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Localization of electron momentum in atomic and molecular systems
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The problem of localization of atomic and molecular electron momentum is investigated. The atomic
systems are studied in terms of the electron momentum localization function (EMLF), a momentum-

space counterpart of the electron localization function introduced by Becke and Edgecombe [J. Chem.
Phys. 92, 5397 (1992)]. The shell structure of atoms is better represented by the EMLF than the corre-
sponding radial momentum density and Laplacian of the electron momentum density (EMD). A clear
distinction is possible for monotonic and nonmonotonic decreasing atomic EMD s from the EMLF
plots. For molecules, the localization is studied via both the Laplacian and the EMLF and are found to
be in agreement with each other. The critical structure of the EMD at p=0 is represented by the corre-
sponding concentrations and depletions in the Laplacian contour plot.

PACS number(s): 31.90.+ s

I. INTRODUCTION

An important task of a chemist is to understand struc-
ture and reactivity of atomic and molecular systems.
Among the various means which provide us the informa-
tion about the structure and reactivity, the one-electron
properties such as electron density, electrostatic poten-
tials, etc. , form a large domain. Yet another useful one-
electron scalar field, which needs greater attention from
scientists, is the electron momentum density (EMD). The
EMD [denoted here by y(p)] is also experimentally ac-
cessible via Compton profiles, (e, 2e) experiments, etc. [1].
For atomic systems, the EMD studies reveal that unlike
the spherically averaged ground-state electron densities,
which are monotonic, the EMD can sometimes be non-
monotonic [2]. The shell structure of atoms in p space
has been investigated from the radial momentum density,
viz. , 4mp y(p) and is found to have a different structure
from the corresponding shell structure in r space [2].
The shell structure has also been studied via the Lapla-
cian of the atomic EMD, which brings out the localiza-
tion of the EMD as investigated by Sagar et al. [3]. For
molecular systems, on the other hand, the e6'ect of bond
formation on the EMD has been a subject of great in-
terest. Coulson has investigated this effect for Hz" and

Hz molecules and some hydrocarbon systems [4] to pro-
pose the famous "bond-directionality principle. " Hen-
neker and Cade [5] and Ramirez [6] studied the difference
EMD, i.e., by(p)=y „(p) g„„y—(p), where A are
"atoms in the molecule. " Recently, Gadre, Limaye, and
Kulkarni [7] and Defranceschi and Berthier [8] have in-
vestigated symmetry properties of molecular EMD's.
Furthermore, Kulkarni, Gadre, and Pathak [9] have
studied the topographical characteristics of molecular
EMD's as against the corresponding separated atom
EMD's to bring out the effects of bonding. These topo-
graphical studies have led Kulkarni and Gadre [10] to
monitor the progress of chemical reactions using the
EMD and the Laplacian of the EMD at zero momentum
as an investigative tool. However, detailed studies on the

localization of EMD's in molecular systems are yet to
find a place in the chemical literature.

In the position space, the e8ect of bonding in molecules
can be brought out through topographical studies of elec-
tron densities [11]. The localization of the electron densi-

ty in the molecule can be studied directly through the La-
placian of the electron density to observe concentrations
as well as depletions of that scalar field. The localization
of electrons is fundamentally related to the Fermi hole,
which has led Luken and co-workers [12] to define the
Fermi-hole mobility function. Recently, Becke and
Edgecombe [13]proposed a measure of electron localiza-
tion in terms of the electron localization function (ELF)
to bring out the features corresponding to the structure
of the molecule, viz. , bond, lone pair, etc. Moreover, the
shell structure of atoms can be better explained by the
ELF as compared to V p(r), where p(r) is the electron
density. The ELF (denoted here by FEt ) is defined as

F L= 1/[1+-(D /D ) ],
where D =—3(6n) p and D =g; &~VtP~

—(V ) /
4p . The fundamental advantage in using the ELF is that
it is bound between 0 and 1. In addition, it exhibits the
structural features similar to that of V p(r) and the Fermi
mobility function. Further, Savin et al. [14] have uti-
lized the ELF for explaining bonding features in several
molecular systems. The solid-state structure of the dia-
mond has also been investigated using the ELF [15]. Re-
cently, Gadre, Kulkarni, and Pathak [16] have proposed
a density-based electron localization function by means of
which one can probe the localization of electrons in
atoms and molecules exclusively from the knowledge of
electron density.

In view of the above studies, it is felt to be instructive
to ask the following questions about the ground-state
electron momentum densities. Which are the regions
where the EMD's are localized or which momenta are
preferred by the electrons in atoms and molecules7 Does
there exist any simple p-space function giving the exact
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shell structure? Does the localization of the electron
momentum density observed through an analogously
defined electron momentum localization function
(EMLF) exhibit features similar to V y(p} for atoms and
molecules? Section II answers these questions and com-
pares the shell structure of atoms obtained through
V y(p) by Sagar et al. [3] with the corresponding EMLF
for some closed shell atomic systems. Section III
presents discussion on both V y(p} and the EMLF for
some simple molecular systems.

II. ELECTRON MOMENTUM LOCALIZATION
FUNCTION FOR ATOMS

The investigations of the Laplacian of the atomic EMD
reveals a rather interesting aspect of shell structure. Sa-
gar et al. [3] computed V y(p) (we use V =V hence-
forth) for several neutral and singly positive ions and,
based on the occurrence of zeros in it, classified them into
seven distinct types. These zeros can be in some cases
correlated to the presence of shells, and the values of cor-
responding p are related to the Bohr's radii in the atomic
systems. Moreover, nonmonotonicity in the ground-state
EMD is refiected in terms of the positive Laplacian at

p =0, whereas the monotonic decreasing EMD leads to
negative V y(p). In the preceding section the electron lo-
calization function (ELF) has been defined. Analogously,
one can define a momentum-space ELF, viz. , the electron
momentum localization function (EMLF}, and compare
the results with the Laplacian of the corresponding
EMD. In case of the EMLF an important restriction is
that it can be defined only for closed shell atomic and
molecular systems, due to which atomic systems investi-
gated here are Be, Ne, Mg, Ar, Ca, and Kr. The EMLF
at each point is obtained analytically using near Hartree-
Fock wave functions due to Clementi and Roetti [17].

First we note that the EMLF for two-electron systems
is identically unity. The plots for the atoms with com-
pletely filled shells, i.e., Ne, Ar, and Kr, are given in Fig.
1. The EMLF plot of the neon atom shows two distinct
regions, the first one between O~p ~4.0 a.u. , the second
one being form 5.8 ~@~ ~, and one small shoulder re-
gion in between these two regions. Due to the reciprocal
nature of the r and p spaces, the small-p region corre-
sponds to the valence region in coordinate space; thus the
first region pertains to the L shell, the second region is
due to the E shell, and the shoulder region might be due
to the intershell (subshell) electron momenta of 2s elec-
trons. In the case of argon, three such regions are ob-
served corresponding to M, L, and E shells, respectively,
and between L and M regions a shoulder is observed cor-
responding to the intershell maximum, which is caused
by filled 2s and 3s orbitals. For krypton, four regions in
the EMLF plot are discernible, along with two shoulders.
Moreover, it can be seen from Fig. 1 that Ne, Ar, and Kr
have the EMLF & l at p =0, which can be attributed to
the nonmonotonicity of the corresponding EMD leading
to the depletion of the EMD or the positive Laplacian
around p =0. This is in contrast with the few more
atoms studied here, viz. , Be, Mg, and Ca. The plots of
the EMLF against p for these atoms are displayed in Fig.
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FIG. 1. Plot of the EMLF against p in a.u. for the Ne
( —-—-), Ar ( ), and Kr ( ———) atoms. The upper scale
between p =0.0 to 40.0 a.u. is for the Kr atom.

2. For these atoms, the EMLF value at p =0 indeed at-
tains a maximum, i.e., the EMLF=1.0. This can be re-
lated to the monotonic decreasing nature of the EMD of
these atoms leading to concentration of the EMD (or the
negative Laplacian) around p =0. In Fig. 2, two regions
are seen for the beryllium atom, whereas three regions
with one shoulder for magnesium and four regions with
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FIG. 2. Plot of the EMLF against p in a.u. for the Be
( —-—-), Mg ( ), and Ca ( ———) atoms. The upper scale
between p =0.0 to 20.0 a.u. is for the Ca atom.
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one shoulder for calcium are observed. This &nay be said
to be a signature of the shells and intershells depicted in
the momentum space. Thus, analogous to the ELF in r
space, the EMLF describes the shell structure of atoms in

p space in a better way than the radial momentum densi-

ty [2] and V y(p) [3].
It may be noted from Figs. 1 and 2 that the EMLF

tends to its saturation value of unity asymptotically. This
can be explained from the form of the EMLF given in Eq.
(1}. In the definition of the EMLF we have a ratio of D
to D, as p tends to infinity, D approaches zero more
rapidly as compared to D, leading to the EMLF value of
unity.

Having described the electron momentum localization
and shell structure in p space for atoms, it would be in-
structive to investigate the localization of electron
momentum using the Laplacian as well as the EMLF for
molecules. This has been taken up for some simp1e
molecular systems in the next section.

P (a.u. )

—P (a.u. )z

III. ELECTRON MOMENTUM LOCALIZATION
IN MOLECULES

FIG. 3. Contour plot of the Laplacian of the electron
momentum density for the H2 molecule in the p„-p, plane. All
values are in a.u.

As discussed in Sec. I, the measurement of the electron
momentum localization can be either in terms of the La-
placian of the EMD or by investigation of the EMLF.
For this analysis, the molecules studied are two electron
systems, viz. , H2, HeH+, 10-electron systems like CH4,
NH3, H20, HF, and 18 electron molecules like HC1, F2,
CH3OH, CH3F, and C2H6. Moreover, the molecules
LiH, LiF, HCN, and BF are also studied. The wave
functions for these molecules are generated from the pro-
gram INDMQL [18] using a 6-31G** basis set or
( 1 ls, 4p, ld/4s, lp) contracted to [4s,2p, ld/2s, ld], i.e.,
(A 6-31G" atomic basis has polarization ofp and d func-
tions added to hydrogen and other second row elements,
respectively). The derivatives of the momentum-space
wave function as well as the EMD are obtained analyti-
cally to compute the EMLF [cf. Eq. (1}].

The topographical features of the EMD of the above
chosen set of molecules has been reported by Kulkarni
and co-workers [9]. The two-electron molecules such as
H2 and HeH+ are known to have a maximum, i.e., a
(3, —3) type critical point (CP) for y(p) at p=O. [The
clarification for the (3, —3}critical point may be found in
Refs. [9], [10],and [11]. The notation used here is (R,s),
where R is rank of Hessian matrix and s denotes excess of
positive eigenvalues over the negative ones. ] Due to this
critical point the contour plots of V y(p) of these mole-
cules in the p„-p, plane (here z is the bonding axis) exhibit
a negative V y(p) around p=O (cf. Fig. 3). For both of
these molecules the negative Laplacian region is ova1

shaped around the p, axis demonstrating the well-known
bond-directionality principle [4]. As shown in Fig. 3 for
Hz, V y(p) is highly negative near p=O; thereafter it
monotonically increases, passing through zero and subse-

quently becoming positive. Thus there are two distinct
regions of the negative and positive Laplacian, one within
the other respectively, and the positive region extends
throughout up to infinity. The Laplacian of the EMD for

two-electron systems are seen to attain a zero value in
every direction away from the origin only once. A close
look at the V y(p) of ten-electron systems like CH~,
NH3, H20, and HF reveals further interesting structure.
All these molecules have a minimum at p=O in their
EMD leading to the positive region of V y(p) around the
origin (cf. Fig. 4 for the CH4 molecule). The plot clearly
shows three distinct regions. The innermost region has
the positive Laplacian indicating the depletion of the
EMD around p=O; this region is engulfed by a negative
region pertaining to the concentration of the EMD away
from p=O in every direction. This region extends up to

P (a.u. )

= P (a.u. )

FIG. 4. Contour plot of the Laplacian of the electron
momentum density for the CH4 molecule in the p„-p, plane. A11

values are in a.u.
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~p~ =1.2 a.u. and thereafter becomes positive in every
direction. Thus, for the ten-electron systems studied
herein, the Laplacian attains zero value twice in every
direction away from the origin. This is a remarkable
feature of retaining atomic shelllike structure in three di-
mensions as one goes from atoms to molecules. In the
case of CH4, the maximum concentration is seen around

~p~ =0.4 a.u. , whereas the maximum depletion is around
the origin. This clearly indicates that the electron mo-
menta less than the average momentum are preferred in
the valence region of the molecule (as per the reciprocity
demanded from the Fourier transform principle). For
ten-electron molecules the electron momenta in the range
of 0.3& ~p~ &1.1 a.u. are highly preferred by attaining
the negative Laplacian of the EMD in that region. The
momenta corresponding to the localization and depletion
indicate anisotropies in the molecular EMD's.

In the case of 18-electron molecules like HC1, having a
minimum for the EMD at the origin (cf. Fig. 5), the zero
value of V y(p) is attained three times away from the ori-
gin. This can be attributed to the presence of shell struc-
ture in molecules since the chlorine atom is dominant in
this molecule. However, this feature is not a general one
as can be seen from the V y(p) plots of F2, CH3OH,
CH3F, and C2H6 molecules (not presented here due to
paucity of space). The maximum concentration of the
EMD for HC1 is near ~p~ -0.5 a.u. , whereas the EMD is

highly depleted around the origin.
LiF, BF, and HCN molecules show rather complex

structure in their V y(p) plots. The Laplacian of these
molecules show regions of depletion or concentration at
p=O according to the presence of the critical structure of
the EMD. A general feature exhibited by all the mole-
cules is that, asymptotically, V y(p) reach zero from the
positive side. This has been established rigorously for
atoms and spherically averaged EMD's by Sagar et al.
pj.
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FIG. 6. Contour of the electron momentum localization

function for the CH4 molecule in the p„-p, plane. A11 values are

in a.u.

After investigating the structure of the Laplacian of
the EMD, it would be interesting to look at the features
of the EMLF for the above molecules by way of compar-
ison. It is well known that for two-electron systems the
EMLF=1.0 throughout and hence cannot be compared.
For ten-electron systems like CH4 the EMLF plot (cf.
Fig. 6) shows localization in the range 0.3 &

~p~
& 1.0 a.u.

and, thereafter the EMLF decreases outwards. The high
EMLF values (EMLF =0.99) are observed around

~p~
—1.0 a.u. for all ten-electron molecules. The contours

of values greater than 0.99 may be observed within this
region. Due to depletion of the EMD at p=O, no con-
tours are observed near the origin. However, for mole-
cules like BF and HCN, contours are indeed observed
near the origin, implying concentration of the EMD in
that region. For 18-electron molecules like HC1, due to
the minimum at p=0, the EMLF contours move out-
wards from the origin and are observed around ~p~ -0.4
a.u. The comparison of all the EMLF plots with the cor-
responding V~y(p) ones revealed that the regions of con-
centration of the EMD depicted in the V y(p) plots are
represented by increasing the EMLF values, with de-
pletion represented by lowering the EMLF. Both the
EMLF and V y(p) are seen to retain the symmetry
features of the molecules in momentum space. Thus the
information of the localization of the electron momenta
obtained from both scalar fields is indeed supplementary.

IV. CONCLUDING REMARKS

FICx. 5. Contour plot of the Laplacian of the electron
momentum density for the HC1 molecule in the p„-p, plane. All
values are in a.u.

The localization of the EMD is investigated in terms of
the Laplacian of the EMD and via defining the electron
momentum localization function (EMLF) for atoms and
molecules. The atomic shell structure is better represent-
ed by the EMLF when compared with the corresponding
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radial momentum density and Laplacian of the EMD.
The features of inter-shell orbitals are in terms of the
shoulder regions in the EMLF plots. Thus this provides
an affirmative answer to the question of a better p-space
model representing shell structure. Moreover, the
behavior of the EMD at the origin is also represented
correctly in terms of the EMLF, due to which the mono-
tonic and nonmonotonic structure of the atomic EMD is
identified. For molecular systems, features of both the
EMLF and V y(p) are found to be supportive of each
other. The critical structure of the EMD at p=O gets
reflected in the corresponding Laplacian and EMLF plots
in terms of concentration or depletion. The concentra-
tion of the EMD around p=O implies that the lower mo-
menta, as compared to the average ones, are preferred in
the molecule. The preference for higher momenta in
some molecules is represented by the depletion of the
EMD Laplacian around p=O. Similar structural infor-
mation is obtained from the study of the molecular
EMLF. However, since the EMD is a slowly decreasing
function (-p asymptotic decay), the regions of the
EMLF &0.9 should be termed depleted regions when
compared with the corresponding Laplacian plots. Both
the V y(p) and EMLF retain the symmetry features of
the molecular EMD and the anisotropies in the molecu-
lar EMD's are brought out well from the contour plots.

For speculating a general case of any complex mole-
cule, if the information regarding its Laplacian of the
EMD or its EMLF is obtained by any means, then it is
possible to visualize the topographical features of the
EMD. This can be achieved by investigating the struc-
ture of these two scalar fields near the origin. If the La-
placian shows depletion near the origin, then there is ei-
ther a minimum or (3, +1)-type CP at the origin. As per

the earlier studies [9], a consequence of this is that if a
minimum is found at the origin then, due to the hierar-
chy principle, CP's of higher order, i.e., (3, + 1), (3, —1),
and (3,—3), occur away from the origin. The total num-
ber of CP s is limited by the Poincare-Hopf relation [9].
Similarly, if the Laplacian exhibits concentration near the
origin, either a (3, —1) or a (3, —3) CP will occur at the
origin. Apart from these facts, any a priori general pre-
diction about the structure of the Laplacian or EMLF
and, in turn, the EMD topography of a molecule is not
possible. The main hurdle is that there are no definite
signatures of structural parameters like nuclei, bonds,
and lone pairs, etc. , in the momentum space. Therefore,
more studies are warranted to harness this information
from the momentum space properties and scalar fields.

In summary, a preliminary study of the localization of
the electron momentum density for atoms and molecules
is presented. A more elaborate study to understand the
role of the EMD concentrations and depletions in bond
formation will be taken up for some simple diatomic
molecular systems over a wide range of nuclear separa-
tions. Moreover, the study of chemical reactions in the
framework of the EMD Laplacian or the EMLF wi11 also
be rather appealing.
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