
PHYSICAL REVIEW A VOLUME 50, NUMBER 3 SEPTEMBER 1994

From electron densities to Kohn-Sham kinetic energies, orbital energies,
exchange-correlation potentials, and exchange-correlation energies
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By developing our previous method [Phys. Rev. A 46, 2337 (1992);J. Chem. Phys. 98, 543 (1993)],we

show how to calculate Kohn-Sham kinetic energies, orbitals, orbital energies, and exchange-correlation
potentials, starting from accurate ground-state electron densities. In addition, given correct total ener-

gies, we also show how to obtain exchange-correlation energies. The scheme used is based on the Levy
constrained-search method for determining the Kohn-Sham kinetic energy. In our preferred implemen-
tation, the total electron-electron repulsion is written as a Fermi-Amaldi term plus the rest, thereby
assuring the correct long-range behavior of the exchange-correlation potential. Results are given for He,
Be, Ne, and Ar. It is demonstrated that the exact exchange-correlation functional cannot be local.

PACS number(sj: 31.20.Sy

I. INTRODUCTION

In density-functional theory, the density determines
the external potential, and therefore determines the sys-
tem. The energy of the system is a functional of the den-
sity and in principle can be determined by the variational
principle. Unfortunately, the exact energy density func-
tional is not known at the present time, because the so-
called exchange-correlation energy functional which
enters is unknown (though there has been much recent
progress on approximating it).

On the other hand, the electron density can be deter-
mined by experimental methods. There arises a question
as to whether there is a density-functional way to deter-
mine the system (and its properties) from the experimen-
tal density (or from an accurately calculated density). In
this paper, we develop, and apply to higher accuracy
than before, a method earlier described [1,2] for deter-
mining Kohn-Sham orbitals from a given ground-state
electron density. Our method is iterative, and it involves
substantial self-consistent calculation, but it requires cal-
culating no potential-energy integrals other than classical
potentials due to charge distributions. We present de-
tailed calculations on He, Be, Ne, and Ar. Given the to-
tal energy as well as the electron density, we then solve
the problem of determining the accurate exchange-
correlation energy E„, for a system, and we show by cal-
culation that the exact exchange-correlation functional
E„,[p] cannot be local. Throughout, we assume that we
are dealing with a closed-shell system having a nondegen-
erate ground state.

'Present address: Department of Chemistry, Duke University,
Durham, North Carolina 27706.

II. METHOD FOR DETERMINING KOHN-SHAM
ORBITALS AND OTHER QUANTITIES FROM A GIVEN

GROUND-STATE ELECTRON DENSITY

Levy [3] proposed imposing Eq. (2) using a local
Lagrange multiplier v,z(r). The orbitals then are solu-

tions of the equations

[
—

—,'7 +v,tt(r)]P; =E;P; . (3)

The orbitals are the Kohn-Sham orbitals, and so Eq. (3)
are the Kohn-Sham equations, and the s,. are the Kohn-
Sham orbital energies possibly displaced by some con-
stant. Given pz, determination of v, tt so that Eq. (3) are
satisfied can be accomplished by self-consistent calcula-
tion [5]. The potential vdt(r) must be the sum of the
external (nuclear) potential vo(r), the classical potential
due to po,

and the exchange-correlation potential

5E„,[p]
5p(r)

One begins with no knowledge of v„,(r) beyond the fact

Levy [3] and Levy and Perdew [4] have shown that the
Kohn-Sham orbitals P, are delivered by the procedure

T, [p]= min (Dff'/D) .
D-+pa

Here, D is the Slater determinant composed from the
Kohn-Sham orbitals (t; and T, is the corresponding
Kohn-Sham kinetic energy. Of course,

(2)
i (OCe. )
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p(r') —po(r')
v, (r)=A,f, dr' (7)

and the differential equations

[——,'V +u (r)+U, (r)]P,. (r)=e;P;(r) . (8)

In the limit I,—+ Dc, these become Eq. (3), with the orbit-
als the Kohn-Sham orbitals and the orbital energies the
Kohn-Sham orbital energies (up to a constant). One
solves Eq. (8) self-consistently for a series of specific I,
and extrapolates to A, = ac. It works.

To speed convergence and hence to improve numerical
accuracy, and also to achieve another property described
below, we here propose to add a term to the operator on
the left side of Eq. (8), namely, (1—1/N)uz. This can be
thought of as the Fermi-Amaldi approximation for the
whole electron-electron repulsion effect, VJ being the clas-
sical potential due to p,

vz(r) =f, dr' .
/r —r'/

Thus we find, using p" to give VJ,

—
—,
' Vz+Uo(r)+ I ——vj +U, (r) p; (r) =e;p, (r) .1

(10)

For finite A, the orbitals and orbital energies in Eq. (10)
will differ from those in Eq. (8), but in the limit A,~ ac

they will be the same (except for a possible shift in the or-
bital energies), since both achieve solution of Eq. (1) and
the Kohn-Sham equations for the problem are unique.

The advantages of Eq. (10) over Eq. (8) are not only nu-
merical. With the choices we have made, the exchange-
correlation potential is

that it decays as —1/r for large r [6]. One never has to
deal with E„,itself.

In our previous work [1,2] we wrote v,s(r) as Uo(r) for
the system of interest plus a term that forces p to be equal
to po in a certain limit. If it can been forced, the con-
straint

[p(r) —po(r)] [p(r') —po(r') ]
c[p,p ]=—,

'
fr —r'/

dr dr'=0

(6)

does the job. Attaching a global Lagrange multiplier A, to
this, one finds the corresponding efFective potential

TABLE I. Kohn-Sham kinetic energies in atomic units.

He
Be
Ne
Ar

2.8671 (2.8671)'
14.5926 (14.5932)'

128.625
526.682

'Previously calculated values from Ref. [1].

u = 11m v v
A.

xc c ~ J

III. KOHN-SHAM KINETIC ENERGIES,
ORBITAL ENERGIES,

AND EXCHANGE-CORRELATION POTENTIALS

Inputting accurate total electron densities, we solve Eq.
(10) self-consistently for A, =100, 140, and 200. The radi-

and the correct long-range behavior of u„, is provided by
the last term alone. To leave the Fermi-Amaldi term out
of U,s, as is done in Eq. (8), puts a burden on v,

" that is
hard for it to bear for finite A, . This does not mean that
the calculations using Eq. (8) are wrong, but that it is
much more efficient to employ Eq. (10). That Eq. (10)
hold is confirmed by comparison of our results on Be
with those of Almbladh and Pedroza [5]. The eigenval-
ues from Eq. (10) are Kohn-Sham orbital energies with no
energy shift Note .that Almbladh and Pedroza input the
experimental first ionization potential, which we do not.

Given vc and its eigendensity po, our method for deter-
mining Kohn-Sham orbitals and orbital energies is to
solve Eq. (10) self-consistently for a series of larger and
larger A, values and to extrapolate to A, = cc. In practice
(and we have made many calculations), we find that we
can m.ake accurate extrapolations by expanding any
quantity of interest as a power series in 1/A, . If one starts
with fairly high iL values (say, 100 or more}, linear extra-
polation works fairly well, but quadratic terms are need-
ed to achieve the accuracy we want; cubic terms have
very little effect. Our preferred procedure is to expand
(in 1/iL) and extrapolate just v„,. After determining the
extrapolated u„„we solve the Kohn-Sham equations
self-consistently with this U„„ thereby determining all
quantities of interest. Note that in the Kohn-Sham
efFective potential, only v„, depends on A, .

A single calculation for A, =100 gives reasonable esti-
mates for most quantities. As I, gets larger, the calcula-
tions become more tedious. Some type of "critical
phenomenon" appears to be involved.

Atom

TABLE II. Kohn-Sham orbital energies in atomic units.

&2s

He
Be
Ne
Ar

—0.9039
—4.2142

—30.812
—114.41

—0.3384
—1.644

—11.11

—0.789
—8.73 —1.07 —0.56

—0.9037
—0.3424
—0.7923
—0.5792

'From Ref. [10]. These values are inferred from experimental ionization potentials with all effects
separated out that are not included in the nonrelativistic stationary-point-nucleus Schrodinger equa-
tion.
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FIG. 1. Exchange-correlation potential for He. The solid
curve is U„„ the dot-dashed curve is —(1/N)v&, the dashed
curve is U„and the dotted curve is the radial density distribu-
tion function.

FIG. 3. Exchange-correlation potential for Ne. See Fig. 1

caption.

al parts of the orbitals are constructed by linear combina-
tion of orthogonal functions, as described in Ref. [2]. We
extrapolate v„, and then solve the Kohn-Sham equations.
The accurate densities used for He and Be are from Refs.
[7] and [8], and for Ne and Ar, from configuration-
interaction (CI) wave functions determined by us.

The computed Kohn-Sham kinetic energies are given
in Table I, the computed occupied orbital energies in
Table II. It is known that the highest Kohm-Sham occu-
pied orbital energy is the negative of the first ionization
potential [9]. In Table II we list the accurate ionization
potentials [10]. There are small differences between these
values and our calculated highest Kohn-Sham occupied
orbital energies, probably because the densities we em-
ployed are not the exact experimental ones. Our experi-
ence shows that the highest orbital energies are the most
difficult of all quantities to compute accurately. They are
small numbers, and they are very sensitive to details of
the density for large r.

In Figs. 1 to 4, we give the exchange-correlation poten-
tials (solid curve) for all four atoms. Also shown is the
Fermi-Amaldi term in Eq. (11), ( —I/N)uz (dot-dashed
curve) (which reproduces the correct long-range
behavior}, and the constraint term v, (dashed curve}
(which is responsible for the shell-structure-like behavior
of v„, ). The Fermi-Amaldi term mainly functions to sub-

'll ' '4kI

TABLE III. Kinetic-energy components in atomic units.

He
Be
Ne
Ar

2.867
14.593

128.63
526.68

0.037
0.074
0.29
0.71

2.904
14.667

128.92
527.37

FIG. 4. Exchange-correlation potential for Ar. See Fig. 1

caption.

TABLE IV. Exchange-correlation energies in atomic units.

5

He
Be
Ne
Ar

E„,
—1.068
—2.776

—12.52
—31.25

Corresponding
conventional value'

—1.069
—2.761

—12.50
—30.97

FIG. 2. Exchange-correlation potential for Be. See Fig. 1

caption.

'These values are not expected to be the same as the density-
functional values in the second column. The values are from
Ref. [12].
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TABLE V. Effective homogeneity numbers for E„,[p]. See the text for definitions. k is the effective

homogeneity of the functional E„,[p).

He
Be
Ne
Ar

E„,
—1.068
—2.776

—12.52
—31.25

—2.021
—4.429

—19.28
—43.98

L„,

0.953
1.653
6.76

12.73

kel

1.89
1.60
1.54
1.41

tract out the self-repulsion in v& that does not belong
there, while the constraint term is representing correla-
tion plus the interorbital exchange. Radial density distri-
bution functions (dotted curve) are superposed for com-
parison purposes.

IV. EXCHANGE-CORRELATION ENERGIES
AND THE KINETIC-ENERGY CORRECTION T,

Provided that we know not only the ground-state elec-
tron density but also the true total energy E, we can
proceed to determine the exchange-correlation energy
E„„which we now do. Note that E„, in density-
functional theory is not the same as in conventional
quantum chemistry. The density-functional definition is

E..[p]=(V„[p]—~[p])+(7'[pl —7;[p]» (12)

where V„[p] is the total electron-electron repulsion. The
kinetic-energy difference in this formula is conventionally
called T„

2 Ip]=2 lpl ~, Ip] . (13)

T= —E=T, +T, , T, = —E—T, .

This gives T, . E„,and T, are related through [10]

E„,[p]+T,[p]= —f p(r)r Vv„,(r)dr .

(14)

(15)

The integral can be calculated, and this gives E„,. A
check is provided by the exact density-functional formula
[11]

E[p]=g e,. —J[p]+E„,—f p(r)v„, (r)dr . (16)

This requires calculation of the last integral.
For the "exact" energies employed in calculating the

results in Tables III and IV, we have taken the values—2.9037, 14.6669, —128.918, and —527.388 a.u. These
are the values of total energy associated with the electron
densities we have employed, the "true" values being, re-
spectively, —2.9037, —14.6674, —128.9376, and—527. 540 [10].

Tables III and IV give values of T, and E„,for He, Be,
Ne, and Ar, determined as will be immediately described.
The values obtained are reasonable. Systematic further
calculation and development of the theory of these quan-
tities would appear to be highly desirable.

To determine T, and E„„given E, T„and the poten-
tial v„, determined as above, we proceed as follows: The
virial theorem applies, and so

V. TESTS OF HOMOGENEITY AND LOCALITY

The hypothetical exact functional E„„values of which
we have determined in the foregoing for exact ground-
state densities for four atoms, may or may not be approx-
imately homogeneous in p, and may or may not be ap-
proximately or accurately local in p. We can provide
tests. See the Appendix for definitions and key properties
of homogeneous and local functionals.

From Eq. (16), we see that we may regard as the basic
quantity of interest for determining E its Legendre trans-
form,

L„,[p] =E„,[p] —f p(r)v—„,(r)dr . (17)

Our questions are, may E„,[p] be homogeneous and still
give the correct value of L„, (that we compute)'? May E„,
be local?

Table V addresses the homogeneity issue. We calculate
an effective homogeneity parameter [see the Appendix,
Eqs. (Al) and (A2)],

VI. CONCLUSIONS

To summarize, we have established a method for
finding, starting from a ground-state density, Kohn-Sham

TABLE VI. Test for locality of E„,[p]. If E„,were local, the
numbers in the first column would be the same as those in the
second column. See text.

He
Be
Ne
Ar

E„,
—1.068
—2.776

—12.52
—31.25

—
—,
' Iv„,r(dp/dr)dr

—1.677
—3.527

—15.16
—33.33

k,i =1+
XC

and compute it for the four atoms. We would in fact ex-
pect, since the term vz/N is a principal part of v„, [see
Eq. (11) above], a leading part of E„, to be homogeneous
of degree 2. Also, a high-N p dependence is expected.
So for the effective" values to smoothly change from 2
to —'„as they seem to do, is reasonable. There is, howev-

er, no simple general homogeneity.
Table VI addresses the locality issue. For this we may

test whether Eq. (A4) holds, with Q =E„,. It is clear
from the results in the Table that it does not. The un-
known exact exchange-correlation functional is not local.
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orbitals, orbital energies, exchange-correlation potentials,
and kinetic energies T, . Ef, further, we know the exact
total energy, we have shown how to determine the
exchange-correlation energy E„,. From calculations on
He, Be, Ne, and Ar, we have shown that the accurate
E„,[p] cannot be local and that it does not have single
homogeneity properties.

We should like to hope for more, and we are laboring
toward that end. Can we find the accurate total energy
from the density alone? Of course, E——T„and this is a
more accurate estimate of E than a full Hartree-Fock cal-
culation provides. But what about the accurate E? Un-
derstanding better the quantity L„, of Eq. (17) might do
the job, or integrating the equation u„, =5E„,/5p from a
known reference state to the system of interest.

Second, the method that we have developed is not vari-
ational. Can it be made variational? If so, one would
then have achieved an explicit solution of the original
Hohenberg-Kohn problem involving only classical
Coulomb integrals and self-consistent calculations
simpler than Hartree-Pock calculations. A A,~ ac limit-
ing process is required, but no one would be concerned
about that.

kinp,

1 —kL I p] =(1—k)Q I p] = f ug [pip(r)« . (A2)

Q[p)= f f(p)« (A3)

where f(p) is a function of p vanishing strongly at r = ao,
we have

and

Q[p]= —
—,
' f ug(r) r p(r)dr

dr

V~ TPr d lnp(r)
3 d lnr

(A4)

Proof. Q is homogeneous of degree k in p if and only if
f v&[p]p(r)dr=kQ. Equation (A2) follows.

Lemma 2. Let p(r) be a typical atomic electron densi-
ty: spherically symmetric and monotonically decreasing
in r. Then for any functional Q[p] that is a loca/ func-
tional of p, that is, has the form
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APPENDIX: LEMMAS FOR HOMOGENEOUS
AND LOCAL FUNCTIONALS

If either (A4) or (A5) is not satisfied, Q[p] is not local.
Proof.

5Q df df dr

5p dp dr dp

Hence,

L[p]—:Q[p] —f v&[p]p(r)dr . (A 1)

We then have two lemmas.
Lemma l. If Q is a homogeneous functional of degree

For any well-defined and well-behaved functional
Q[p(r)] of the three-dimensional electron density p, for
which the functional derivative v&[p]=5Q[p] /5p(r) ex-
ists and is well behaved, we focus on the Legendre trans-
form of Q,

df dp
dr '(2 dr

(A6)

and we find, on integrating Eq. (A3) by parts,

Equations (A4) and (A5) follow.

Q= f f(r)r drdQ= —
—,
' f f'drdQ= —

—,
' f u& dr .
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