-
tant.

Under the latter conditions the position of the turning
points could be effectively changed by applying the mag-
netic field B perpendicular to the collision plane. In this
case the m =kl potential curves U (R) acquire an addi-
tional Zeeman term mBE, . Thus they become split even
in the separated atom limit. Due to the large reduced
mass of the nuclei, the nuclear radial wave functions are
rapidly decreasing in the classically forbidden region and
any slight change of the turning point position can
infiuence significantly the final atomic state orientation.
This tentative effect is analogous to that of the scanning
microscope. However, it should be mentioned that our
calculations for the concrete process (1.1) (described
below in Sec. IV) have not demonstrated an appreciable
infiuence of the magnetic field (with a reasonable
strength) on the orientation phenomena.

Now we calculate the partial amplitudes A (K) of the
charge exchange from the initial to the final atomic p
states. Since the crossing point lies at quite large internu-
clear separation (R, =7.4a}, the coupling V(R, ) is small.
This allows us to use the first-order diabatic perturbation
theory

A (K)=f 8;(K,R)VQ (K,R)R dR,
0

(3.&)

—mK/2+5» '] (3.7}

and q =M„u is the wave number for the relative nuclear

where the wave functions in the initial (O,. ) and final (Q)
diabatic potentials are continuum states normalized by
the large-R asymptotes

0, (K,R) =(2M„/q)'~ .R 'sin—(qR nK/2+5'z'), —

(3.6}

Q (K,R) =(2M„/q)'~ R 'sin[qR +(Z/q)ln(2qR)
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motion. The phase shift 5+' is zero when the short-range
repulsion is neglected. In the present approximation the
phase shifts 5+'. ' coincide with the Coulomb phases and
the well-known semiclassical formula [12,13] is applica-
ble.

For the calculation of the integrals (3.5), we apply the
uniform semiclassical technique by Miller [14] (see also
Ref. [15]), which appears to be fairly accurate in the
whole range of the parameters. We replace the coupling
matrix element V(R ) by its value at the pseudocrossing
point V, = V(R, ) (this assumption is not too restrictive
and could be easily avoided). The result is as follows:

(K)= V, (2rrM„IF' ' F,' '—
I

'x '
p ')' 2Ai(x ),

(3.8)

where

cal computation. The importance of the Bessel trans-
forms for the calculation of the orientation-type parame-
ters was stressed previously by Shakeshaft and Macek
[17].

IU. RESULTS OF CALCULATIONS

The results of our calculations for the amplitudes 3
with the formula (3.8) are shown in Fig. 3 in comparison
with the amplitudes calculated with the formulas from
Ref. [6]. For the sake of graphical convenience, the re-
duced amplitudes 8 are presented. They are defined as

(4. 1)

x =[—,'S (R )]2i

S (R)=I p;(R')dR' —J p (R')dR',
ti tm

p, (R)=[2M„[E, —U, (R)]]'/

p (R)=t2M, [E, —U (R)]]'

(3.9)

(3.10)

Both approximations give close results and the difference
appears for p =R, . In the classical description of the nu-
clei motion [6], the curves 8 (p} have an abrupt cutofF
exactly at p=R, . In the semiclassical approximation the
cutofF is replaced by the cusp in 8 (p). These cusps are

Here, R are the transition points defined as solutions of
the equation p, (R ) =p (R ),

1.0 -I

0.5-
dU (R)

dR R=R 0.0

R„and R, are the turning points for the potentials (3.4),
and Ai(x) is the Airy function. One can see that in the
classically allowed region the expression (3.8) merges
with the Landau-Zener formula, but with the Stueckel-
berg oscillations included, as it was described by Landau
[12,16]. Equation (3.8) is uniformly applicable also in the
case when the transition points R are close to the turn-
ing points.

The next step is summation of the partial-wave expan-
sion. We are interested in the small scattering angles 0,
i.e., the large angular momenta K are involved. Hence,
the summation can be replaced by the integration and the
well-known approximation of the Legendre polynomials
via the Bessel function,

—0.5

0.5-

0.0-
Px (cos8) —=Jo((2K + 1)sin —,

' 8), (3.11)

can be employed. This leads to the eikonal-type formula
for the angular-dependent charge-exchange amplitudesf (8):

~ ~
~ ~

~ ~

I

10

f (8)=
2 I exp(iKm/2)Jo(2K sin(8/2))

2M, U

X 2 (K)exp(i5x" }(2K+1)dK .

(3.12)

The applicability of the conventional stationary phase in-
tegration procedure [12] in the present case may be ques-
tionable, since the small scattering angle phenomena are
considered. Therefore, below we prefer a purely numeri-

p (A, .ll. I

FIG. 3. The reduced amplitudes B (4.1) as a function of the
impact parameter p for the charge exchange (1.1) into the final
8 +(2p) states with a definite projection m of the angular
momentum on the axis normal to the collision plane (v =0.07
a.u.): (a) —m =1, (b) —m = —1. Dots present semiclassical cal-
culations; solid lines, classical theory [6]. In the state with
m = 1 the electron rotates around the nucleus in the same sense
as the incident ion (the preferential population of this state is in

agreement with the so-called velocity matching arguments).
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artificial since their appearance is specifically related to
the last factor in (4.1) [note that the amplitudes A' '(p)
given by Eq. (3.8) do not have any peculiarity at this

point]. Positions of the cusp (i.e., boundaries of the re-

gions of classically allowed population) somewhat differ

for m = 1 and —1, reflecting the role of the Coriolis in-

teraction. In the other terms it could be said that this is a
manifestation of the splitting of the pseudocrossing
points R (see Sec. III) by the Coriolis interaction [11].

The oscillatory behavior of the amplitudes A, and

A
&

is interpreted as a result of the interference between

the contributions of the two passages of the pseudocross-
ing point R, (see the Introduction). The oscillations in

A, and A, differ in phase which implies the final-state

orientation (i.e., the difference between
I A, I and I

A i I).
Now we consider the related phases in somewhat more
detail.

The second phase integral entering the expression
(3.10) for the phase S (R) can be recast in the form

80 i-

t

~ ~ ~ e

~ ~
~ ~

~ ~

-40 -;

10

p (a.u. )

FIG. 4. The factor 4?(p) entering the integrand in (3.12): dot-
ted line, @=A &(E); solid line, @=A &(E)cos(5z'). The
structure of this factor is important for the transition from the
impact-parameter-dependent to the angular-dependent ampli-

tudes of the charge-exchange process (see discussion in the text).

2M E —U R 1y2 R

—U R R
r0

+m f co(R)[2[E,~ —Uo(R)]/M„J ' dR,
RO

(4.2)

o' (rel. units)

20-

where Uo(R) is the final-state potential curve with in-

clusion of the centrifugal potential but without the
Coriolis term [cf. (3.4)]:

15-

Uo(R)=E, p /R + Ux(R) (4.3)
10-

and R,o is the related turning point. The last term in the
right-hand side of Eq. (3.2) appears due to the Coriolis
contribution in U (R ) and has an evident geometrical in-

terpretation as an angle of rotation of the internuclear
axis in the course of the collision when the separation of
the nuclei varies from Rz to R.

Thus, in agreement with the result obtained previously

[6], the interference phase S (R ) is a sum of the con-
ventional Stueckelberg term and of the purely geometric
contribution equal to the angle P (see [6]).

However, generally, the probabilities depending on the
impact parameter should be considered as an intermedi-
ate theoretical result; only the angular distributions are
directly observable. Transition to the angular dependen-
cies according to Eq. (3.12) could introduce some addi-
tional interference phenomena with the phases of the
same order as these discussed above. In the present con-
text the important role is played by the elastic-scattering
phase 5z' for the initial diabatic channel. As indicated
above, it is nonzero due to the e6'ect of the short-range
repulsion. The phase was calculated numerically employ-
ing the potential curves shown in Fig. 1.

The integrand in (3.12) has quite complicated depen-
dence on E (or p). In Fig. 4 we show the amplitude
A, (E') (dotted line) and the factor A, (K}cos(5z"}
(solid line) which enter the integrand beside the Bessel
function Jo. The amplitude A, (IC) exhibits the conven-
tional Airy-type oscillatory pattern. The factor

5-

p I

0.00
I

0,05 0.1 0
I

0.) 5
l I

0.20

8 (deg)

o (rel. units)
20- (b)

15-

10-

0
0.00 0.05 0.1 0

I

0.1 5
I

0.20

0 (deg)

FIG. 5. The cross sections cr for the charge exchange (1.1)
into the final states with the definite electron angular momen-
tum projection m (solid line, m =1; dashed line, m = —1): (a)
present semiclassical calculations taking into account the repul-
sive core in the initial diabatic channel; (b) the same as (a) with
the repulsive core omitted.
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A &(K)cos(5s') due to the infiuence of the scattering
phase 6z' in the incident diabatic channel manifests the
more complicated structure: Now the low-frequency
Airy-type oscillations are superimposed by the high-
frequency oscillations generated by the cos(5s(')) factor.
Generally, the stationary-phase arguments show that in
calculations of the integral (3.12}, the lower-frequency
contribution influences the scattering on the larger an-
gles. However, as discussed in the end of Sec. III, we
avoid the stationary-phase integration procedure and
present the results of the numerical calculations.

The cross sections 0 of the charge exchange into the
final states with the definite I are shown in Fig. S.
Without inclusion of the repulsive interaction in the in-
cident channel [Fig. 5(b}], the final-state orientation
(defined as the ratio [o,(8)—cr, ( 8)]/[o, ( 8)+ cr, ( 8)])
is a monotonously decreasing function of the scattering
angle 0. In agreement with the preceding discussion, the
oscillations appear only when the repulsive core is includ-
ed in the calculations [Fig. 5(a)]. The general cross-
section pattern is close to that observed in the experi-
ments [5]; the detailed comparison requires folding of the
theoretical data with the experimental uncertainties and
will be carried out separately.

V. CONCLUSION

In conclusion it is worthwhile to stress that the present
study is a model one. Its object is analysis of the physical

picture, whereas the results with the higher numerical
precision are obtainable in the large-scale close-coupling
calculations [18]. We choose the minimal basis of physi-
cally relevant states and do not include the near-lying 2s
state of the ion 8 which gives the major contribution
to the integral charge-exchange cross section. The other
simplifying assumption is the use of the perturbation
theory in the calculation of the transition amplitudes.
The more accurate potential curves also could be used.

However, all these approximations do not influence the
principle qualitative conclusion of our study: The in-
terference oscillations in the asymmetry parameter probe
the inner repulsive region of the initial-state potential
curve which lies at the internuclear separations
significantly less than the transition point R, .
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