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A model with all the degrees of freedom of the core and all the radial degrees of freedom of the
valence electrons frozen is used to investigate the effects of quantum-mechanical symmetry on electronic
correlations of intrashell states of four-valence-electron atoms. A number of different correlative densi-

ties have been calculated. A spin-polarity-dependent analysis has been made. The emphasis is placed on

the qualitative aspect. The 12 N =2 intrashell states of carbon are selected as the object of study; how-

ever, the qualitative features extracted are expected to be quite general. The morphology of each state
(including the most probable shape, the most probable orientation, and the preferreed modes of internal

motion) has been studied. The effect of quantum-mechanical symmetry was found to be decisive.

PACS number(s): 31.50.+w, 03.65.Ge, 31.20.Tz, 31.20.Di

I. INTRODUCTION

The investigation of electronic correlation is a basic
task in atomic physics. This paper is dedicated to the in-

trashell states of four-valence-electron atoms, where the
inherent physics is expected to be very rich. There have
been preliminary results on four-electron systems [1—4],
but very few on four-valence-electron systems (or quadru-

ply excited states) [5,6]. An important feature, namely
the existence of collective correlated internal motions,
has been revealed in three-valence-electron systems [7,8]
and also in the L =0 states of four-valence-electron sys-
tems [5,6]. This paper is a generalization of [5,6] to LAO
states; the emphasis is placed on the qualitative aspect
and the analysis is concentrated to reveal the decisive
eff'ect of quantum-mechanical (QM) symmetry imposed
on the geometric structures and internal motions. Before
developing a method for the precise calculation for quan-
titative purposes, a qualitative analysis is desirable to pro-
vide a clear physical picture to govern further quantita-
tive exploration. This is the motivation of this paper.

The carbon atom is chosen as the direct object of
study, where four-valence electrons stay in the %=2
shell. Nevertheless, the qualitative features extracted are
expected to be held also for other four-valence-electron
systems (e.g. , silicon or quadruply excited intrashell states
in general). Two approximations are adopted.

(i) The degrees of freedom of the core electrons are
frozen. Since we consider only the cases where the core
is entirely filled, this approximation is reasonab&e.

(ii) The radial degrees of freedom of the valence elec-
trons are frozen. This is called an r-frozen model, which
has already been used in the study of L =0 states [5,6].
A discussion of the applicability of this model is referred
to in [8].

In fact, as we shall see, the basic features of relevant
states are essentially determined by the QM symmetry,
but not by the details of dynamics. On the other hand,
the constraints imposed by the QM symmetry can be ful-

ly taken into account under the approximations adopted.
Thus the main features of relevant states mill not be
spoiled by the approximations.

II. PROCEDURE

The Hamiltonian reads

g2 4 2H=, gl +g

4; =A [ [( Yi (1)Yi (2) ) i ( Yi (3 ) Yi (4) ) i ]Lst

Xy, ', s(1234)], (2)

where y, , z is the spin part, the spins of e, and e2 are
1 2

coupled to s, , e3 and e4 are coupled to sz, and s, and s2
are coupled to S. M and M& are the z components of L
and S, respectively. A is the antisymmetrizer. It is not-
ed that the 4; do not form a orthonorma1 set; among
them linearly dependent components should be excluded
from the model space. Let all the 1,. be constrained by
O~l;(I,„; than the dimension of the model space is
determined by 1,„. In what follows, 1,„=2 is assigned.
From the point of view of the independent-electron mod-
el, 1,„ is simply equal to 1 in the %=2 shell. Now, the
1,„,being given as larger, lies in the fact that e-e repul-
sion may increase the orbital angular momentum of' both
electrons. If 1,„ is given even larger than 2, the qualita-
tive features of relevant states are essentially unaffected.

After the diagonalization, eigenstates g, of different

where 1,. is an operator corresponding to I;, which is the
orbital angular momentum of the ith electron (e, ) relative
to the center. r;.=r, —r. , r; is the position vector of e;;

0
r =rpr; is assumed, where rp is given as 0.62 A to simu-
late the N= 2 shell of carbon [9].

The Hamiltonian is going to be diagonalized in a model
space spanned by basis functions as
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+'L symmetries are obtained. Each of them can be
decomposed into two parts:

qpI +qgII (3)

1Se
2

where 4'; contains only those components with all I,- & 1

and 4,. contains those components with at least one I;
(i =1, 2, 3, or 4) ) l. It was found that the eigenstates
can be sharply divided into two groups. The first group
contains 12 states, each of them dominated by the 4';
components. The remaining states are contained in the
second group, each dominated by the %" component.
Evidently, the 12 states of the first group, and only these
12 states, are contained in the X =2 intrashell states of
carbon.

The energy spectrum and the 2s+ iL labels of these 12
states are given in Fig. 1, where the subscript i denotes
the ith lowest state of a given +'L . Figure 1 shows
that the order of the energy levels does not depend on the
choice of r, Amo. ng these states, the four L=0 states
have already been discussed in [5,6] and the two P'

states in [10];the remaining six states will be discussed in
detail in this paper.

Since the correlations are found to be strongly spin-
polarity dependent, a polarity-dependent procedure of
analysis as in [6,7] is used. The eigenstate is expanded as

f; = g f„,„,„~,(1234)g„,(1)g„,(2)g„(3)g„(4), (4)

where g„(i) is the spin state of e; with polarity p, =+—,'.
implies a summation over p,p~yc4 fulfilling

g;p; =M, . Owing to the antisymmetrization, we have

(5)

where p,p2p3p4 is a permutation of 1234 and (—1P is the
permutation parity. Equation (5) implies that different

f» „components would provide equivalent informa-I'82I'3I"4

tion; thus the analysis of only one component is sufficient.
In what follows, MS=0 is assumed and mostly the
f» —,—, is selected for analysis; in this choice, e, and e2

2222
have their spins up and e3 and e4 have their spina down.
Besides, M=L is further assumed; in this choice, we have
L essentially lying along the Z axis, thus any anisotro-
pism discussed later is in fact relative to the direction of
L.

Since Ms =0 has been chosen, additionally we have

f, , —,—, (1234)=(—1) f, , —,—, (3412) . (6)
0.8 . 2222 2222

3pp
2

De1

2

1 0
P1

Equation (6) will facilitate the following analysis. How-
ever, before going into the details, let us first inspect the
effect of QM symmetry.
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FIG. 1. Energy spectrum of the 12 intrashell states of carbon
under the r-frozen approximation. ro is given from 0.59 to 0.65

O

A. In each case of ro, the energy of the P& ground state is
scaled as zero, while the excitation energy of the 'S2 (highest)
state is scaled as 1. In the cases of ra=0. 59, 0.62, and 0.65 A,
the excitation energies of 'S2 are 61.9, 56.9, and 52.6 eY, respec-
tively.

It has been stated in [5] that inherent nodal surfaces
(INS) arising from QM symmetry appear in the multidi-
mensional coordinate space at exactly the same locations
for all the wave functions of a given +'L~ symmetry.
They embody the constraints imposed by the QM sym-
metry on microscopic states. All the geometric
configurations located exactly in the INS are strictly
prohibited. Furthermore, if a wave function is distribut-
ed closely by the two sides of an INS, the latter will in-
duce a motion normal to the surface and the system will
evolve back and forth, crossing the nodal surface repeat-
edly; thus a nodal surface is associated with a specific
mode of motion. Evidently, an INS causes instability;
thus, wave functions of lower states are not preferentially
distributed close to any INS.

On the other hand, a wave function of lower states
would in general preferentially be distributed around a
configuration with better geometric symmetry to reduce
the potential energy. At the same time, this
configuration, as the most probable shape, should be
sufficiently far away from any INS to reduce the kinetic
energy. With these principles in mind, in what follows a
procedure of analysis will be carried out and presumed
structures of relevant states will be suggested.

Hereafter, let e& and ez be the up electrons and e3 and
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e4 be the down electrons. Let 0 be the center of mass of
e, and e2 and 0' be that of e3 and e4. When the four-
valence electrons stay on a shell, evidently the most
favorable configuration is an equilateral tetrahedron
(ETH). This configuration should be the first candidate
to be pursued. In this shape, we have r~z =r3& =V 200'
and r, 2lr34lOO'. When the ETH has its OO' lying in the
X-F plane, it is called a lying ETH; when OO' is parallel
to the Z axis, it is called a standing ETH. When OO' be-
comes longer (shorter) than r,z/&2= r34/&2, it is called
a prolonged (fiattened) ETH. The following discussion
on ETH holds mostly for a prolonged (fiattened) ETH.

With a lying ETH, there are essentially three choices of
r, z. (i) r, z is parallel to the Z axis while r34 is lying in the
X-Y plane [Fig. 2(a)]; (ii) r, z is normal to the Z axis while

r34 is parallel to the Z axis [Fig. 2(b)]; and (iii) r, z(r3$) is
neither parallel nor normal to the Z axis. In the first
choice, the configuration is invariant under the combined
operation PR fop, z, where P is a space inversion, R f~o is

a rotation about the Z axis by 180', and P&z is an inter-
change of r& and rz. In the case of II( —1) =+1 states,
the eigenvalue of this combined operator is —1. Thus
the wavefunction has to be zero at this configuration; ac-
cordingly an INS appears. In the second choice, the
configuration is invariant under PR»OP3~; similarly,
another INS appears in the II( —1) =+1 states. In the
third choice, a typical case is shown in Fig. 2(c), where

r&z (r34) makes a 45' (or 135') angle with the Z axis. ln
this case, e, is directly opposite e3 and e2 is directly op-
posite e4 with respect to the Z axis. Hence, the corre-
sponding ETH configuration is invariant under the com-
bined operation R,~op»pz~. According to Eq. (6) an INS
appears in the ( —1) + = —1 states.

From the above analysis, both the II( —1) =+1 and
the ( —1) + = —1 states would avoid the lying ETH;
otherwise, they would be seriously affected by the INS.
Hence, among the eight L %0 states, the candidates for
the lying ETH would be the p' and 'D' states. In fact,
the most probable shape of the p &

state is indeed a lying
ETH as revealed in [10].

When the ETH is standing, the configuration is invari-
ant under R,gQp]2p34 thus an INS appears in a11 the
L =odd states. Besides, this configuration is also invari-
ant under PR 9up, zp»pz4', thus an INS appears also in all
the L =even states with II( —1) + = —l. Hence,
among the eight L %0 states, the candidates for the
standing ETH would be the 'D' and D'states.

Due to the existence of the above-mentioned INS, the
'p' and p' would not prefer the ETH configuration, but,
instead, the coplanar configuration (i.e., the four elec-
trons and the core essentially lying in a plane) may be
pursued. In the case of a coplanar rectangle (including
the square as a special case), there are two choices: a pair
of spin-parallel electrons are put at either adjacent or at

FIG. 2. Three typical orientations of a lying ETH. The Z
axis of the fixed frame is chosen to be lying along L. 00' is nor-
mal to the Z axis and 0 overlaps 0' in each figure. The elec-
trons above the plane are labeled by an open circle and those
under the plane by a closed circle.

opposite vertexes. However, the first choice is prohib-
ited in all II( —1)'= —1 states while the second choice is
prohibited in all odd-parity states, simply because a space
inversion of the coplanar rectangle is equivalent to an in-
terchange of the particles at the two ends of a diagonal
together with an interchange of the other two [refer to
Eq. (6)]. Consequently, the P' state may pursue a copla-
nar rectangle with the spin-parallel electrons at adjacent
vertexes. In the case of the 'P' state, since two possible
choices are both prohibited, it cannot have the coplanar
rectangle configuration. Since an ETH [or even a pro-
longed (fiattened) ETH] is also unfavorable in a 'P' state,
this state cannot have a configuration with good
geometric symmetry; instead, a trapezoid or a noncopla-
nar rectangle may be favored by this state. The above
suggestions will be checked as follows.

IV. 'D'STWTKS

Let us define a body frame X' with its k' axis parallel to
r, +rz and its i' axis parallel to rz —r, . Let a'P'y' denote
the Euler angles specifying the X' frame. Let 8,2 be the
angle between r& and r2. Then the coordinates of e& to e4
observed in X' are (0&z/2, 180'), (0&z/2, 0'), (63,$3), and
(8~, $~), respectively; they are also labeled in short by r'„
r2, r3 and r4. With this new set of arguments, the wave
function can be expanded as

f„(1234)= g D~L ( Ji"')f„(r',—rzr3r~),

where p denotes (p,@zan, 3p4), %' denotes the Euler rota-
tion from the fixed frame to the X' frame, and K is the
component of I. along the k' axis. Then the condition of
orthonormality can be written as

1 = g f sinP'd P'd y'p„'; ',

where

p, „'; '=2m g Dzl (
—%')D& L( —%')f sinO&zd8, zdr3dr4 g f„f„"5„+„+„+„~

P3P4



EFFECTS OF QUANTUM-MECHANICAL SYMMETRY ON. . .

where

P2=P»+P~&

ptt= g6„,„,g f dr3dr4~f„~

pt t
= g( —6„„)g f dr3dr4~ f„~

(12)
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is the orientation-distribution function of the X frame.
This function depends only on P' and y', but not on a'.

1 1

p,'„' of the 'D
&

and 'Dz states are shown in Figs. 3(a) and
3(b).

Let the condition of orthonormality be rewritten as

1= sinO)2d 0)~2 0)2 (10)

pt& is the spin-parallel two-body density and p&& is the
spin-antiparallel two-body density. The sum of them is

just the usual (polarity-blind) two-body density pz. Multi-

plying p&&, p~&, and p2 by a factor sin8&2, the weighted
two-body densities p~~, p&~, and pz are further defined.

pt& (pt&) gives the probabihty density of a pair of spin-
(anti} parallel electrons with angular separation 8,2 and
with the measurement blind to their orientation and blind
to other electrons. These functions are plotted in Figs.
4(a) and 4(b}. The optimal value of 8&2, where p&& is

peaked, is denoted by 8&& and that of the p&& is denoted

by 8t &', they are given in Table I.
Making use of the above information, further analysis

can be restricted in smaller subspaces. Let us define
another rotating frame X" with its k" axis parallel to
r3+r4 and its i" axis parallel to r4 —r3. Let a"P"y" be
another set of Euler angles specifying the X" frame. Let
834 be the angle between r3 and rs. Then, r3 and r4 can be
considered as functions of a"P"y" and 834 similarly, r,
and r2 can be considered as functions of a'P'y' and 8,2.
Accordingly, the wave functions can be considered as
functions of a'P'y'a "P"y", 8(z, and 834.

In the case of the 'D; state, let a'=0 (this choice is ir-
relevant); let P'=y'=0' [this is associated with an op-
timal case in Fig. 3(a), and e, and ez are given in the
upper X-Z plane by the two sides of the Z axis as shown
in Fig. 5(a)]; and let 8,&=834=8&

&
=120'; then

~f, , TT ~

2222
as functions of P" and y" with a" being specified at a
number of values have been observed. A typical case
with a"=0 is plotted in Fig. 6(a), where the peak occurs
at (P"=180', y"=90'}. lt implies that e3 and e„prefer to
stay in the lower Y-Z by the two sides of the Z axis as
shown in Fig. 5(a). Thus, as predicted in Sec. III, this
state has the standing ETH as its most probable shape.
Incidentally, if a" is not given at 0, we arrive at exactly
the same conclusion.
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FIR 3. Orientati. on-distribution functions p,2„2 (P', y'). The
solid, dashed, and dotted lines give 92%, 64%, and 36% of the
maximum, respectively.

FIG. 4. Weighted two-body densities. The dashed lines gives
pyy, the dotted line gives p~~/2, and the solid line gives p2/3.
The ordinate of each figure is given in arbitrary units.
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TABLE I. Most probable angular separations between a pair of spin-parallel electrons (Ot t) and
spin-anti electrons {0~~). The values are evaluated under an r-frozen model for the valence electrons of
the (N=2) intrashell states.
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Let us inspect the motion around the most probable
shape. We are reminded that, besides the trivial small os-
cillation around an equilibrium shape, the internal
motions are characterized by transformations among
different shapes [11]. In our case, there are two particu-
larly important configurations; namely, the ETH and the
coplanar square. Accordingly, there are two basic modes
relating these two shapes. One is a transformation from
an ETH to a coplanar square, and again to an ETH via a
variation of OO' (or 8i2 and 834) as shown in Fig. 7(a);
then this process is repeated but in reverse direction.
This was called an ETH-square-ETH (E S-E) mod-e [5].
The other one is a similar transformation but via a twist
between the two pairs of electrons as shown in Fig. 7(b);
this has been called a twist mode [11]. We shall show
that both modes in the 'D; state are not energetic.

Starting from a standing ETH with OO' parallel to the
Z axis, the E-S-E oscillation would lead to an intermedi-
ate structure, which is a coplanar square Lying on the X-
Y plane with a pair of spin-parallel electrons at tlie two
ends of each diagonal [as shown at the right of Fig. 7(a)].
This configuration possesses a number of invariances; it is
invariant under the combined operation of PR isp [there-

by, an INS appears in all II( —1) = —1 states], under

PP»P3~ (thereby, an INS appears in all odd-parity
states), or under P,2P24P, 3R9p [thereby, when I- =even,
an INS appears in all ( —1) + = + 1 states]. Besides, it
is also invariant under a rotation about a diagonal by 180'
together with an interchange of the two particles at the
other diagonal (thereby, an INS appears in all L =0
states). It turns out that among all X=2 intrashell states,
the 'D' is the only state which does not contain the above
INS; thus it would have a gentle E-S-E oscillation. Simi-
larly, the twist would lead to a standing coplanar square,
with the two electrons in the upper (or lower) half of the
square being spin parallel. This configuration is also not
prohibited by the QM symmetry; thus the 'D', state
would not have a very energetic twist motion.

To show the main feature of the wave function, let

a'=p'=y'=0', a"=p"=0', and y"=90' [in this choice,
e, and e2 are in the X-Z plane, while e3 and e4 are in the
Y-Z plane, as shown in Fig. 5(a)]; then the imaginary part
of f» —,—, (meanwhile, the real part is zero) as a function

2222
of 8,2 and 83$ is plotted in Fig. 8(a) [when 8i3 (834)) 180',
the pair of particles are staying under the X Yp-lane].
Figure 8(a} shows that the distribution is very smoothly
lying along POQ, where the increase of 8i2 matches the
decrease of 934 P is associated with an ETH, 0 with a
square, and Q with, again, an ETH. Thus, the existence
of a gentle E-S-E motion is confirmed. During this gentle
motion, the probability of being coplanar is quite large,
and the whole electronic cloud looks like a Aattened ellip-
soid perpendicular to L. In fact, the 'D', state is very
similar to the Pi ground state [compare Fig. 8(a} with

Fig. 6(a) of [10]]; they both have gentle oscillations
around an ETH shape. Ho~ever, the 'D', has the OO' to
be most likely parallel to L, while the P', has the OO'

normal to L.
In the case of the 'Dz state, let a'=0', p'=90, and

y'=—0 [this is associated with a peak in Fig. 3(b) and e,
and e2 are given in the X-Z plane by the two sides of the
X axis, as shown in Fig. 5(b)], 8,2=834=8~& =90', and a"
be specified at a number of values; then

~ f;,—,—,
~

as func-
2 2 2 2

tions of p" and y" have been observed. It was found that
o."=180 is an optimal case, which was plotted in Fig.
6(b), where the peak is peaked at (P"=90', y"=0', or
180'). lt implies that e3 and e4 tend to stay also in the X
Z plane as shown in Fig. 5(b). Thus this state tends to-

ward a coplanar square configuration with OO' prefer-

ably lying in the J-Y plane and with the square prefer-

ably parallel to the Z axis.
During the E-S-E oscillation of the 'D

&
and 'P& states,

the square is not associated with a node. Thus, if the E-
S-E mode is excited, an even number of nodes would ap-

pear. Hence, the excitation of the E-S-E mode may be
harder than other modes. For example, the excited F.-S-

Po

FIG. 5. Typical geometric structures and
their orientations (the Z axis is lying along L).
(a) A standing ETH; (b) a coplanar rectangle
with the plane parallel to the Z axis; (c) a lying
ETH. In these figures, 1 and 2 label the up
electron, while 3 and 4 label the down electron.
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f» —,—, is observed within the same subspace as in Fig.
2222

8(a), then the corresponding figure is given in Fig. 8(b).
Where there is an INS appearing in the coplanar square
configuration, it is due to the invariance under PP,2P34.
This INS implies a stronger E-S-E oscillation; thus the
D

&
state is higher in energy than the 'D

&
state. Besides,

a stronger oscillation implies a larger amplitude; thus the
ETH is more prolonged. Accordingly, the 8t 1 should be
smaller than that of the 'Di state, as shown in Table I.
Furthermore, Fig. 6(c) shows a smooth distribution along
y"; it implies a remarkable deformation (a standing ETH
is twisted to a standing square). Accordingly, the
geometric structure is not very well defined. Incidentally,
if the E-S-E mode of the D; state is further excited,
there would be at least three nodes involved in the oscilla-
tion resulting in very high energy. Hence, another way of

120.

~ ~ ~
~ ~ ~ y

60 ~
~ O ~

0
0

(c) t3'=0, &"=0

120 „240
g (deg)

0'

350

FIG. 6.
~f, , —,—,

~
as functions of P" and y". In each figure,
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a'=0' and y'=0' are assumed. P', a", 8~2, and 8,4 are given at
their optimal values. P' and a" are specified in the figure. The
solid, dashed, and dotted lines give 92%, 64%, and 36% of the
maximum, respectively.

~
~ ~ ~

(a)
~ ~

E mode does appear in the P2 state [refer to Fig. 6(b) of
[10]] but does not appear in the 'Di state. We are re-
minded that the excitation of the E-S-E mode results in a
prolongation of the ETH due to a larger amplitude of os-
cillation. In general, a prolonged lying ETH will cause
an increase of the moment of inertia resulting in a de-
crease of collective rotational energy (if L is fixed) to
partly compensate the increase of oscillational energy.
On the contrary, a prolonged standing ETH will cause a
decrease of the moment of inertia (if being confined on a
sphere) resulting in an additional increase of collective ro-
tational energy. This may be the background as to why
the E-S-E mode is unlikely to be excited when the ETH is
upstanding. The difference between the 'D2 and 'D;
states shows that geometric structures may change great-
ly during excitation.

~ ~

~ h

~ ~ ~ ~ ~

~ ~ ~ ~

4 0 ~

~
.

(b)

0

~ ~

V. D1 STATE

1 1

The p,'„' is shown in Fig. 3(c) where the distribution is
peaked at p'=0. The weighted two-body densities are
shown in Fig. 4(c).

Let a'=P'=y'=0', and 8,2=8&~=8t t =100'; then
~f, , —,—,

~
with a"=0 is shown in Fig. 6(c), where the

2222
peak is peaked at (p"=180', y"=90'). This situation is
just the same as the 'D

&
state; thus both states tend to-

ward the standing ETH as predicted. However, when the

C-

3$

FIG. 7. Intuitive schemes of internal motion. The up and
doom electrons are labeled by 0 and , respectively. (a) The E-
S-E mode, (b) the twist mode, (c) the trapezoid-rectangle-
trapezoid mode. The arrows label the directions of motion of
the particles.
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360 stronger both in internal oscillation and in collective ro-
tation, resulting in much higher energy.
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VII. P1 STATE
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The p,'„' is shown in Fig. 3(e). Similar to Fig. 3(d), the
distribution is also peaked at (P'=90', y'=0', or 180');

1 1

when y' changes, pp„also varies smoothly. The weight-
ed two-body densities are shown in Fig. 4(e), where the
peak in pti is broad (in fact, it is a combination of two

peaks) and 8t &
is particularly large.

Let a'=0', p'=90', y'=0' and let 8&z=83&=96', then

~f, , TT~ with a"=180' (an optimal case) is shown in
2222

Fig. 6(e). Where the peak is sharply peaked at (p"=90',
y" =0', or 180'},it implies that the electrons tend to form
a coplanar rectangle [as shown in Fig. 5(b), but a little
more prolonged along the Z axis]. Although there is a
strong preference for 00' lying the the X-Y plane, the az-
imuthal orientation of the rectangle about 00' was found
to be quite random. This fact is associated with the
smooth distribution in Fig. 3(e), in accord with the varia-
tion of y'. In this rectangle, a pair of spin-parallel elec-
trons are placed at two adjacent vertexes, just as predict-
ed in Sec. III. The diagonals of the rectangle give a large
angular separation between an up-down pair responsible
for the large 8t&.

34 (deg)

FIG. 8. f, , —,—, as functions of 8,3 and 834 to show the E-SE-
2222

mode. e3 and e4 are assumed to move in a plane normal to that
of e1 and e2. The solid line gives +86% of the maximum and
the dashed line gives +32%. The dotted line is a nodal line.

excitation may replace the E S Eexcitatio-n. -In fact, the
Dz state (contained in the N & 3 shell) has been found to

be dominated by the four-body head-on collision mode
defined in [5].

VI. 'D1 STATE

1 1

The p,'„' is shown in Fig. 3(d) where the distribution is
peaked at (p'=90', y'=0', or 180'}. The weighted two-
body densities are shown in Fig. 4(d). Let a' =O', P'=90',
y'=0 [the locations of e, and ez are given as in Fig.
5(c)], and 8,z= 834=8& &

= 102', then
~f» —,—,

~
with

2222a"= 180 (an optimal case) is shown in Fig. 6(d). Where
the peak is peaked at (p" =90', y" =90'), it implies that
the electrons, just as predicted, tend to form a lying ETH
as shown in Fig. 5(c). Figure 3(d) shows a smooth distri-
bution along y', implying that the orientation of the ETH
about the lying OO' would be quite random.

During the E-S-E oscillation, the intermediate square
is associated with a node because it is invariant under
PP, zP34. Hence, this state also has a strong E-SEoscil--
lation. Although the 'D; state and the P', ground state
[10] both tend toward the lying ETH, the former is

VIII. 'P1 STATE

The po I of this state is isotropic; we shall discuss this
point later. The weighted two-body densities are shown
in Fig. 4(f}, where the peak in p & &

is broad and 8
& &

is par-
ticularly small. Being strongly constrained by the QM
symmetry, the structure of this state is rather complicat-

180
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120

8)3/2

(deg)

60.

(real)
1

60 120

$& (deg)

FIG. 9. f, , —,—, plotted in the X-Y plane as a function of
2222

8/3 /2 and $3 to show the trapezoid-rectangle-trapezoid mode.
Refer to the caption of Fig. 8.
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TABLE II. A group of states having an ETH as their most

probable shape. They are listed in different columns according
to the number of nodes in the E-S-E mode and in different rows

according to their preference of orientation. "Lying" means
that OO' tends to lie in the X-Y plane normal to L. "Standing"
means parallel to L.

TABLE III. A group of states having a coplanar rectangle as
their most probable shape; the rectangle has each pair of spin-

parallel electrons staying at adjacent vertexes. The first row
specifies the number of nodes in the rectangle-square-rectangle
mode [6]. "Lying" means that 00' tends to lie normal to L.
The internal motion of the 'D2 state has not yet been made very
clear.

Isotropic
Lying
Standing

3pe
1

1De
1

5So
1

1Do
1

Do
1

3pe
2 Isotropic

Lying

1Se
1

3po
1

1Se
2

1De
2

ed. Both coplanar and noncoplanar structures are found.
To show the coplanar structure, let all the electrons lie in
the fixed X-Y plane, so that the coordinates from e& to e4
read (90', —8,3/2), (90', P2), (90', 8,3/2), and (90', P4), re-
spectively. Let P4= —

$2 (this is an optimal case). Then,
the real part of f, , —,—, (meanwhile, the imaginary part is

2222
zero) as a function of 8» and $2 is plotted in Fig. 9.
Where the peak A is associated with a trapezoid shown
on the left side of Fig. 7(c), the antipeak 8 is associated
with the right side. There is an INS appearing at the rec-
tangle (as stated in Sec. III) lying between A and 8. The
evolution from A to B implies an energetic oscillation as
shown in Fig. 7(c), which is called either the trapezoid-
rectangle-trapezoid mode or the planar T2BC mode, first
found in the S i state [6]. The orientation of the plane of
the trapezoid is quite random, which is responsible for

1 1

the isotropism of po j The trapezoid is the most prob-
able shape; however, other geometric (noncoplanar)
structures and other modes of motion (e.g., the 4BHC
mode [5]) are also found. Further discussion is dropped
to avoid tediousness.

IX. FINAL REMARKS

In Sec. III an analysis based on symmetry has been
made. The outcome from this analysis is entirely sup-
ported by the results of the calculation. It implies that
the main features of low-lying states, including the set of
quantum numbers (L,S, rr) and the morphology (i.e., the
most probable shape, the most probable orientation, and
the most preferred mode of motion) are decisively deter-
mined by the symmetry.

Among the 12 N=2 intrashell states, six of them are
dominated by the ETH (prolonged or flattened)
geometric structure. Where the OO' tends to be either
normal or parallel to L, an intermediate case (e.g., OO'
tends to make a 45' angle with L) is not found. The exci-
tation mode is dominated by the E-S-E mode; hence,

these states can be classified according to the number of
nodes as shown in Table II. Incidentally, the twist mode
is also a basic mode of the ETH structure. However,
among these six states, none of them has a strong twist
motion. In general, the number of nodes involved in the
twist mode can be used to classify the states further.

When the ETH is no longer preferred due to the ex-
istence of nearby INS, a coplanar rectangle (including the
square) would be favored. Among the 12 states, four of
them possess this structure listed in Table III. In all of
these states a pair of spin-parallel electrons are located at
adjacent vertexes. In the P; and 'D2 states, OO' is
preferably normal to L (besides, in the 'D2 state, the rec-
tangle is preferably parallel to L). The excitation mode is
doininated by the rectangle-square-rectangle mode [6];
hence the associated number of nodes can be used to clas-
sify the states.

When both the ETH and the coplanar rectangle are
not preferred, the system may favor a noncoplanar rec-
tangle, a coplanar trapezoid, or both. The S; state was
found to possess a noncoplanar rectangle as its most
probable shape with an energetic 4BHC oscillation [5].
The 'P

1 state was found to be a mixture of a coplanar tra-
pezoid and a noncoplanar rectangle; the trapezoid-
rectangle-trapezoid mode and the 4BHC mode are both
found.

It was verified in [5] and [6] that all the above-
mentioned basic modes, namely, the E-S-E, the
rectangle-square-rectangle, the 4BHC, and the
trapezoid-rectangle-trapezoid modes, correspond to exact
periodical solutions of the classical Lagrange equations.

In higher excited states, the coexistence of difference
shapes and the coupling of difFerent modes are likely to
occur. Nonetheless, the morphology and the number of
nodes of different modes provide a sound physical back-
ground for the classification of states.
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