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Muonium spin exchange in spin-polarized media: Spin-flip and -nonSip collisions
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The transverse relaxation of the muon spin in muonium due to electron spin exchange with a polar-
ized spin-2 medium is investigated. Stochastic calculations, which assume that spin exchange is a Pois-

son process, are carried out for the case where the electron spin polarization of the medium is on the
same axis as the applied field. Two precession signals of muonium observed in intermediate fields

(8 )30 G) are shown to have different relaxation rates which depend on the polarization of the medium.
Furthermore, the precession frequencies are shifted by an amount which depends on the spin-nonflip
rate. From the two relaxation rates and the frequency shift in intermediate fields, one can determine (i)
the encounter rate of muonium and the paramagnetic species, (ii) the polarization of the medium, and
most importantly (iii) the quantum-mechanical phase shift (and its sign) associated with the potential en-

ergy difference between electron singlet and triplet encounters. Effects of spin-nonflip collisions on spin
dynamics are discussed for non-Poisson as well as Poisson processes. In unpolarized media, the time
evolution of the muon spin in muonium is not influenced by spin-nonflip collisions, if the collision process
is Poissonian. This seemingly obvious statement is not true anymore in non-Poissonian processes, i.e., it
is necessary to specify both spin-flip and spin-nonflip rates to fully characterize spin dynamics.

PACS number(s): 36.10.Dr, 34.10.+x, 34.40.+n, 34.90.+q

I. INTRODUCTION

Electron spin exchange is a quantum-mechanical pro-
cess common in low-energy collisions between species
with unpaired electron spins. Extensive theoretical and
experimental work [1—6] has been done on the subject in
conjunction with maser and optical pumping. Recently,
electron spin exchange has been studied in systems con-
taining hydrogen isotopes including muonium (Mu).
Muonium is the bound state of a positive muon and an
electron with the virtually same ionization potential as
the hydrogen atom, and thus can be regarded as a light
isotope of H. Muonium spin exchange has been studied
in systems such as Mu+02 [7], Mu+NO [8—10], and
Mu+Cs [11]. In these studies, the results were compared
with corresponding H-atom systems, and isotope effects
in spin exchange were discussed. More recently, optical
pumping was used to produce spin-polarized Rb atoms as
a means to polarize nuclear spins for nuclear-physics ex-
periments [12—14], which makes it possible to study
muonium spin exchange with polarized atoms. In the
present work, it is shown that electron spin exchange of
Mu in electron-polarized media can provide direct infor-
mation on the spin-flip and spin-nonflip probabilities dur-
ing collisions not obtainable from measurements in unpo-
larized media. In some cases, it is possible to determine
the phase shift (including its sign) due to the difFerence in
interaction potentials between spin singlet and triplet en-
counters.

Spin exchange is an electrostatic interaction arising
from the quantum-mechanical requirement that the wave
function be antisymmetric with respect to the inter-
change of two electrons. The antisyrnmetrized total elec-
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X [a(1)P(2)+a(2)P(1)]e, (1}

where the phase shifts ET and i4 are related to the in-

teratomic potentials VT(r) and Vs(r} by

ET= —J [VT(r)/fi]dt

and

t4 = —I [ Vs(r)/R]dt,

respectively. By rearranging the right-hand side of Eq.
(1), one obtains

//ma, gP// f/ma, gP//(1+e' )/2

+ //mP, gaii(1 —e'~)/2, (2)

where 4 is the difference in the phase shift h=hz —ET
[15,16]. The quantities

~(1 —e' )/2~ =sin (b, /2)

tronic wave function of muonium with an a spin and a
colliding gas atom with a P spin can be expressed by a
Slater determinant ~~ma, gpi~, where m(r, ) and g(r2) are
the orbital wave functions of muonium and the paramag-
netic gas atom, respectively. It is straightforward to
show that this total wave function is a superposition of
electron spin triplet and singlet parts [15]. Since the in-
teraction energy between the two electrons depends on
the total electron spin through Pauli's exclusion princi-
ple, the triplet and singlet parts of the wave function ac-
quire different phase shifts hT and b z, respectively,

~~ma, gP)~ —+( —,
'

) [rn (1}g(2)+rn (2)g (1)]

X [a(1)P(2}—a(2)P(1)]e

+ ( —,
'

)
~ [rn (1)g (2)—m (2)g (1)]
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and

l(1+e' )/2I =cos (6/2)
la„a, &=e '""Il&~e ' '"ll&,

Iag, &=se ' I2&+ce '
I4&

A,sz=l, sin (b/2) and A,M, =A, cos (b, /2) . (3)

II. THEORY

can be regarded as the spin-flip and spin-nonflip probabil-
ities, respectively, of the collision. If A, is defined as the
encounter rate of muonium and paramagnetic gas mole-
cules, the rates of spin-flip and spin-nonflip collisions are
expressed by

~(s e "+c )lap, &

+(cse
' "—cs)lp„a, &,

IP„a, &=ce '"'I2& —se '"'l4&

~(cse "—cs)lag, &

+(c e "+s )lp„a, &,

(5)

Spin dynamics of the muon in muonium undergoing re-
peated electron spin exchange has recently been treated
by a stochastic time-ordered method [15] in which the
muon spin polarization at time t after n collisions at
ti, t2, . . . , t„ is calculated in terms of the phase shifts
b, i, h2, . . . , 5„, followed by statistical averaging over the
distribution of t„tz, . . . , t„, for a fixed n, and then over
all possible n from 0 to infinity. Two basic assumptions
are that the duration of a collision is much shorter than
the average time between collisions and that the time evo-
lution of spin states between collisions is determined by
the muonium hyperfine interaction. In the past few
years, this method was applied to spin exchange in unpo-
larized media with slow [15,16] and fast [17] spin-
exchange rates and in intermediate fields [18]. The
characteristic field dependence of the transverse relaxa-
tion rate predicted in intermediate fields was later
confirmed [11,19] experimentally, providing a convenient
method to distinguish relaxation due to spin exchange
from that due to chemical reactions. In the present
work, the method described in Ref. [15] is generalized to
the case of electron-polarized media.

A. Time evolution of spin states

Let ll &, I2&, I3&, and I4& be the eigenstates of the
muonium hyperfine interactions corresponding to the
four branches of the Breit-Rabi diagram with energies co&,

cog c03 and co4. The muonium spin states
I a„a, &, I aP,

IP„a, &, and IPP, & can be expressed as

Ia„a, &=ll&,

lag, & =sl2 &+cl4&,

IP„a, & =cl 2 &
—sl4 &,

where

c =(1+x/+x +1)/2,
s =(1—x /+x + 1)/2,
x =8(kG}/1.585

[15]. Therefore, the equations of time evolution for these
spin states can be written as

I C04E
where the overall phase e is omitted and tojk is the
transition frequency between the jth and kth levels of the
Breit-Rabi diagram, co~k

=co —cok.

B. Before the first collision

The positive muon produced in the decay of a pion at
rest, n+~p++v„, is 100% spin polarized. In a trans-
verse field, it is convenient to choose the initial muon spin
polarization and the applied field direction along the x
and z axes, respectively. The complex polarization
P„=o„'+ior„=o„+,defined in terms of Pauli's spin ma-
trices, represents the subsequent time evolution of the
muon polarization where the real and imaginary parts
correspond to the x and y projections of the polarization,
respectively. In this work, the electron polarization of
the medium is assumed to be along the external field, i.e.,
along the z axis.

The initial muon spin, which points in the positive x
axis, can be expressed [15] as (a„+p„)/~2. At to=0,
two different kinds of muonium atoms are formed with
equal probabilities depending on the spin of the electron:
(a) parallel muonium with its electron spin parallel to the
muon spin, (a„+P„)(a,+P, }/2, and (b) antiparallel
muonium, where the electron spin points in the negative
x direction,

(a„+P„)(—a, +P, )/2 .

The properly antisymmetrized wave function of the col-
liding system can be written as [15]

P+= —,
' [k(a„+P„)lima, g icr II+(a„+P„)IlmP,gicr II],

(8)

where P+ and P are, respectively, the wave functions
for parallel and antiparallel muonium and g, is the orbit-
al wave function of the paramagnetic gas atom with
which the muonium atom undergoes the first collision.
From this point on, the subscript e referring to electron
spin is suppressed for the sake of simplicity. Since

a, lima giall a, llmP giall
ppllma, giall~ and ppllm»giall follow the equations of
time evolution given in Eqs. (4)—(7), the time dependence
of P+ before the first collision can be written down as
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"+")
ka„((mp, g, cr([(cse "—cs)+a„((mp, g, a ()(s~e "+c2)

+p„[[ma,gicr//(cse
"—cs)+p„/gamp,

g, o ffe "]. (9)

The complex muon polarization observed at time of the first collision averaged over the probability that muonium is
produced in the parallel-muonium state ( AM =0.5) or the antiparallel-muonium state (B~=0.5) is given by

P(ti)=&M&@+(ti)la„+ly+(ti)&+BI&& «i)-Ia„'lp-«i)&

=(c /2)(e " '+e " ')+(s /2)(e " '+e " ')=GT(0, t, ) . (10)

The full expression of the quantity Gr(PG, t, ) for nonzero PG will be given later.

C. After the first collision

If the first colliding atom has a p electron (g, o =g,p), the first term of Eq. (9) will become after the first collision [Eq.
(2)]

a„[/ma, g, P//e
" ' a„[]ma,g, P[/e

" '(1+e ')/2+a„/fmP, g, a/[e
" '(1 —e ')/2,

where 6, is the phase shift of the first collision. After the first collision at t„the time evolution of this term is described
in terms of Eqs. (4) and (5):

a„//ma, giP//e
" ' —+a„//ma, giP/fe

" 'e " ' (1+e ')/2

+a„[)mP,g, a//e
" '(s'e " ' +c')(1—e ')/2

+P„//ma, gia/[e " '(cse " ' —cs)(1—e ')/2 . (12)

The full wave function of muonium (parallel or antiparallel) at time t after the first collision at t i with an atom with a p
electron is expressed by

~p+(ti)b(t ti)) = ,'[+a—„~~)—ma,gip(~~e
" 'e " ' (1+e ')/2

+a„))mP,gia)[e '" '(s e " ' +c )(1—e ')/2

+P„()ma,gia()e " '(cse " ' —cs)(1—e ')/2

+P„))ma,giP[J(c e " '+s )(c e " ' +s )(1+e ')/2

+a„ffmP, giP)f(c e " '+s )(cse " ' —cs)(1+e ')/2

+P„[/rnP, g&a[/(c e "'+s )e " ' (1—e ')/2

+a„//mp, g, p[/(cse " ' —cs)(s e " ' +c )

+p&//ma, gip//(cse
""' —cs)(cse " ' —cs)

+a„/gamp, g, p[/(s e " '+c )(s e " ' +c )

+p„//ma, g, p//(s e " '+c )(cse " ' —cs)

+p, lima gipl~l«se
" ' —c»(c'e '"" " +s2)(1+e")/2

+a„//m p, gjp//(cse " ' —cs)(cse " ' —cs)(1+e ')/2

+p„//mp, g, a/~/(cse
" ' —cs)e " ' (1—e ')/2

+ppllmp giplle
" 'e " '

]

»miiarly, the wave function If'(t, )a (t t, ) ) after collision —with an a atom can be written down explicitly [15]. The
muon polarization at the time of the second collision at t2 averaged over the probability that the colliding gas atom is in
the a state ( AG ) or in the p state (BG ) can be expressed by
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P (t, , t2) = Ast Ag ( P+(t, )a (t2, ) I o„+ I Q+(t, )a (t2, ) &+ AstBg ( P+(t, )b (t2, ) I o „+IP+(t, )b (t2, ) &

+BitAg&p (ti)a(th))lo„+lp «i)a(th))&+BMBg&p (ti}b(t2i)lo„+lp (ti}b(th))&, (14)

where t-k=t- —tk. Since cr„+ is the raising operator
which affects the muon spin state only, the terms of the
form

& llmoi, go2ll~„lo„'IP„11m~3,go411 & =2@~i ~3}5(oz o4)

in Eq. (14) will survive, leading to

I

sponds to the case where the first collision at t, is of
spin-flip type. On the other hand, the second term with
cos (b, /2) represents a spin-nonflip collision at t i. In this
case, the time evolution of the muon spin, represented by
a single GT(0, t3 —to), is not disturbed by the spin-nonfiip
collision at t, . The third term with

1P(ti t3)=sin
2

GT(0 tio)Gr(Pg t'ai )

+cos GT(0, t2O )
2

+sin cos iPggr(0, to, t„t2),
2 2

(15)

sin(b, /2}cos(b, /2) —QAs~A ~~,
which is called a "mixed term, " can be regarded as a
cross term arising from interference between the spin-fiip
and nonflip process. If Pg =0, the mixed term will van-

ish and Eq. (15) and similar equations (21) and (22) will
reduce to the known results [15]in unpolarized media.

The wave function

$2+—[(1 Pg )e "—+(1+Pg )e "
]

=e G'
A (Pg, t} . (16}

where Pg= Ag Bg is —the electron polarization of the
gas and the quantity gr(Pg tp ti t2) in the last term is
defined in Appendix I. The quantity Gr(Pg, t) is defined
as

C2
Gz(Pg, t)= [(1+Pg)e "+(1 Pg)e —" ]

lp~(t )b(t»}a(t ti)&—
which represents the system at time t after a collision
with a P electron at t, and a second collision with an a
electron at t2 can be constructed from Eq. (13). The
Slater determinant of the second term, for example, in
Eq. 13 before the second collision is expressed by
+a„ llmP, g, a,gza I.IAfter the second collision, this term
will become a superposition of spin-flip and nonflip terms
expressed in terms of the phase shift b, 2.

The quantities A (t) and P(t) are expressed by
1/2

A (Pg, t) = 1 —(1—5')sin' Qt +

a„ll~~ gi& gialIl(1+e '}/2

+ahull~~ gia g2PII(1 —e ')/2.
(19)

Cop
X 1 —(1 P)sin —t

2

P(Pg, t)=to t —tan Stan Qt+ t
—1

Cop

1/2

(17)
At t2, the gas atom g1a which participated in the first
collision is far away from the muonium atom, so that g &

a
will not affect the second collision. It is still necessary to
include g1a in order to maintain the orthogonality of,
say,

Cop+tan PG tan t (18} and

where Q and 5 are defined by Q=(+1+x —1)t00/2 and
5=x/+1+x, respectively; t00/2m=4463 MHz is the
hyperfine frequency of muonium; and t0 /2n = 1.39
MHz/G is the precession frequency of triplet muonium.
The first term of Eq. (15) with the factor sin (b, /2) corre-

I

ling(ti)b(t, i)b(t —t2) & .

After t2, the first and second terms of Eq. (19) follow the
time dependences given by Eqs. (5) and (4), respectively.
It is straightforward to calculate the muon spin polariza-
tion observed at t3 after two collisions at f, and t2..

P(ti, t2, t3}=A3t Ag Ag(p+(ti)a(t2i)a(t32)lo„+I/+(ti)a (t2i )a(t32) &

+ AM AgBg&p+(ti }a(tii }b(t32)lo„+lp+(ti }a(t2i }b(t32}&

+ A~BgAg(p+(t, )b(t2, )a(t32)lo& Ip+(t, )b(tz, )a(t33) &

+ A3tBgBg (p+(ti )b (th) )b (t32) lo„ lp+(t, )b (t, i )b (t32) &

+BM Ag Ag($ —(ti)a(th) }a(t33)lo„+lp—(ti)a(th) }a(t33)&

+BEAgBg (Q (t, }a(t2i )b(t32) Io„+ IQ (t, )a (t2, )b(t32) &

+BMBg Ag (p (ti }b (th) )a (t32)—lo'„+ lp —(ti }b(t2i }a(t33 }&

+BMBgBg (Q (t, )b (t2, )b (t33) Io„+ IQ (t, )b (t2, )b (t33) &, (20)
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where only surviving terms are

& II~~I gI~2 gz+3ll~„l~„'l&„11~~4gI~5 gz+6II ~ 2(3(+I ~4}fi(~2 ~5)fi(~3 +6) .

Assuming that parallel- and antiparallel-muonium atoms are produced t=O with the equal probabilities A~ =8~=O.5,
one obtains

2~1 . 2~2P ( tI tz t3 ) =sin sIn Gz (0, t, )GT(PG, tz, )GT( PG t32 }+cosz sin GT(0, t20 )GT( PG, t32 )
2 2 2 2

+ sin cos GT(0, t,p )GT(PG, t» )+cos cos Gz (0, t30)2 2 2

1 . 2 2. . 1 1 2 2.+cos s111 cos IPGgT(0 tp tz, t3)+sin cos cos iPGgT(O, to, t„t3)
2

. 2~1. ~2
sin cos sin iPGgT(O, to, t], tz)GT(PG, t32)+sin sin cos iPGGT(O, tIO)gT(PG, t„tz, t3)

2

+sin cos sin cos (iPG) gz(O, to, t„tz, t3),

where gz (PG to t I tz t3 } in the last term is defined in Appendix I. The first term represents two spin flip collisions at t,
and t2, while the fifth term, for example, is for one spin-non6ip collision at t, followed by a mixed collision at t2. One
can continue this procedure to calculate the polarization observed at t4 after three collisions at t1, t2, and t3 as

~ 2
Jmk1

2 52 2 53
P(t, , tz, t3, t4)=sin sin sin GT(0, t,o)GT(PG, tz, )GT(PG, t3z)GT(PG, t43)

2+sin sin cos GT(0, t,o)GT(PG, tz, )GT(PG, I4z)
2 2 2

2~1 . 2~2 . 2~3+cos sin sin Gz (0, tzo)GI (PG, t32 )GT(PG, t43 )
2

, ~2 . , ~3
+»n cos»n GT(o, tIO)GT(PG, t31)GT(PG, I43)

2 2 2

k3
+cos sin cos Gz (0, tzo )GT(PG, t4z )

2

b, 1+sin cos cos GT(0 tIp)GT(PG t4~)+cos cos sin GT(O, tzo)GT(PG, t43}2 2 2 2 2 2

2 1 2 2 2+cos cos cos GT(O, t~)+cos sin cos cos iPGgT(0, to, tz, t4)2 2 2
'

2 2 2 2

+sin cos cos cos iPGgT(0, to, t„t4)+cos cos sin cos iPGgT(O, to, t3, t4)2 2 2 2
' ' '

2 2 2 2

+cos sin cos sin iPGgT(0, to, tz, t3 )GT(PG, t43 )
2 2

~
6 1 LaL 1 2 lak2

2
LHE3

+sin cos cos sin iPGg T(0, to, t, , t3 )GT(PG, t43 )
2 2 2 2

~ 61 61 2
Lak2

2 A3
+sin cos sin cos iP~gT(0 tp t& t2)GT(P~ t42)2 2 2 2

. 2~1. ~2 ~2
+sin sin cos cos iPGGT(O, t,o)gT(PG, t, , tz, t4)2 2 2 2

+sin cos sin cos iPGGT(0, t,o)gz (PG, t, , t3, t4)2 2 2 2

A3 63+cos sin sin cos iPGGT(O, tzo)gT(PG, tz, t3 t4)
2 2 2 2

~1 . 2~2 . 2~3.+sin cos sin sin iPGgT(0, to, t, , tz)GT(PG, t32}GI (PG, t43)2 2 2 2
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. , ~t . ~z ~z . , ~s.+sin sin cos sin iPG Gr(0, t,p)gr(PG, I„I2, ts )GT(PG, t43 )
2

b,s+sin sin sin cos iPGGr(O, t,p)Gr(PG, t» )gr(PG, t2, t3 t4)

b~ b2 bs bs
+cos sin cos sin cos (iP&) gr(O, tp, tz, ts, t4)

h2 hs b,s+sin cos cos sin cos (iPG) gr(O, fp f~ fs f4)

b,2+sin cos sin cos cos (iPG} gr(O, tp, t„tz, t4}
2

b,2+sin cos sinl sin cos (iPG)2gz(O, tp, t, , ts)gr(PG, t2, t3 f4)
2

+sin sin cos sin cos (iPG) Gr(O, t,p)gr(P&, t, , t2, ts, t4)

bs
+sin cos sin cos sin (iPG) gr(O, tp f~ tl fs)Gr(PG f43)

~i . ~z ~z . ~s
+sin cos sin cos sin cos (iPG) gr(O, tp, t, , t2, t3 f4) .

2
(22)

The general expression for

P(t)&t2&t3& t~&t)

can be written down by the following rules: Since each
collision is one of three (spin-flip, spin-nonflip, and
mixed) types, there are in total 3" possible ways of distri-
buting these three types among n collisions. Suppose a
term in

P(t)&t2&ts». . . t„,t)

has m spin-flip collisions at

tp j~@ ytp
1 2 3 I

It can be seen that the nt spin-flip collisions break the
time interval [O,t] into nt+ I distinct segments

[O, t~ ],[tt;, t~ ], . . . , [t~, t] .

I

two spin-flip collisions (~~~) take place at t2 and t4,
two spin-nonflip collisions (

~
)at ts an-d t7, and the col-

lisions at t„ts, t6, ts are of mixed type ( ). Follo-wing

the procedure described above, one can write down this
term as

s
sin cos sin cos sin sin

2

~s . ~6 ~6, ~7
Xcos sin cos cos

8 ~8 . 4Xsin cos (iPG) gz(O, tp, t„tz)

XGr(PG&t42}gr(PG&t4&ts&t6&ts&t) .

It should be noticed that this particular term is indepen-
dent of ts and t7 (spin-nonflip collisions).

If there is no mixed collision between tz and tF, the
k —1 k

time evolution during this particular time segment is
represented by G(PG, t~ tz }. If there—are j mixed

collisions between tz and tz at t~, t~, . . . , t~, the
k —1 k

time-evolution function for this segment is

gT(PG, tF, tl, fsf ». . . fst, 4 ) .
k —1 1 2 j k

If the segment happens to be the first one, i.e., [O,t~ ], the
I

quantity PG in the time-evolution function is set to zero,
corresponding to the fact that muonium is formed with
its electron unpolarized at t=O. Form the product of the
rn+ 1 time evolution functions and multiply by (iPG)
where M is the total number of mix collisions from t=O
to t.

Figure I shows a term in P(t, , t, , . . . , ts, t), in which

Cp C3 t4 t5 t6 17

FIG. 1. This term in P(t1, t2, . . . , ts, t) represents two spin-
flip (long vertical lines at t2 and t4), two spin-nonflip (short vert-
ical lines without a solid circle at t3 and t7), and four mixed
(solid circles at t1, t&, t6, and ts) collisions corresponding to
the phase functions sin (h, k /2), cos (6,k /2), and
sin(hk/2)cos(hk/2), respectively, where to=0 is the time of
muonium formation. Spin flips at t2 and t4 divide the time in-
terval [tp, t] into three distinct segments [to, t2], [tz, t~], and
[t4, t] The first, seco.nd, and third segments contain, respective-
ly, one, zero, and three mixed collision corresponding to the
time-evolution functions gg(O, to, t„t~ ), Gz.(Pg, t42), and
g&(PG, t4, ts, t6, t8, t), where PG in the Srst segment is set to zero.
This term does not depend on the times of spin-nonflip col-
lisions t3 and T7.
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D. Statistical average

In order to obtain the statistically averaged polariza-
tion observed at t, the quantity

where the survival function S ( t ) is the probability that
after a collision at t=0 the particle undergoes no collision
until time t and the collision time distribution

P(tl, t2, t3, . . . , t„,t) F(t) = [d—S (t) ldt) (25)

is averaged over all possible time distributions of
t3 t for a fixed n, then over all possible n with

appropriate weights. Let f (t, , . . . , t„,t) denote the
probability density that n collisions between t=0 and t
are at t„t2, t3, . . . , t„. The average muon spin polariza-
tion observed at t is expressed by the tine-ordered in-
tegral [21]

P(t)= g f dt, f dt, f dt„f(t„. . . , t„,t)

XP(tl, . . . , t„,t) . (23)

If the collision process is Markovian, the quantity
f (t„.. . , t„,t) can be expressed by

f(t„.. . , t„,t)
=S(t t„)F(—t„„,) . F(t32)F(t„)F(t,o), (24)

is the probability density that the next collision after t=O
takes place at t [21]. The quantity S(t t—„) in Eq. (24)
ensures that there is no collision after t„until time t, thus
limiting the number of collisions between t=0 and t
strictly to n. It should be mentioned that each of n col-
lisions can be either of spin-flip, spin-nonflip, or mixed
type.

E. Spin exchange as a Poisson process

If the collision is Poissonian, the survival probability is
given by S(t)=exp( —At) with A=As~+AtvF. In this
case, the quantity f (t„t2, . . . , t„,t) is simply given by

f(t„t,, . . . , t„,t)=A, "exp( —
A, t)

[18]. Therefore, the quantity P (t) is expressed by

oo f3
P(t)= g e 'A"f ,dt, f dt, f dt„P„(t, , t2, . . . , t„,t)

n=0 0 0 0
(26)

'„ f—'dt, f'dt, . f'dt„T[P„(t„t,, . . . , t„,t)) .
7gf t 0 p p

(27)

The symbol T[ ] maintains the chronological order of the collision events in the integrand, for example,
T[P2(tl, t2, t)]=Pz(tl, t2, t) for tl &t2 and T[P2(t„t2, t)]=P2(t2, t»t) for t2 &tl Since . the quantity
exp( —

A, t)(A, t) In! in the square brackets is the Poisson probability of having exactly n collisions between to and t, the
quantity

P„(t)= f dt, f d—t, f dt, f dt„T[P„(t„t„t„.. . , t„,t)] (28)

can be regarded as the average muon spin polarization for a fixed number of collisions.

F. Poisson process in a weak transverse Beld

In low fields, where to, 2 =to23= tost and c =s =
—,', the quantities 6 (PG, t) and gr(PG, t, , t2, . . . , t„)become

Gr(PG, t) = ,'e— (29)

i mM S2Ogr(PG, to, tl, t2)= —~e22

1 ' M 30gr( PG to tl t2 t3 )
23

'~M' OgT(PG to tl . t )= e
2ll

(30)

(31)

(32)

where co~/2m=1. 39 MHz/G is the precession frequency of triplet muonium and fast oscillating terms containing co,4
and to34 are ignored [15,18]. By substituting these into Eq. (15), one obtains the muon polarization observed at t2 after
one collision at t1 as

I' 6, b, ,P(t, t )=—'e '
1 ——'sin +i sin cos1 2

Similarly, Eq. (21) leads to

' M'3o l ~ 2P(t„tz, t3) =
—,'e '

1 —
—,
' sin +i sin cos

P~
1 ——' sin +i sin cos

2 2 2 2
(34)
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In general, the muon polarization observed at time t after N collisions at t„t2, . . . , t„can be written down as

Pg h„b„
2 2 2

lctl~t $ . 2 Q G

2 2 2 2
=—'e 1 ——sin —+i sin —cos— (35)

where ( ) means the average value of the quantity in the brackets. Since the quantity P(t„t2, . . . , t„,t) is indepen-
dent of t„t2, . . . , t„, the multiple integral in Eq. (26) simply gives t &t'n. , leading to

P(t)= g P(t„t,, . . . , t„,t)e I, (At)".

n=0 n!

(A,t)" 1 . 26 .Pg . b, b,=
—,'e e ' g, 1 ——sin —+i sin —cos-a! 2 2 2 2 2

tco~ f=
—,'e exp

SF .PG

2 2 2 2
t exp i Atsin ,

—cos— (36)

where AsF =A, (sin (5/2}). The factor —,
' in front accounts for the fact that only triplet muonium is observed. The ob-

served precession frequency and relaxation rate are expressed by

Pg . S a Pg
COg =COxt+ A s111 cos =CO3t+ ( Q&(,sFkttF ) (37)

A,,b, =A,sF/2,

where Eq. (37) defines the quantity ( QA, sF&(,&F ) in terms of A, and h.

(38)

G. Intermediate transverse Beld

In intermediate fields, where c =s =
—,
' but coI2%OI23, one obtains

GT(Pg, t)= ,'[(1+Pg)e —"+(1Pg)e "]-,
gT(PG, tp, t I, t2 ) —I GT(PG, t2p )

(39)

(40)

1
gT(PG&tp&tI&t2&t3)= -2 GT(PG&t3p)

22

1
gT(PG, tp, tI». . . I„}=

I GT(PG&t&&p)n 2n —1

(41)

(42)

Direct substitution of these in Eqs. (15), (21), etc., leads to

PG
P(t„t2, . . . , t„,t)= ,'e " g 1——

—,'(3—Pg)sin +i sin c s
n=1

b,„PG h„b,„+—,'e " g 1 ,'(3+Pg )sin——+i sin cos
n=1

6P
G 2 2 2 2

=—'e "
1 ——'(3—P ) sin —+i sin —cos—

l fd23E GP
+—'e 1 ——'(3+P ) sin —+i sin —cos—

4 (43)

It can be shown that all terms containing t„t2, . . . , t„can be ignored [18] in a field larger than 8=30 G so that
(cll23 co12 )t » 1 at a typical observation time of, say, t= 1 ps. For the Poisson process, P ( t) can be calculated from Eq.
(26) as

l (co12+5co)f i (co23+6clJ)t= —,'e " exp( —
A, ,2t) +—,

' e " exp( —A 23t},



222 MASAYOSHI SENBA 50

where the frequency shift and the relaxation rates are
given by

PGLo= A, sin —cos—
2 2 2

PG PG

2
(QASFANF ) — A(stna),

t„t2, . . . , t„will be averaged to zero after integrations
[18]. Therefore, one obtains

P„(tl &t2». . . t„,t}
n

1 ——'(1 P—) sin — e
1 co

I 2f
G

n

(45) +—' 1 ——'(1+Pa) sin—G

l co34E
e (49)

3
12 SF 4

PG

4
1 —(cosh )

2

3 PG

4 4 Following the same procedure as in the case of an inter-
mediate field, one obtains

PG
A23 A$F +

4 4
1 —(cosh, )

2

3 PG
4+ 4

(46)
P(t)= g P„(t„t,, . . . , t„,t)e g, (At)"

n=0 n~

,'e —"exp(—A, &zt)+ —,'e "exp( —A34t},

where the two relaxation rates are

(50)

H. Slow spin exchange in high fields

In high fields such that c=1 and s=O, the quantity
G (PG, t) becomes

A&2=ASF(1 PG)/2 —and A34 AsF(l+PG)/2 .

I. Spin-nonflip collisions in the Poisson process

(51)

6(PG, t)= —,'(1+PG)e "+—,'(1 PG)e —'4 . (48)

If s=O, it can be shown that gT(PG, t„t2, . . . , t„) van-
ishes for all n (Appendix I). All terms containing

I

If the collision process is Poissonian, the muon polar-
ization given by Eq. (26) can be simplified by integrating
out with respect to all spin-nonfiip collision times (Ap-
pendix II). The result can be written down as

—A.~F l 2P(t)= g e A,SF dt( ' ' ' dt PsF(t(, t3, . . . , t, t)
m=0 0 0

+(tPG } g e AsF ( t&/AsFANF ) f

dt's

f 'dt„P";„'(t„t2, . . . , t, t)
m=1 0 0

+(iPG) g e A,SF (QA, sFA,NF) f 'dt, f 'dt P ~„(mt), tt, . . . , t, t)
m =2 0 0

+(iPG)' g e ASF (V ASFANF)'f dt, . f dt P",'„(t, , t, , . . . , t, t)
m=3 0 0

(52)

where PSF( t„t2, . . . , t, t) is a simple product of
GT(PG, t)'s given by

PSF( t ] ». . . t»& &
t ) =6T( 0& t to )GT( PG &

t 2 &
)6r (PG &

t 3p )

X GT(PG, t —t ), (53}

representing m spin-flip collisions at t„t2, t3
The quantity P';„'(t„t2, . . . , t, t) in Eq. (52) contains all
possible permutations of time-evolution functions for k
mixed and m —k spin-flip collisions. For example,

Pm;„(t » t2, t3, t)

tp 19 t3

FIQ. 2. The quantity P' „(t„t2,t„t) in Eq. (54) contains
three terms (a) gT(0, tp, tl, t2, t3)GT(PG, t —t3), (b)

gT(0, tps t I & t2 )gT(PG, t» t» t), (c) GT(0, t I
—tp)g&(P&, t » t» t3s t)

representing all possible sequences of one spin-flip and two
mixed collisions.

gT(o, p& „~& 3 GT(Pg&t t3—
+g T(0& to& t t & t2 }gr(PG & t3& t3& )

+GT(0, t
& to )gT(PG, t ] & t2, t3 & t) (54}
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(k) tB! 1
mix( ti~t2~. . . , tm ~

t)=
k 1( —k)l~ I ~

Then, Eq. (52}will become

(55)

corresponding to the three diagrams in Fig. 2.
If PG =0, P(t) for the Poisson process is independent

of A,iiiF. For PGAO, however, the average muon spin po-
larization P (t) depends not only on the spin-flip rate but
also on the spin-non6ip rate. As a consistency test, it is
interesting to work out Eq. (52) for a weak transverse
field. Using Eqs. (29)—(32), one can express

J. Past syin exchange

If the collision rate is much faster than the hyperfine

frequency such that coi4t « 1 and c034t « 1, the quantities

h, z(t), h23(t), and gT(PG, t„t2, . . . , t„) will vanish (see

Appendix I). Therefore, the quantity P(t„t2, . . . , t„,t)
contains no mixed collisions. In this case, one can calcu-
late P(t) by the first term of Eq. (52). It has been shown

[17] that the relaxation rate and the precession frequency
are related to the real and imaginary parts, respectively,
of lnGT(PG, t) by

(iPG) 1
'1

X 1+ & (/'4F~NF
1~ 2

A,,b,
= A—SFf, dt ASFe ,

S" RelnGr(PG, t),

ru, t„=—
kz& J dt Azure 1mhGz(PG, t) .

Using

(57)

(58)

(iPG)'+
2 2

&&~SF~~F &

(iPG }+ &QZSF—A,„F& + (56)

and

RelnGT(PG, t)=lnA (PG, t)

Im lnGT(PG, t) =p(PG, t),

leading to the same result as Eq. (36).
with Eqs. (17) and (18), one can calculate A,,b, and co,b, in

the same way as described in Ref. [17]:

2
1 1—PG

2

obs SF SF 6 4g 1+( 1+ 3) 2/~3 1+dt A, e ln A P , t + (59}

A,~F t 00 ~S t Np
cg,b,

= —AsF f dt AsFe dtp(PG, t)= co +AsF— dt AsFe tan stan Qt+ t

00 A,gF t Np
A,sF dt —XsFe "tan PGtan

III. DISCUSSION

Equations (37) and (45) show that in a weak or inter-
inediate field, the precession frequency is shifted by an
amount proportional to PG & sink &. Thus, the frequency
shift will vanish, if the collision is purely of spin-flip type,
sin (b, /2)=1, or purely of spin-nonflip type,
cos (b, /2) =1. While the relaxation rate in a weak field is
not afl'ected by the polarization of the medium, the two
relaxation rates in an intermediate field depend on PG. If
PG =0, the quantities iL, 3 and A,23 reduces to 3A,sF /4 with
the characteristic factor —,

' of intermediate fields [18,19].
For PG%0, one can determine both A,sF and PG from A, ,i
and A,z3. Suppose the phase shift 6 varies drastically
from one collision to another so that 6 is distributed uni-
formly from zero to 2~. Then, the frequency shift will
vanish, because the average value of sink is zero. In this
case, one can see from Eq. (3) that A,sF=A.&F =A,/2. If,
on the other hand, 6 is relatively constant, Eqs. (45)—(47}
allow one to determine the phase shift 6 including its
sign, the encounter rate A, , the polarization of the spin-
exchange medium from the measured values of k, 2
and 5a).

If spin exchange is much faster than the hyperfine fre-

quency, the spin-non6ip rate plays no role in spin dynam-
ics, because all the mixed collision terms vanish (Appen-
dix I). Still, the precession frequency and relaxation rate
depend on PG The first tw. o terms of Eq. (60) agree with
the result in an unpolarized medium [17] and the last
term can be thought of as a frequency shift due to addi-
tional field caused by the medium polarization. In the
limit of extremely fast spin exchange AsF ~ oo,

the quantity ce,b, given by Eq. (60} approaches
co,b, =+co„—t00PG/2, where c„o/m2. = .01036 MHz/G is
the precession frequency of the positive muon. If PG =0,
this result will reduce to the known case of quantum
back swing, "co,b,=+a„,where the muon spin in muoni-

um cannot follow fast electron Sips so that it will precess
as if it were in a diamagnetic environment [16,17,20].

An equation similar to (52) is also valid for longitudinal
fields. Mixed terms in longitudinal fields oscillate rapidly
typically at frequencies comparable to the hyperfine fre-
quency so that the e5ects of the spin-non6ip rate is aver-
aged out in slow spin exchange [22]. In the limit of fast
spin exchange [21] the mixed terms in longitudinal fields
also vanish for the same reason as in transverse fields. It
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should be mentioned that Turner, Snider, and Fleming
[23] briefly discussed muonium spin exchange in polar-
ized media using a Boltzmann-equation approach
without giving concrete expressions for experimentally
observable quantities.

Equation (52) shows that if the process is Poissonian
and PG=O, the spin-nonflip rate has no effects on spin
dynamics. If the collision process is not Poissonian, how-
ever, this seemingly obvious statement about the spin-
nonflip rate is not true even for PG =0. As a concrete ex-
ample of a non-Poisson process, it is assumed that the
survival probability is a linear function of time:

(61)

which can be regarded as the first two terms of
exp( —

A,t)=1 A.t for A—,t «1. The probability density
that a collision takes place at t is

dS(t)Ft=-
dt

1/r=A if t &r
0 if t)~. (62)

t —
tn1— (63)

For the sake of simplicity, it is assumed that the field is
weak and PG =0, where the quantity P(t „ti, . . . , t„,t) is
given from Eqs. (15), (21), (22), etc. , as [15]

P(t, , t, , . . . , t„,t)=-,'e [1—
—,
' sin'(5/2)]" . (64)

Using this in Eq. (23},one can work out P (t) for t & r as

Therefore, the time distribution function
fl;„(t„ti,t&, . . . , t„,t) can be written down from Eq. (24):

flin(t 1 ~ t2» tn ~t)

=F(t» )F(t» ), . . . , F(t„„,)S(t t—„)

lNMt 2 t 1P (t)= 'e g —1 ——' sin — dt dt dt —1—
1

0
2

0
n nn=0 7

n

1 ——' sin-. 2b,
2 2

lN M
2

1 Cd tle M
2

n=0 nf

A,'As, —Fe—xp,[(A,'As, —F )—t],

A SF

1

(n + I)!

n+1

(65)

e quantity in the square brackets in the last expression, which represents the relaxation of the muon spin, explicitly
contains both gsF and A, &F. It should be mentioned that if ksF 0, the muon polarization shows no depolarization re-
gardless of A zF

In order to understand the effects of ANF on p (t) more intuitively, it is instructive to investigate the time distribution
function for spin &lip collisions only, which can be written as

FsF(t) =F(t)sin —+ dt, F(t t
1
)F(t 1 )cos ——sin-r

+ dt dt F(t t )F(t t—)F(t ) cos — s—in —+2 2~ 2~
1 2 2 2 1 1 2 2

2 3
n

2. ~ 2~= g f dt, f dt's f dt„F(t t„) g F(t, icos—"—sin —.
n ——O

0
rn =1

(66)

The term with m =k in the summation represents the
case where the first k collisions are of spin-nonflip type
and the first flip takes place at the (k+1)th collision.
One can obtain the survival function against spin-flip col-
lisions SSF(t) by integrating Eq. (66) with respect to t and
using the initial condition that SsF(0)=1. The quantity
fsF(t„.. . , t„,t) for spin-flip collisions is now expressed
by

fSF(tl t ' ' ~ t r t)

=SSF(t t„)FSF(t„„ 1 ) FSF(t21—}FSF(tla} .

(67)

If the coHision process is Poissonian with a survival func-
tion (survival against any collision, spin flip and spin

I

nonflip) S(t}=exp( At) with—A=, AsF+A, NF, Eq. (66) can
be summed up in a closed form as

FSF(t}=exp( ASFt}ASF .

Therefore, both SsF(t) and fsF(t„ti, . . . , t„,t) are in-

dependent of the spin-nonflip rate.
In the case of linear survival, as an example of non-

Poissonian processes, one can use Eq. (62} in Eq. (66) to
derive the time distribution of spin flip collisions for-
t (v=1/k:

F ( T}=A. sin —+A. t cos —sin —+A,
—cos —sin—2~ 2 2~ . 2~ 3t 4~ . 2~

SF 2 2 2! 2 2

4t 3

+A, —cos —sin —+ -. - =A,SFe3! 2 2
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Thus, the survival probability and fsF(t, , . . . , t„,t) for
the linear decay are

t
SF( } [ +(ASF~ANF)] (ASF~ANF}

fSF(tl ~ . ~ tn~t)

(69)

n NF tt AN~(, t —t )
ASFe [ + ( ASF ~ANF

(70)

The time distribution function for spin jfip collisions does
contain A,NF, i.e., it is necessary to specify both A,sF and
A,NF to characterize the time distribution of spin-fiip col-
lisions.

The efFects of A.NF on the spin dynamics has recently
been investigated numerically [21] for survival functions
of the form S(t)=exp[ —(At)"], where P(t) is found to
become ANF in,dependent only for n= l. Furthermore, in
order that the quantity P(t) does not depend on the
spin-nonflip rate, it is essential that the process be sto-
chastic. If the process is deterministic and chaotic, P(t)
is still affected by the spin-non6ip rate, even if the sur-
vival function is exponential [21].

Spin exchange during the slowing down of muonium is
an example of a non-Poissonian process. Since the veloci-
ty muonium u (E) and the collision cross section o (E) are
time dependent during slowing down, the collision rate
A-cr(E)u(E) is also time dependent. The survival func-
tion for this case is given in terms of the number density
of the gas n as

S(t)=exp[ —J nu (E)cr(E)dt], (71)
0

which is, in general, not simple exponential with respect
to t. Other potentially non-Poissonian processes include
the case where muonium repeats trapping, detrapping,
and diffusion in solids and the case of spin exchange in

high-pressure gases or in liquids, where intercollision
times, if they can be defined at all, become comparable
with the duration of a spin-exchange encounter.

IV. CONCLUDING REMARKS

Relaxation rate and frequency shift measurements of
the two-frequency muonium precessions in a spin-
polarized medium will provide (1} a simple method to
determine the electron polarization of the media and (2)
unique insight into the encounter rate with paramagnetic
species and the phase shift due to the potential energy
difFerence between electron-singlet and -triplet en-

counters, and thus into the spin-Sip and spin-non6ip
probabilities. The efi'ects of the spin-nonflip rate on the
relaxation rate and frequency shift are discussed in the
Poisson as well as in non-Poisson processes.
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APPENDIX A: TIME EVOLUTION WITH MIXED COLLISIONS

gT(PG, to, t], tz)= —,'(1+PG)h]z(t]p)h]2(tz])+ &(1—PG)h23(t]p)h23(tzl)

gz-(PG, tp, t],tz, t3)= z(1+PG }h]2(t]p)g]2(tz] }h]2(t32 )+ z(1 PG )h23(t]p)g—23(tz] )h23(t32)

gz (PG, tp, t» tz, t3, t4 )= 2 (1+PG )h lz(t]p )g]2(tz] )g]z(t32 )h ]2(t43 )

+2( G}"»(»)g23(»}g»( 32)"23( 43}

gT(PG, tp ~ t],tz, . . . , t„)=—,'(1+PG )h]2(t]0}g]2(t21) g]2(tn 1 n 2)h 12(tn n 1)

+—,(1 PG)h23(tip}g23(—t21} g23(tn —l, n —2}h23(tn n —1} &

where the quantities h ]z(t), hz3(t), g]z(t), and g23(t) are defined as

g z(t)=s e "+c e

g (t)=c e "+s e

At high fields x ))1,where c= 1, s=0, h, z(t)=0, and hz3(t) =0, the quantity gz(PG tp t] tz . . . t„)vanishes for all n

APPENDIX B: SPIN-NONFLIP COLLISIONS IN THE POISSON PROCESS

In order to prove Eq. (52},the integrals with respect to all spin-nonflip collisions in Eq. (26}are explicitly carried out.
First, it is shown that all the terms without mixed collision will collapse into the first term of Eq. (52) after the integra-
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tion with respect to all the times associated with spin-nonflip collisions. For the sake of simplicity, Gr(PG, t) is simply
written as G (t) in this section.

First, it is useful to arrange Eq. (27} according to the number of spin-flip collisions. Let us consider terms with m
spin-flip collisions in P„(t,, t2, . . . , t„,t}, where the total number of such terms in given by n!l[m!(n —m)!]. Let us
pick one particular term in which collisions at t, , t2, . . . , t are of spin-flip type and those at t + „t +2, . . . , t„are of
spin-nonflip type. Such a term in Eq. (26) is

G(t t )G—(t, ) . G(t32)G(t2, )G(t&o) sin— cos
2

(B1)

n —m
nJP„(t)= g, ,

sin — cos— 1

o m!(n —m)! 2 2

X t) t2 t3 ''' t~T G t t~ G t~~ &

''G t2( G t)Q

Using this result in Eq. (27), one obtains

Here it is assumed that h, =b,2= =b =b, . Since this term does not contain t +„t +2, . . . , t„explicitly, the in-
tegrals with respect to these variables from 0 to t simply give a factor t" . It is easy to see that all n!i[m!(n —m)!]
terms with m spin-flip collisions will lead to the same quantity after the time integrals. Therefore, Eq. (28) can be
rewritten by

tn —m gm
P(t)= g g e ', f dt, f dt2 f dt3 f dt T[G(t t )G—(t, ) G(t2, )G(t,o)] .

n —m! m! o
'

o o o
(B&)

If the summation over n is carried out first for a fixed m, one obtains

t NF At ANFt
—AsFt(A, t)"

e =e e =e
(n —m)!

(B4)

This is the crucial step of the argument, where the quantity A,~F drops out of the expression. Thus, P(t) is expressed in

terms of A,sF by

t m

P(t)= g e s', f dt, f dt~ f dt T[G(t t }G(t—, } G(t»)G(t, o)]m 1 2 m

g e "AP~ f dt, f dt G(t t )G(t—, ) G(t2, )G(t,o) .
m=Q Q Q

(B5)

The same argument can be applied to prove other terms in Eq. (52) with mixed collisions. For the (@+1)th term of Eq.
(52) which contains k mixed collisions, Eq. (B5) will become

(g t)~ —k

(iP )k y e sF

m=k mf

k

tsin —
c, os— f dt, f dt, f dt T[P'",'„(t, , . . . , t, t)]

Q Q Q

=(iPG)" g e AsF "(QA, st, NF)"f dt) f dt Pm("„(t(, . . . , t~, t) . (B6)
m=k Q Q
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